autogluon.tabular 1.3.2b20250714__py3-none-any.whl → 1.3.2b20250715__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/catboost/catboost_model.py +9 -6
- autogluon/tabular/models/catboost/catboost_utils.py +10 -0
- autogluon/tabular/models/lgb/lgb_model.py +2 -1
- autogluon/tabular/testing/fit_helper.py +2 -2
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/METADATA +11 -11
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/RECORD +14 -14
- /autogluon.tabular-1.3.2b20250714-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250715-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/zip-safe +0 -0
@@ -13,13 +13,13 @@ from autogluon.common.features.types import R_BOOL, R_CATEGORY, R_FLOAT, R_INT
|
|
13
13
|
from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
|
14
14
|
from autogluon.common.utils.resource_utils import ResourceManager
|
15
15
|
from autogluon.common.utils.try_import import try_import_catboost
|
16
|
-
from autogluon.core.constants import MULTICLASS, PROBLEM_TYPES_CLASSIFICATION, QUANTILE, SOFTCLASS
|
16
|
+
from autogluon.core.constants import MULTICLASS, PROBLEM_TYPES_CLASSIFICATION, REGRESSION, QUANTILE, SOFTCLASS
|
17
17
|
from autogluon.core.models import AbstractModel
|
18
18
|
from autogluon.core.models._utils import get_early_stopping_rounds
|
19
19
|
from autogluon.core.utils.exceptions import TimeLimitExceeded
|
20
20
|
|
21
21
|
from .callbacks import EarlyStoppingCallback, MemoryCheckCallback, TimeCheckCallback
|
22
|
-
from .catboost_utils import get_catboost_metric_from_ag_metric
|
22
|
+
from .catboost_utils import get_catboost_metric_from_ag_metric, CATBOOST_EVAL_METRIC_TO_LOSS_FUNCTION
|
23
23
|
from .hyperparameters.parameters import get_param_baseline
|
24
24
|
from .hyperparameters.searchspaces import get_default_searchspace
|
25
25
|
|
@@ -131,11 +131,14 @@ class CatBoostModel(AbstractModel):
|
|
131
131
|
# FIXME: This is extremely slow due to unoptimized metric / objective sent to CatBoost
|
132
132
|
from .catboost_softclass_utils import SoftclassCustomMetric, SoftclassObjective
|
133
133
|
|
134
|
-
params
|
134
|
+
params.setdefault("loss_function", SoftclassObjective.SoftLogLossObjective())
|
135
135
|
params["eval_metric"] = SoftclassCustomMetric.SoftLogLossMetric()
|
136
|
-
elif self.problem_type
|
137
|
-
#
|
138
|
-
params
|
136
|
+
elif self.problem_type in [REGRESSION, QUANTILE]:
|
137
|
+
# Choose appropriate loss_function that is as close as possible to the eval_metric
|
138
|
+
params.setdefault(
|
139
|
+
"loss_function",
|
140
|
+
CATBOOST_EVAL_METRIC_TO_LOSS_FUNCTION.get(params["eval_metric"], params["eval_metric"])
|
141
|
+
)
|
139
142
|
|
140
143
|
model_type = CatBoostClassifier if self.problem_type in PROBLEM_TYPES_CLASSIFICATION else CatBoostRegressor
|
141
144
|
num_rows_train = len(X)
|
@@ -6,6 +6,13 @@ logger = logging.getLogger(__name__)
|
|
6
6
|
|
7
7
|
|
8
8
|
CATBOOST_QUANTILE_PREFIX = "Quantile:"
|
9
|
+
# Mapping from non-optimizable eval_metric to optimizable loss_function.
|
10
|
+
# See https://catboost.ai/docs/en/concepts/loss-functions-regression#usage-information
|
11
|
+
CATBOOST_EVAL_METRIC_TO_LOSS_FUNCTION = {
|
12
|
+
"MedianAbsoluteError": "MAE",
|
13
|
+
"SMAPE": "MAPE",
|
14
|
+
"R2": "RMSE",
|
15
|
+
}
|
9
16
|
|
10
17
|
|
11
18
|
# TODO: Add weight support?
|
@@ -65,7 +72,10 @@ def get_catboost_metric_from_ag_metric(metric, problem_type, quantile_levels=Non
|
|
65
72
|
mean_squared_error="RMSE",
|
66
73
|
root_mean_squared_error="RMSE",
|
67
74
|
mean_absolute_error="MAE",
|
75
|
+
mean_absolute_percentage_error="MAPE",
|
76
|
+
# Non-optimizable metrics, see CATBOOST_EVAL_METRIC_TO_LOSS_FUNCTION
|
68
77
|
median_absolute_error="MedianAbsoluteError",
|
78
|
+
symmetric_mean_absolute_percentage_error="SMAPE",
|
69
79
|
r2="R2",
|
70
80
|
)
|
71
81
|
metric_class = metric_map.get(metric.name, "RMSE")
|
@@ -281,7 +281,8 @@ class LGBModel(AbstractModel):
|
|
281
281
|
train_params["params"]["metric"] = f'{stopping_metric},{train_params["params"]["metric"]}'
|
282
282
|
|
283
283
|
if self.problem_type == SOFTCLASS:
|
284
|
-
train_params["
|
284
|
+
train_params["params"]["objective"] = lgb_utils.softclass_lgbobj
|
285
|
+
train_params["params"]["num_classes"] = self.num_classes
|
285
286
|
elif self.problem_type == QUANTILE:
|
286
287
|
train_params["params"]["quantile_levels"] = self.quantile_levels
|
287
288
|
if seed_val is not None:
|
@@ -441,9 +441,9 @@ class FitHelper:
|
|
441
441
|
num_bag_sets=1,
|
442
442
|
)
|
443
443
|
if isinstance(bag, bool):
|
444
|
-
problem_types_bag =
|
444
|
+
problem_types_bag = problem_types_to_check
|
445
445
|
elif bag == "first":
|
446
|
-
problem_types_bag =
|
446
|
+
problem_types_bag = problem_types_to_check[:1]
|
447
447
|
else:
|
448
448
|
raise ValueError(f"Unknown 'bag' value: {bag}")
|
449
449
|
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250715
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -41,20 +41,20 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
41
41
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
42
42
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.3.
