autogluon.tabular 1.3.2b20250713__py3-none-any.whl → 1.3.2b20250714__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. autogluon/tabular/models/__init__.py +1 -0
  2. autogluon/tabular/models/mitra/__init__.py +0 -0
  3. autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +190 -0
  4. autogluon/tabular/models/mitra/_internal/config/config_run.py +32 -0
  5. autogluon/tabular/models/mitra/_internal/config/enums.py +145 -0
  6. autogluon/tabular/models/mitra/_internal/core/callbacks.py +94 -0
  7. autogluon/tabular/models/mitra/_internal/core/get_loss.py +55 -0
  8. autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +108 -0
  9. autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +67 -0
  10. autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +134 -0
  11. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +367 -0
  12. autogluon/tabular/models/mitra/_internal/data/collator.py +46 -0
  13. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +132 -0
  14. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +53 -0
  15. autogluon/tabular/models/mitra/_internal/data/preprocessor.py +420 -0
  16. autogluon/tabular/models/mitra/_internal/models/base.py +21 -0
  17. autogluon/tabular/models/mitra/_internal/models/embedding.py +182 -0
  18. autogluon/tabular/models/mitra/_internal/models/tab2d.py +667 -0
  19. autogluon/tabular/models/mitra/_internal/utils/set_seed.py +15 -0
  20. autogluon/tabular/models/mitra/mitra_model.py +214 -0
  21. autogluon/tabular/models/mitra/sklearn_interface.py +462 -0
  22. autogluon/tabular/registry/_ag_model_registry.py +2 -0
  23. autogluon/tabular/version.py +1 -1
  24. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/METADATA +19 -10
  25. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/RECORD +32 -12
  26. /autogluon.tabular-1.3.2b20250713-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250714-py3.9-nspkg.pth +0 -0
  27. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/LICENSE +0 -0
  28. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/NOTICE +0 -0
  29. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/WHEEL +0 -0
  30. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/namespace_packages.txt +0 -0
  31. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/top_level.txt +0 -0
  32. {autogluon.tabular-1.3.2b20250713.dist-info → autogluon.tabular-1.3.2b20250714.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250713
3
+ Version: 1.3.2b20250714
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,20 +41,20 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.2b20250713
45
- Requires-Dist: autogluon.features==1.3.2b20250713
44
+ Requires-Dist: autogluon.core==1.3.2b20250714
45
+ Requires-Dist: autogluon.features==1.3.2b20250714
46
46
  Provides-Extra: all
47
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
48
- Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
49
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
50
47
  Requires-Dist: spacy<3.9; extra == "all"
51
- Requires-Dist: autogluon.core[all]==1.3.2b20250713; extra == "all"
52
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
53
48
  Requires-Dist: huggingface-hub[torch]; extra == "all"
49
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
54
50
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
51
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
52
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
53
+ Requires-Dist: autogluon.core[all]==1.3.2b20250714; extra == "all"
55
54
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
56
- Requires-Dist: torch<2.8,>=2.2; extra == "all"
57
55
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
56
+ Requires-Dist: torch<2.8,>=2.2; extra == "all"
57
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
58
58
  Provides-Extra: catboost
59
59
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
60
60
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,8 +66,13 @@ Provides-Extra: imodels
66
66
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
67
67
  Provides-Extra: lightgbm
68
68
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
69
+ Provides-Extra: mitra
70
+ Requires-Dist: loguru; extra == "mitra"
71
+ Requires-Dist: einx; extra == "mitra"
72
+ Requires-Dist: omegaconf; extra == "mitra"
73
+ Requires-Dist: transformers; extra == "mitra"
69
74
  Provides-Extra: ray
70
- Requires-Dist: autogluon.core[all]==1.3.2b20250713; extra == "ray"
75
+ Requires-Dist: autogluon.core[all]==1.3.2b20250714; extra == "ray"
71
76
  Provides-Extra: realmlp
72
77
  Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
73
78
  Provides-Extra: skex
@@ -95,6 +100,10 @@ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
95
100
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
96
101
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
97
102
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
103
+ Requires-Dist: loguru; extra == "tests"
104
+ Requires-Dist: einx; extra == "tests"
105
+ Requires-Dist: omegaconf; extra == "tests"
106
+ Requires-Dist: transformers; extra == "tests"
98
107
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
99
108
  Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
100
109
  Provides-Extra: xgboost
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.3.2b20250713-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.2b20250714-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=pJQ53CceiSaKzY0L4npBwcJCBhY5tCP4kaMC3X1muUQ,91
