autogluon.tabular 1.3.2b20250709__py3-none-any.whl → 1.3.2b20250711__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/__init__.py +3 -0
- autogluon/tabular/models/catboost/callbacks.py +3 -2
- autogluon/tabular/models/catboost/catboost_model.py +2 -2
- autogluon/tabular/models/catboost/catboost_utils.py +7 -3
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +3 -3
- autogluon/tabular/models/lgb/lgb_model.py +2 -2
- autogluon/tabular/models/realmlp/__init__.py +0 -0
- autogluon/tabular/models/realmlp/realmlp_model.py +347 -0
- autogluon/tabular/models/rf/rf_model.py +2 -1
- autogluon/tabular/models/tabicl/__init__.py +0 -0
- autogluon/tabular/models/tabicl/tabicl_model.py +174 -0
- autogluon/tabular/models/tabm/__init__.py +0 -0
- autogluon/tabular/models/tabm/_tabm_internal.py +544 -0
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +807 -0
- autogluon/tabular/models/tabm/tabm_model.py +275 -0
- autogluon/tabular/models/tabm/tabm_reference.py +627 -0
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +3 -3
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +2 -2
- autogluon/tabular/predictor/predictor.py +5 -3
- autogluon/tabular/registry/_ag_model_registry.py +6 -0
- autogluon/tabular/testing/fit_helper.py +27 -25
- autogluon/tabular/testing/generate_datasets.py +7 -0
- autogluon/tabular/trainer/abstract_trainer.py +1 -1
- autogluon/tabular/trainer/model_presets/presets.py +10 -1
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/METADATA +21 -13
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/RECORD +35 -26
- /autogluon.tabular-1.3.2b20250709-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250711-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/zip-safe +0 -0
@@ -401,7 +401,7 @@ class TabularPredictor:
|
|
401
401
|
time_limit: float = None,
|
402
402
|
presets: list[str] | str = None,
|
403
403
|
hyperparameters: dict | str = None,
|
404
|
-
feature_metadata="infer",
|
404
|
+
feature_metadata: str | FeatureMetadata = "infer",
|
405
405
|
infer_limit: float = None,
|
406
406
|
infer_limit_batch_size: int = None,
|
407
407
|
fit_weighted_ensemble: bool = True,
|
@@ -591,6 +591,8 @@ class TabularPredictor:
|
|
591
591
|
Advanced functionality: Custom AutoGluon model arguments
|
592
592
|
These arguments are optional and can be specified in any model's hyperparameters.
|
593
593
|
Example: `hyperparameters = {'RF': {..., 'ag_args': {'name_suffix': 'CustomModelSuffix', 'disable_in_hpo': True}}`
|
594
|
+
Individual arguments can be passed for ag_args_fit by adding the prefix `ag.`: `hyperparameters = {'RF': {..., 'ag.num_cpus': 1}}`
|
595
|
+
Individual arguments can be passed for ag_args_ensemble by adding the prefix `ag.ens`: `hyperparameters = {'RF': {..., 'ag.ens.fold_fitting_strategy': 'sequential_local'}}`
|
594
596
|
ag_args: Dictionary of customization options related to meta properties of the model such as its name, the order it is trained, the problem types it is valid for, and the type of HPO it utilizes.
|
595
597
|
Valid keys:
|
596
598
|
name: (str) The name of the model. This overrides AutoGluon's naming logic and all other name arguments if present.
|
@@ -659,10 +661,10 @@ class TabularPredictor:
|
|
659
661
|
num_folds_parallel: (int or str, default='auto') Number of folds to be trained in parallel if using ParallelLocalFoldFittingStrategy. Consider lowering this value if you encounter either out of memory issue or CUDA out of memory issue(when trained on gpu).
|
660
662
|
if 'auto', will try to train all folds in parallel.
|
661
663
|
|
662
|
-
feature_metadata : :class:`autogluon.
|
664
|
+
feature_metadata : :class:`autogluon.common.FeatureMetadata` or str, default = 'infer'
|
663
665
|
The feature metadata used in various inner logic in feature preprocessing.
|
664
666
|
If 'infer', will automatically construct a FeatureMetadata object based on the properties of `train_data`.
|
665
|
-
In this case, `train_data` is input into :meth:`autogluon.