|
45
|
-
Requires-Dist: autogluon.features==1.3.
|
44
|
+
Requires-Dist: autogluon.core==1.3.2b20250715
|
45
|
+
Requires-Dist: autogluon.features==1.3.2b20250715
|
46
46
|
Provides-Extra: all
|
47
47
|
Requires-Dist: spacy<3.9; extra == "all"
|
48
|
-
Requires-Dist:
|
49
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
50
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
51
|
-
Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
|
52
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
53
|
-
Requires-Dist: autogluon.core[all]==1.3.2b20250714; extra == "all"
|
48
|
+
Requires-Dist: torch<2.8,>=2.2; extra == "all"
|
54
49
|
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
50
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
55
51
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
56
|
-
Requires-Dist: torch
|
52
|
+
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
53
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250715; extra == "all"
|
57
54
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
55
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
56
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
57
|
+
Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
|
58
58
|
Provides-Extra: catboost
|
59
59
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
60
60
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -72,7 +72,7 @@ Requires-Dist: einx; extra == "mitra"
|
|
72
72
|
Requires-Dist: omegaconf; extra == "mitra"
|
73
73
|
Requires-Dist: transformers; extra == "mitra"
|
74
74
|
Provides-Extra: ray
|
75
|
-
Requires-Dist: autogluon.core[all]==1.3.
|
75
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250715; extra == "ray"
|
76
76
|
Provides-Extra: realmlp
|
77
77
|
Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
|
78
78
|
Provides-Extra: skex
|
{autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.3.
|
1
|
+
autogluon.tabular-1.3.2b20250715-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=__YNhWg03UP-7oVi2ZS_VYHrVX7DWpIkJf61hjFPiDw,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -25,9 +25,9 @@ autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYM
|
|
25
25
|
autogluon/tabular/models/automm/ft_transformer.py,sha256=yZ9-TTA4GbtutHhz0Djkrl-rIFNxc7A2LBOFOXYOxVY,3886
|
26
26
|
autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
27
27
|
autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
|
28
|
-
autogluon/tabular/models/catboost/catboost_model.py,sha256=
|
28
|
+
autogluon/tabular/models/catboost/catboost_model.py,sha256=08cLCrhSogJSsXlas0_1ZnomatxEGdOjN1WS_NyXOJI,18043
|
29
29
|
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
|
30
|
-
autogluon/tabular/models/catboost/catboost_utils.py,sha256=
|
30
|
+
autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
|
31
31
|
autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
32
32
|
autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
|
33
33
|
autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
|
@@ -55,7 +55,7 @@ autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-
|
|
55
55
|
autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
|
56
56
|
autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
57
57
|
autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
|
58
|
-
autogluon/tabular/models/lgb/lgb_model.py,sha256=
|
58
|
+
autogluon/tabular/models/lgb/lgb_model.py,sha256=S1OGVHivJWMTwBnVXlUdFqyOPKK_W8yfFsFynbiDXHU,25855
|
59
59
|
autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
|
60
60
|
autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
61
61
|
autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
|
@@ -171,7 +171,7 @@ autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1
|
|
171
171
|
autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
|
172
172
|
autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
|
173
173
|
autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
|
174
|
-
autogluon/tabular/testing/fit_helper.py,sha256=
|
174
|
+
autogluon/tabular/testing/fit_helper.py,sha256=0eTvPtqM8k8hlOUIHQiwTzik4juTjHQt12BySk0klt4,19816
|
175
175
|
autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
|
176
176
|
autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
|
177
177
|
autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
|
@@ -182,11 +182,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
|
|
182
182
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
183
183
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
184
184
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
185
|
-
autogluon.tabular-1.3.
|
186
|
-
autogluon.tabular-1.3.
|
187
|
-
autogluon.tabular-1.3.
|
188
|
-
autogluon.tabular-1.3.
|
189
|
-
autogluon.tabular-1.3.
|
190
|
-
autogluon.tabular-1.3.
|
191
|
-
autogluon.tabular-1.3.
|
192
|
-
autogluon.tabular-1.3.
|
185
|
+
autogluon.tabular-1.3.2b20250715.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
186
|
+
autogluon.tabular-1.3.2b20250715.dist-info/METADATA,sha256=9onrK6_jd80PRQnYWcr0yTXAdGMFXnBAZhsZ8ayXgOc,14646
|
187
|
+
autogluon.tabular-1.3.2b20250715.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
188
|
+
autogluon.tabular-1.3.2b20250715.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
189
|
+
autogluon.tabular-1.3.2b20250715.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
190
|
+
autogluon.tabular-1.3.2b20250715.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
191
|
+
autogluon.tabular-1.3.2b20250715.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
192
|
+
autogluon.tabular-1.3.2b20250715.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.3.2b20250714.dist-info → autogluon.tabular-1.3.2b20250715.dist-info}/zip-safe
RENAMED
File without changes
|