3
+ autogluon/tabular/version.py,sha256=QyavBAXV1tyROK-lM699M991S0GUCC93ub_uqpbzb74,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -16,7 +16,7 @@ autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF6
16
16
  autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
17
17
  autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
18
18
  autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
19
- autogluon/tabular/models/__init__.py,sha256=x6hmZ0RhFIznnO1UFrHrcu0wRFTV8sGZN_SwoXdW1u8,1174
19
+ autogluon/tabular/models/__init__.py,sha256=-Yi0lq_jsMdKTjZkuRvNDeZdC5KRAsOKRNp-v4bcyy4,1216
20
20
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
22
22
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
@@ -67,6 +67,26 @@ autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NT
67
67
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
69
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
+ autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=3y9WiTHWPo8ORx7Q8w_g1-oKePxpGqG7vDWhd5OCKNA,7409
72
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=0Gqhr9GZlkOBXRPywHfZu8LvfVn2482T9ZqA1_zW1A4,17430
73
+ autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
74
+ autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=DWDgVSy0hnXaHBzkqxB_azFC9VWxn4F4v8rD2S8f4C0,689
75
+ autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=qUOHLdpoM32DWvnaog8P5sdHetY3d7ypS2NSwNWTRUY,3424
76
+ autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=xYkJUXiGzLvpWcj6a_wRJUK7f_zgjd1BLA8nH6Hc884,2605
77
+ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=d0ElwQ9iUNFXJiXlZZNfB5_qKCaV2bVBYCW7q2mDBwI,2139
78
+ autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
79
+ autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
80
+ autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=egun6tOenMYlpvjmu9RRqZeojCy3WVYgaAXiHmtT6R4,4429
81
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=jz6VgKCCbfsdnfbgEwxZjO_DvLH_0Nu5s6daFmCPl34,17937
82
+ autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
83
+ autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=M2QbXjnb5b4CK5qBthWa7bGvsi8Ox8cz_D0u7tBD4Mo,4232
84
+ autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=xpG62WFjg9NTqukKSJx3byq-SFqhxgpIG4jwIl1YuEc,1929
85
+ autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=99k2eBiTqQD0YwGAs8MM42rCAuSgd_zRoMSl5WCPIQs,14000
86
+ autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
87
+ autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
88
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=NatE-htx3fSz4yBGq876i0Jc2AcI_QuoB4yY49H6heM,25799
89
+ autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
70
90
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
91
  autogluon/tabular/models/realmlp/realmlp_model.py,sha256=9GD9iL0R9Z0zfW-26Ay7Agh172AdhiZqQlUr96BlbaU,14215
72
92
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -148,7 +168,7 @@ autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD
148
168
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
149
169
  autogluon/tabular/predictor/predictor.py,sha256=cjszntXs6k5BZMOaLGaMiC1e2sGkCsnXrH9rVI972-0,356548
150
170
  autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
151
- autogluon/tabular/registry/_ag_model_registry.py,sha256=6Rro0BBN3yb34Ysi2hffuJDdP9eV6el2HjQ-a48N2-E,1518
171
+ autogluon/tabular/registry/_ag_model_registry.py,sha256=Aa-o_KZZiroPBpvZozIBXOlWYvQJN-MVsl_Gl66gkE8,1550
152
172
  autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
153
173
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
154
174
  autogluon/tabular/testing/fit_helper.py,sha256=dzyzIBD9s7Ekb_inoAE6sep3bW9QKeYqO4WcDzAhAwg,19818
@@ -162,11 +182,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
162
182
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
163
183
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
164
184
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
165
- autogluon.tabular-1.3.2b20250713.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
166
- autogluon.tabular-1.3.2b20250713.dist-info/METADATA,sha256=0LJ8u5gloIwK0ZwSJOTs-dPpsIX1nmukZvFGd5JQuFM,14290
167
- autogluon.tabular-1.3.2b20250713.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
168
- autogluon.tabular-1.3.2b20250713.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
169
- autogluon.tabular-1.3.2b20250713.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
170
- autogluon.tabular-1.3.2b20250713.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
171
- autogluon.tabular-1.3.2b20250713.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
172
- autogluon.tabular-1.3.2b20250713.dist-info/RECORD,,
185
+ autogluon.tabular-1.3.2b20250714.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
186
+ autogluon.tabular-1.3.2b20250714.dist-info/METADATA,sha256=rCZIr_y8uPky-66HAIpkINaAHJrFrbwVfdfchVW6_dQ,14646
187
+ autogluon.tabular-1.3.2b20250714.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
188
+ autogluon.tabular-1.3.2b20250714.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
189
+ autogluon.tabular-1.3.2b20250714.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
190
+ autogluon.tabular-1.3.2b20250714.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
191
+ autogluon.tabular-1.3.2b20250714.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
192
+ autogluon.tabular-1.3.2b20250714.dist-info/RECORD,,