|
667
|
+
In this case, `train_data` is input into :meth:`autogluon.common.FeatureMetadata.from_df` to infer `feature_metadata`.
|
666
668
|
If 'infer' incorrectly assumes the dtypes of features, consider explicitly specifying `feature_metadata`.
|
667
669
|
infer_limit : float, default = None
|
668
670
|
The inference time limit in seconds per row to adhere to during fit.
|
@@ -19,8 +19,11 @@ from ..models import (
|
|
19
19
|
LinearModel,
|
20
20
|
MultiModalPredictorModel,
|
21
21
|
NNFastAiTabularModel,
|
22
|
+
RealMLPModel,
|
22
23
|
RFModel,
|
23
24
|
RuleFitModel,
|
25
|
+
TabICLModel,
|
26
|
+
TabMModel,
|
24
27
|
TabPFNMixModel,
|
25
28
|
TabPFNModel,
|
26
29
|
TabularNeuralNetTorchModel,
|
@@ -38,6 +41,7 @@ REGISTERED_MODEL_CLS_LST = [
|
|
38
41
|
LGBModel,
|
39
42
|
CatBoostModel,
|
40
43
|
XGBoostModel,
|
44
|
+
RealMLPModel,
|
41
45
|
TabularNeuralNetTorchModel,
|
42
46
|
LinearModel,
|
43
47
|
NNFastAiTabularModel,
|
@@ -45,6 +49,8 @@ REGISTERED_MODEL_CLS_LST = [
|
|
45
49
|
ImagePredictorModel,
|
46
50
|
MultiModalPredictorModel,
|
47
51
|
FTTransformerModel,
|
52
|
+
TabICLModel,
|
53
|
+
TabMModel,
|
48
54
|
TabPFNModel,
|
49
55
|
TabPFNMixModel,
|
50
56
|
FastTextModel,
|
@@ -21,6 +21,7 @@ from autogluon.tabular.testing.generate_datasets import (
|
|
21
21
|
generate_toy_multiclass_dataset,
|
22
22
|
generate_toy_regression_dataset,
|
23
23
|
generate_toy_quantile_dataset,
|
24
|
+
generate_toy_quantile_single_level_dataset,
|
24
25
|
generate_toy_multiclass_10_dataset,
|
25
26
|
generate_toy_regression_10_dataset,
|
26
27
|
generate_toy_quantile_10_dataset,
|
@@ -72,6 +73,7 @@ class DatasetLoaderHelper:
|
|
72
73
|
toy_multiclass=generate_toy_multiclass_dataset,
|
73
74
|
toy_regression=generate_toy_regression_dataset,
|
74
75
|
toy_quantile=generate_toy_quantile_dataset,
|
76
|
+
toy_quantile_single_level=generate_toy_quantile_single_level_dataset,
|
75
77
|
toy_binary_10=generate_toy_binary_10_dataset,
|
76
78
|
toy_multiclass_10=generate_toy_multiclass_10_dataset,
|
77
79
|
toy_regression_10=generate_toy_regression_10_dataset,
|
@@ -393,10 +395,10 @@ class FitHelper:
|
|
393
395
|
)
|
394
396
|
|
395
397
|
problem_type_dataset_map = {
|
396
|
-
"binary": "toy_binary",
|
397
|
-
"multiclass": "toy_multiclass",
|
398
|
-
"regression": "toy_regression",
|
399
|
-
"quantile": "toy_quantile",
|
398
|
+
"binary": ["toy_binary"],
|
399
|
+
"multiclass": ["toy_multiclass"],
|
400
|
+
"regression": ["toy_regression"],
|
401
|
+
"quantile": ["toy_quantile", "toy_quantile_single_level"],
|
400
402
|
}
|
401
403
|
|
402
404
|
problem_types_refit_full = []
|
@@ -419,20 +421,20 @@ class FitHelper:
|
|
419
421
|
if extra_metrics:
|
420
422
|
_extra_metrics = METRICS.get(problem_type, None)
|
421
423
|
refit_full = problem_type in problem_types_refit_full
|
422
|
-
dataset_name
|
423
|
-
|
424
|
-
|
425
|
-
|
426
|
-
|
427
|
-
|
428
|
-
|
429
|
-
|
430
|
-
|
431
|
-
|
424
|
+
