autogluon.tabular 1.3.2b20250614__py3-none-any.whl → 1.3.2b20250616__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/_utils/rapids_utils.py +1 -1
- autogluon/tabular/models/lr/lr_rapids_model.py +45 -5
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/METADATA +10 -10
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/RECORD +12 -12
- /autogluon.tabular-1.3.2b20250614-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250616-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/zip-safe +0 -0
@@ -10,7 +10,7 @@ class RapidsModelMixin:
|
|
10
10
|
@classmethod
|
11
11
|
def _get_default_ag_args_ensemble(cls, **kwargs) -> dict:
|
12
12
|
default_ag_args_ensemble = super()._get_default_ag_args_ensemble(**kwargs)
|
13
|
-
extra_ag_args_ensemble = {"use_child_oof": False}
|
13
|
+
extra_ag_args_ensemble = {"use_child_oof": False, "fold_fitting_strategy": "sequential_local"}
|
14
14
|
default_ag_args_ensemble.update(extra_ag_args_ensemble)
|
15
15
|
return default_ag_args_ensemble
|
16
16
|
|
@@ -1,7 +1,5 @@
|
|
1
1
|
import logging
|
2
2
|
|
3
|
-
import numpy as np
|
4
|
-
|
5
3
|
from autogluon.common.utils.try_import import try_import_rapids_cuml
|
6
4
|
from autogluon.core.constants import REGRESSION
|
7
5
|
|
@@ -51,10 +49,52 @@ class LinearRapidsModel(RapidsModelMixin, LinearModel):
|
|
51
49
|
|
52
50
|
def _preprocess(self, X, **kwargs):
|
53
51
|
X = super()._preprocess(X=X, **kwargs)
|
54
|
-
if
|
52
|
+
if hasattr(X, 'toarray'): # Check if it's a sparse matrix
|
55
53
|
X = X.toarray()
|
56
54
|
return X
|
57
55
|
|
58
56
|
def _fit(self, X, y, **kwargs):
|
59
|
-
|
60
|
-
|
57
|
+
"""
|
58
|
+
Custom fit method for RAPIDS cuML models that handles parameter compatibility
|
59
|
+
and bypasses sklearn-specific incremental training approach.
|
60
|
+
"""
|
61
|
+
# Preprocess data
|
62
|
+
X = self.preprocess(X, is_train=True)
|
63
|
+
if self.problem_type == 'binary':
|
64
|
+
y = y.astype(int).values
|
65
|
+
|
66
|
+
# Create cuML model with filtered parameters
|
67
|
+
model_cls = self._get_model_type()
|
68
|
+
|
69
|
+
# Comprehensive parameter filtering for cuML compatibility
|
70
|
+
cuml_incompatible_params = {
|
71
|
+
# AutoGluon-specific preprocessing parameters
|
72
|
+
'vectorizer_dict_size', 'proc.ngram_range', 'proc.skew_threshold',
|
73
|
+
'proc.impute_strategy', 'handle_text',
|
74
|
+
# sklearn-specific parameters not supported by cuML
|
75
|
+
'n_jobs', 'warm_start', 'multi_class', 'dual', 'intercept_scaling',
|
76
|
+
'class_weight', 'random_state', 'verbose',
|
77
|
+
# Parameters that need conversion or special handling
|
78
|
+
'penalty', 'C'
|
79
|
+
}
|
80
|
+
|
81
|
+
# Filter out incompatible parameters
|
82
|
+
filtered_params = {k: v for k, v in self.params.items()
|
83
|
+
if k not in cuml_incompatible_params}
|
84
|
+
|
85
|
+
# Handle parameter conversions for cuML
|
86
|
+
if self.problem_type == REGRESSION:
|
87
|
+
# Convert sklearn's C parameter to cuML's alpha
|
88
|
+
if 'C' in self.params:
|
89
|
+
filtered_params['alpha'] = 1.0 / self.params['C']
|
90
|
+
else:
|
91
|
+
# For classification, keep C parameter
|
92
|
+
if 'C' in self.params:
|
93
|
+
filtered_params['C'] = self.params['C']
|
94
|
+
|
95
|
+
# Create and fit cuML model - let cuML handle its own error messages
|
96
|
+
self.model = model_cls(**filtered_params)
|
97
|
+
self.model.fit(X, y)
|
98
|
+
|
99
|
+
# Add missing sklearn-compatible attributes for AutoGluon compatibility
|
100
|
+
self.model.n_iter_ = None # cuML doesn't track iterations like sklearn
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250616
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
|
|
41
41
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
42
42
|
Requires-Dist: scikit-learn<1.7.0,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.3.