for dataset_name in problem_type_dataset_map[problem_type]:
|
425
|
+
FitHelper.fit_and_validate_dataset(
|
426
|
+
dataset_name=dataset_name,
|
427
|
+
fit_args=fit_args,
|
428
|
+
fit_weighted_ensemble=False,
|
429
|
+
refit_full=refit_full,
|
430
|
+
extra_metrics=_extra_metrics,
|
431
|
+
raise_on_model_failure=raise_on_model_failure,
|
432
|
+
**kwargs,
|
433
|
+
)
|
432
434
|
|
433
435
|
if bag:
|
434
436
|
model_params_bag = copy.deepcopy(model_hyperparameters)
|
435
|
-
model_params_bag["
|
437
|
+
model_params_bag["ag.ens.fold_fitting_strategy"] = "sequential_local"
|
436
438
|
fit_args_bag = dict(
|
437
439
|
hyperparameters={model_cls: model_params_bag},
|
438
440
|
num_bag_folds=2,
|
@@ -450,16 +452,16 @@ class FitHelper:
|
|
450
452
|
if extra_metrics:
|
451
453
|
_extra_metrics = METRICS.get(problem_type, None)
|
452
454
|
refit_full = problem_type in problem_types_refit_full
|
453
|
-
dataset_name
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
|
462
|
-
|
455
|
+
for dataset_name in problem_type_dataset_map[problem_type]:
|
456
|
+
FitHelper.fit_and_validate_dataset(
|
457
|
+
dataset_name=dataset_name,
|
458
|
+
fit_args=fit_args_bag,
|
459
|
+
fit_weighted_ensemble=False,
|
460
|
+
refit_full=refit_full,
|
461
|
+
extra_metrics=_extra_metrics,
|
462
|
+
raise_on_model_failure=raise_on_model_failure,
|
463
|
+
**kwargs,
|
464
|
+
)
|
463
465
|
|
464
466
|
|
465
467
|
def stacked_overfitting_assert(
|
@@ -64,6 +64,13 @@ def generate_toy_quantile_dataset():
|
|
64
64
|
return train_data, test_data, dataset_info
|
65
65
|
|
66
66
|
|
67
|
+
def generate_toy_quantile_single_level_dataset():
|
68
|
+
train_data, test_data, dataset_info = generate_toy_regression_dataset()
|
69
|
+
dataset_info["problem_type"] = QUANTILE
|
70
|
+
dataset_info["init_kwargs"] = {"quantile_levels": [0.71]}
|
71
|
+
return train_data, test_data, dataset_info
|
72
|
+
|
73
|
+
|
67
74
|
def generate_toy_binary_10_dataset():
|
68
75
|
label = "label"
|
69
76
|
dummy_dataset = {
|
@@ -2950,7 +2950,7 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
2950
2950
|
if fit_strategy == "parallel":
|
2951
2951
|
num_cpus = kwargs.get("total_resources", {}).get("num_cpus", "auto")
|
2952
2952
|
if isinstance(num_cpus, str) and num_cpus == "auto":
|
2953
|
-
num_cpus = get_resource_manager().
|
2953
|
+
num_cpus = get_resource_manager().get_cpu_count()
|
2954
2954
|
if num_cpus < 12:
|
2955
2955
|
force_parallel = os.environ.get("AG_FORCE_PARALLEL", "False") == "True"
|
2956
2956
|
if not force_parallel:
|
@@ -311,6 +311,16 @@ def model_factory(
|
|
311
311
|
model_params.pop(AG_ARGS, None)
|
312
312
|
model_params.pop(AG_ARGS_ENSEMBLE, None)
|
313
313
|
|
314
|
+
extra_ensemble_hyperparameters = copy.deepcopy(model.get(AG_ARGS_ENSEMBLE, dict()))
|
315
|
+
|
316
|
+
# Enable user to pass ensemble hyperparameters via `"ag.ens.fold_fitting_strategy": "sequential_local"`
|
317
|
+
ag_args_ensemble_prefix = "ag.ens."