|
45
|
-
Requires-Dist: autogluon.features==1.3.
|
44
|
+
Requires-Dist: autogluon.core==1.3.2b20250616
|
45
|
+
Requires-Dist: autogluon.features==1.3.2b20250616
|
46
46
|
Provides-Extra: all
|
47
|
-
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
48
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
49
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
50
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
51
47
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
52
48
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
49
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
53
50
|
Requires-Dist: torch<2.7,>=2.2; extra == "all"
|
54
|
-
Requires-Dist: autogluon.core[all]==1.3.2b20250614; extra == "all"
|
55
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
56
51
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
52
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
53
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250616; extra == "all"
|
54
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
55
|
+
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
56
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
57
57
|
Provides-Extra: catboost
|
58
58
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
59
59
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
66
66
|
Provides-Extra: lightgbm
|
67
67
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
68
68
|
Provides-Extra: ray
|
69
|
-
Requires-Dist: autogluon.core[all]==1.3.
|
69
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250616; extra == "ray"
|
70
70
|
Provides-Extra: skex
|
71
71
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
72
72
|
Provides-Extra: skl2onnx
|
{autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.3.
|
1
|
+
autogluon.tabular-1.3.2b20250616-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=62vzXJ8PVHkbeXOmkBmEiscHahqhaxUjLVRKzCtWNBU,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -18,7 +18,7 @@ autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr1
|
|
18
18
|
autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
|
19
19
|
autogluon/tabular/models/__init__.py,sha256=fZDKUKiD9hDzEyFXXbt7_b4yADK9peREdP8QoukWukQ,1036
|
20
20
|
autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
21
|
-
autogluon/tabular/models/_utils/rapids_utils.py,sha256=
|
21
|
+
autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
|
22
22
|
autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
|
23
23
|
autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
24
24
|
autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYMmQ4Jp5hINJa_fSm-j8,11322
|
@@ -63,7 +63,7 @@ autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B
|
|
63
63
|
autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
64
64
|
autogluon/tabular/models/lr/lr_model.py,sha256=wTrrTWVwmlAyx4RAxhfXHbkvZTAVIvAiTadpEChGEzc,15599
|
65
65
|
autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
|
66
|
-
autogluon/tabular/models/lr/lr_rapids_model.py,sha256=
|
66
|
+
autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
|
67
67
|
autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
68
68
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
69
69
|
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
|
@@ -146,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=3gM_QFpG_BaVFIf8T0nCd-
|
|
146
146
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
147
147
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
148
148
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
149
|
-
autogluon.tabular-1.3.
|
150
|
-
autogluon.tabular-1.3.
|
151
|
-
autogluon.tabular-1.3.
|
152
|
-
autogluon.tabular-1.3.
|
153
|
-
autogluon.tabular-1.3.
|
154
|
-
autogluon.tabular-1.3.
|
155
|
-
autogluon.tabular-1.3.
|
156
|
-
autogluon.tabular-1.3.
|
149
|
+
autogluon.tabular-1.3.2b20250616.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
150
|
+
autogluon.tabular-1.3.2b20250616.dist-info/METADATA,sha256=8D5eieiD9qeVspY9rX76QKhIAvtYfb6k-UsZdPZD8WA,14069
|
151
|
+
autogluon.tabular-1.3.2b20250616.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
152
|
+
autogluon.tabular-1.3.2b20250616.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
153
|
+
autogluon.tabular-1.3.2b20250616.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
154
|
+
autogluon.tabular-1.3.2b20250616.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
155
|
+
autogluon.tabular-1.3.2b20250616.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
156
|
+
autogluon.tabular-1.3.2b20250616.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.3.2b20250614.dist-info → autogluon.tabular-1.3.2b20250616.dist-info}/zip-safe
RENAMED
File without changes
|