|
318
|
+
model_param_keys = list(model_params.keys())
|
319
|
+
for key in model_param_keys:
|
320
|
+
if key.startswith(ag_args_ensemble_prefix):
|
321
|
+
key_suffix = key.split(ag_args_ensemble_prefix, 1)[-1]
|
322
|
+
extra_ensemble_hyperparameters[key_suffix] = model_params.pop(key)
|
323
|
+
|
314
324
|
model_init_kwargs = dict(
|
315
325
|
path=path,
|
316
326
|
name=name,
|
@@ -321,7 +331,6 @@ def model_factory(
|
|
321
331
|
|
322
332
|
if ensemble_kwargs is not None:
|
323
333
|
ensemble_kwargs_model = copy.deepcopy(ensemble_kwargs)
|
324
|
-
extra_ensemble_hyperparameters = copy.deepcopy(model.get(AG_ARGS_ENSEMBLE, dict()))
|
325
334
|
ensemble_kwargs_model["hyperparameters"] = ensemble_kwargs_model.get("hyperparameters", {})
|
326
335
|
if ensemble_kwargs_model["hyperparameters"] is None:
|
327
336
|
ensemble_kwargs_model["hyperparameters"] = {}
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250711
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -37,23 +37,24 @@ Description-Content-Type: text/markdown
|
|
37
37
|
License-File: ../LICENSE
|
38
38
|
License-File: ../NOTICE
|
39
39
|
Requires-Dist: numpy<2.4.0,>=1.25.0
|
40
|
-
Requires-Dist: scipy<1.
|
41
|
-
Requires-Dist: pandas<2.
|
42
|
-
Requires-Dist: scikit-learn<1.
|
40
|
+
Requires-Dist: scipy<1.17,>=1.5.4
|
41
|
+
Requires-Dist: pandas<2.4.0,>=2.0.0
|
42
|
+
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.3.
|
45
|
-
Requires-Dist: autogluon.features==1.3.
|
44
|
+
Requires-Dist: autogluon.core==1.3.2b20250711
|
45
|
+
Requires-Dist: autogluon.features==1.3.2b20250711
|
46
46
|
Provides-Extra: all
|
47
|
-
Requires-Dist: torch<2.8,>=2.2; extra == "all"
|
48
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
49
|
-
Requires-Dist: autogluon.core[all]==1.3.2b20250709; extra == "all"
|
50
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
51
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
52
47
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
48
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250711; extra == "all"
|
53
49
|
Requires-Dist: spacy<3.9; extra == "all"
|
54
|
-
Requires-Dist:
|
50
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
55
51
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
52
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
56
53
|
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
54
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
55
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
56
|
+
Requires-Dist: torch<2.8,>=2.2; extra == "all"
|
57
|
+
Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
|
57
58
|
Provides-Extra: catboost
|
58
59
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
59
60
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -66,7 +67,9 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
66
67
|
Provides-Extra: lightgbm
|
67
68
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
68
69
|
Provides-Extra: ray
|
69
|
-
Requires-Dist: autogluon.core[all]==1.3.
|
70
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250711; extra == "ray"
|
71
|
+
Provides-Extra: realmlp
|
72
|
+
Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
|
70
73
|
Provides-Extra: skex
|
71
74
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
72
75
|
Provides-Extra: skl2onnx
|
@@ -75,6 +78,10 @@ Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
|
|
75
78
|
Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
|
76
79
|
Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
|
77
80
|
Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
|
81
|
+
Provides-Extra: tabicl
|
82
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
83
|
+
Provides-Extra: tabm
|
84
|
+
Requires-Dist: torch<2.8,>=2.2; extra == "tabm"
|
78
85
|
Provides-Extra: tabpfn
|
79
86
|
Requires-Dist: tabpfn<2.0,>=0.1.11; extra == "tabpfn"
|
80
87
|
Provides-Extra: tabpfnmix
|
@@ -89,6 +96,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
|
|
89
96
|
Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
|
90
97
|
Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
|
91
98
|
Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
|
99
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
|
92
100
|
Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
|
93
101
|
Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
|
94
102
|
Provides-Extra: xgboost
|
{autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.3.
|
1
|
+
autogluon.tabular-1.3.2b20250711-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=v0iakvttW3DdrV3QLVZS9POR34hhZdNc3hc0eVzEc6k,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -16,7 +16,7 @@ autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF6
|
|
16
16
|
autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
|
17
17
|
autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
|
18
18
|
autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
|
19
|
-
autogluon/tabular/models/__init__.py,sha256=
|
19
|
+
autogluon/tabular/models/__init__.py,sha256=yxyjo4hzfpSR42swWVcT-4iDh24H-5lctafb2_P1zuY,1168
|
20
20
|
autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
21
21
|
autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
|
22
22
|
autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
|
@@ -24,10 +24,10 @@ autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
|
|
24
24
|
autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYMmQ4Jp5hINJa_fSm-j8,11322
|
25
25
|
autogluon/tabular/models/automm/ft_transformer.py,sha256=yZ9-TTA4GbtutHhz0Djkrl-rIFNxc7A2LBOFOXYOxVY,3886
|
26
26
|
autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
27
|
-
autogluon/tabular/models/catboost/callbacks.py,sha256=
|
28
|
-
autogluon/tabular/models/catboost/catboost_model.py,sha256=
|
27
|
+
autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
|
28
|
+
autogluon/tabular/models/catboost/catboost_model.py,sha256=BxdFGX51S9SH_C5k12AYP3McdGJvfib4F5pw2U3xaj8,17864
|
29
29
|
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
|
30
|
-
autogluon/tabular/models/catboost/catboost_utils.py,sha256=
|
30
|
+
autogluon/tabular/models/catboost/catboost_utils.py,sha256=UFEvLbG52USXmwGuKty-7BLqjLKZftvKN3yKJ0FCpK4,3428
|
31
31
|
autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
32
32
|
autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
|
33
33
|
autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
|
@@ -36,7 +36,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
|
|
36
36
|
autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
|
37
37
|
autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
|
38
38
|
autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
|
39
|
-
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=
|
39
|
+
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=km-8gM7i_pCYggde0M7xysp3jMn811W-dI0aYK_8o5Y,29541
|
40
40
|
autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
41
41
|
autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
|
42
42
|
autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
|
@@ -55,7 +55,7 @@ autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-
|
|
55
55
|
autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
|
56
56
|
autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
57
57
|
autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
|
58
|
-
autogluon/tabular/models/lgb/lgb_model.py,sha256=
|
58
|
+
autogluon/tabular/models/lgb/lgb_model.py,sha256=BZ9aCfjny9_RnwVizW1wD3WxJBZ-4z4L1qQ2d4-I2x0,25771
|
59
59
|
autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
|
60
60
|
autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
61
61
|
autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
|
@@ -67,17 +67,26 @@ autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NT
|
|
67
67
|
autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
68
68
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
69
69
|
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
|
70
|
+
autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
71
|
+
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=9GD9iL0R9Z0zfW-26Ay7Agh172AdhiZqQlUr96BlbaU,14215
|
70
72
|
autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
71
|
-
autogluon/tabular/models/rf/rf_model.py,sha256=
|
73
|
+
autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
|
72
74
|
autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
|
73
75
|
autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
|
74
76
|
autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
75
77
|
autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
|
76
78
|
autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
|
79
|
+
autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
80
|
+
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=fby1lsElh0EdVtYBSpEDiUBM57BF20JuROc0Cy0AIBk,5946
|
81
|
+
autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
82
|
+
autogluon/tabular/models/tabm/_tabm_internal.py,sha256=LbIohrZYnXiKbD1ZnXWDJQMBLdQTaL90Fag6fkrF3GI,21093
|
83
|
+
autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
|
84
|
+
autogluon/tabular/models/tabm/tabm_model.py,sha256=43I8429yTq5U2IDp6ATZB27lyewAW20VzdbPxS-01sA,10115
|
85
|
+
autogluon/tabular/models/tabm/tabm_reference.py,sha256=h9FXzyeu6b4vXg9nnM3L2I8dYbcE39USr9C4uMnt4Ek,21788
|
77
86
|
autogluon/tabular/models/tabpfn/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
78
87
|
autogluon/tabular/models/tabpfn/tabpfn_model.py,sha256=PEYMuIh5TFLIDy3hcjfz1DcvDu77rbwRq0pKWyuUR04,6787
|
79
88
|
autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
80
|
-
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=
|
89
|
+
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
|
81
90
|
autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
82
91
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
|
83
92
|
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
|
@@ -110,7 +119,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
|
|
110
119
|
autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
|
111
120
|
autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
|
112
121
|
autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
113
|
-
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=
|
122
|
+
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=zO2-3oe3T4QgPQCSirXzo8QxrHPqTln39CwbgwXDtsk,43016
|
114
123
|
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
|
115
124
|
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
|
116
125
|
autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -121,7 +130,7 @@ autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5
|
|
121
130
|
autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
|
122
131
|
autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
123
132
|
autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
|
124
|
-
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=
|
133
|
+
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=MCzZv3ty2p7N9-4qGPaCUha2VnLBm-vY2KA23Xny0ag,15235
|
125
134
|
autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
|
126
135
|
autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
127
136
|
autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
|
@@ -130,27 +139,27 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
|
|
130
139
|
autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
|
131
140
|
autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
|
132
141
|
autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
|
133
|
-
autogluon/tabular/predictor/predictor.py,sha256=
|
142
|
+
autogluon/tabular/predictor/predictor.py,sha256=cjszntXs6k5BZMOaLGaMiC1e2sGkCsnXrH9rVI972-0,356548
|
134
143
|
autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
|
135
|
-
autogluon/tabular/registry/_ag_model_registry.py,sha256=
|
144
|
+
autogluon/tabular/registry/_ag_model_registry.py,sha256=Jz9V7IGBosbYCjDmkgUhGvAVXQ6fVwSuB23OB4txSMo,1514
|
136
145
|
autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
|
137
146
|
autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
|
138
|
-
autogluon/tabular/testing/fit_helper.py,sha256=
|
139
|
-
autogluon/tabular/testing/generate_datasets.py,sha256=
|
147
|
+
autogluon/tabular/testing/fit_helper.py,sha256=dzyzIBD9s7Ekb_inoAE6sep3bW9QKeYqO4WcDzAhAwg,19818
|
148
|
+
autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
|
140
149
|
autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
|
141
150
|
autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
|
142
|
-
autogluon/tabular/trainer/abstract_trainer.py,sha256=
|
151
|
+
autogluon/tabular/trainer/abstract_trainer.py,sha256=8uP3DNJCgmQuDWG0zGJnSNrMCVyMbe8mm11hA8GSP98,232409
|
143
152
|
autogluon/tabular/trainer/auto_trainer.py,sha256=ZQgQKFT1iHzzun5o5ojdq5pSQmr9ctTkNhe2r9OPOr0,8731
|
144
153
|
autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
145
|
-
autogluon/tabular/trainer/model_presets/presets.py,sha256=
|
154
|
+
autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju1OWi7EJwHay4jjljqt_E0,16546
|
146
155
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
147
156
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
148
157
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
149
|
-
autogluon.tabular-1.3.
|
150
|
-
autogluon.tabular-1.3.
|
151
|
-
autogluon.tabular-1.3.
|
152
|
-
autogluon.tabular-1.3.
|
153
|
-
autogluon.tabular-1.3.
|
154
|
-
autogluon.tabular-1.3.
|
155
|
-
autogluon.tabular-1.3.
|
156
|
-
autogluon.tabular-1.3.
|
158
|
+
autogluon.tabular-1.3.2b20250711.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
159
|
+
autogluon.tabular-1.3.2b20250711.dist-info/METADATA,sha256=H3u2cwrwzE0Z2RjaOZsjmL-8e5O2veEKF_u88DCaB0A,14394
|
160
|
+
autogluon.tabular-1.3.2b20250711.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
161
|
+
autogluon.tabular-1.3.2b20250711.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
162
|
+
autogluon.tabular-1.3.2b20250711.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
163
|
+
autogluon.tabular-1.3.2b20250711.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
164
|
+
autogluon.tabular-1.3.2b20250711.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
165
|
+
autogluon.tabular-1.3.2b20250711.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.3.2b20250709.dist-info → autogluon.tabular-1.3.2b20250711.dist-info}/zip-safe
RENAMED
File without changes
|