autogluon.tabular 1.3.2b20250614__py3-none-any.whl → 1.3.2b20250616__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,7 +10,7 @@ class RapidsModelMixin:
10
10
  @classmethod
11
11
  def _get_default_ag_args_ensemble(cls, **kwargs) -> dict:
12
12
  default_ag_args_ensemble = super()._get_default_ag_args_ensemble(**kwargs)
13
- extra_ag_args_ensemble = {"use_child_oof": False}
13
+ extra_ag_args_ensemble = {"use_child_oof": False, "fold_fitting_strategy": "sequential_local"}
14
14
  default_ag_args_ensemble.update(extra_ag_args_ensemble)
15
15
  return default_ag_args_ensemble
16
16
 
@@ -1,7 +1,5 @@
1
1
  import logging
2
2
 
3
- import numpy as np
4
-
5
3
  from autogluon.common.utils.try_import import try_import_rapids_cuml
6
4
  from autogluon.core.constants import REGRESSION
7
5
 
@@ -51,10 +49,52 @@ class LinearRapidsModel(RapidsModelMixin, LinearModel):
51
49
 
52
50
  def _preprocess(self, X, **kwargs):
53
51
  X = super()._preprocess(X=X, **kwargs)
54
- if not isinstance(X, np.ndarray):
52
+ if hasattr(X, 'toarray'): # Check if it's a sparse matrix
55
53
  X = X.toarray()
56
54
  return X
57
55
 
58
56
  def _fit(self, X, y, **kwargs):
59
- kwargs.pop("sample_weight", None) # sample_weight is not supported
60
- super()._fit(X=X, y=y, **kwargs)
57
+ """
58
+ Custom fit method for RAPIDS cuML models that handles parameter compatibility
59
+ and bypasses sklearn-specific incremental training approach.
60
+ """
61
+ # Preprocess data
62
+ X = self.preprocess(X, is_train=True)
63
+ if self.problem_type == 'binary':
64
+ y = y.astype(int).values
65
+
66
+ # Create cuML model with filtered parameters
67
+ model_cls = self._get_model_type()
68
+
69
+ # Comprehensive parameter filtering for cuML compatibility
70
+ cuml_incompatible_params = {
71
+ # AutoGluon-specific preprocessing parameters
72
+ 'vectorizer_dict_size', 'proc.ngram_range', 'proc.skew_threshold',
73
+ 'proc.impute_strategy', 'handle_text',
74
+ # sklearn-specific parameters not supported by cuML
75
+ 'n_jobs', 'warm_start', 'multi_class', 'dual', 'intercept_scaling',
76
+ 'class_weight', 'random_state', 'verbose',
77
+ # Parameters that need conversion or special handling
78
+ 'penalty', 'C'
79
+ }
80
+
81
+ # Filter out incompatible parameters
82
+ filtered_params = {k: v for k, v in self.params.items()
83
+ if k not in cuml_incompatible_params}
84
+
85
+ # Handle parameter conversions for cuML
86
+ if self.problem_type == REGRESSION:
87
+ # Convert sklearn's C parameter to cuML's alpha
88
+ if 'C' in self.params:
89
+ filtered_params['alpha'] = 1.0 / self.params['C']
90
+ else:
91
+ # For classification, keep C parameter
92
+ if 'C' in self.params:
93
+ filtered_params['C'] = self.params['C']
94
+
95
+ # Create and fit cuML model - let cuML handle its own error messages
96
+ self.model = model_cls(**filtered_params)
97
+ self.model.fit(X, y)
98
+
99
+ # Add missing sklearn-compatible attributes for AutoGluon compatibility
100
+ self.model.n_iter_ = None # cuML doesn't track iterations like sklearn
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250614"
3
+ __version__ = "1.3.2b20250616"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250614
3
+ Version: 1.3.2b20250616
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.7.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.2b20250614
45
- Requires-Dist: autogluon.features==1.3.2b20250614
44
+ Requires-Dist: autogluon.core==1.3.2b20250616
45
+ Requires-Dist: autogluon.features==1.3.2b20250616
46
46
  Provides-Extra: all
47
- Requires-Dist: huggingface-hub[torch]; extra == "all"
48
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
49
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
50
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
47
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
52
48
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
49
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
53
50
  Requires-Dist: torch<2.7,>=2.2; extra == "all"
54
- Requires-Dist: autogluon.core[all]==1.3.2b20250614; extra == "all"
55
- Requires-Dist: spacy<3.9; extra == "all"
56
51
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
52
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
53
+ Requires-Dist: autogluon.core[all]==1.3.2b20250616; extra == "all"
54
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
55
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
56
+ Requires-Dist: spacy<3.9; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.3.2b20250614; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.3.2b20250616; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.3.2b20250614-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.2b20250616-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=9bO1qnzElFr3y5XhhPTxmVf49lJgK0hlIavjJaLW45M,91
3
+ autogluon/tabular/version.py,sha256=62vzXJ8PVHkbeXOmkBmEiscHahqhaxUjLVRKzCtWNBU,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -18,7 +18,7 @@ autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr1
18
18
  autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
19
19
  autogluon/tabular/models/__init__.py,sha256=fZDKUKiD9hDzEyFXXbt7_b4yADK9peREdP8QoukWukQ,1036
20
20
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
- autogluon/tabular/models/_utils/rapids_utils.py,sha256=gbej9Hjn4alCWZuGN9sOLXMMAyWbgHPThTsp2feS39o,1038
21
+ autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
22
22
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
23
23
  autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYMmQ4Jp5hINJa_fSm-j8,11322
@@ -63,7 +63,7 @@ autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B
63
63
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
64
  autogluon/tabular/models/lr/lr_model.py,sha256=wTrrTWVwmlAyx4RAxhfXHbkvZTAVIvAiTadpEChGEzc,15599
65
65
  autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
66
- autogluon/tabular/models/lr/lr_rapids_model.py,sha256=a07JvjWemrL0L08moA3K4lnYieukRlAdb2Z_uWA44k8,2127
66
+ autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
67
67
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
69
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
@@ -146,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=3gM_QFpG_BaVFIf8T0nCd-
146
146
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
147
147
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
148
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
149
- autogluon.tabular-1.3.2b20250614.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
- autogluon.tabular-1.3.2b20250614.dist-info/METADATA,sha256=at6dJWU7j8NcRSdG2NIcu4_YCn79CIj_W9sqAbCZFFI,14069
151
- autogluon.tabular-1.3.2b20250614.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
- autogluon.tabular-1.3.2b20250614.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
- autogluon.tabular-1.3.2b20250614.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
- autogluon.tabular-1.3.2b20250614.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
- autogluon.tabular-1.3.2b20250614.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
- autogluon.tabular-1.3.2b20250614.dist-info/RECORD,,
149
+ autogluon.tabular-1.3.2b20250616.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
+ autogluon.tabular-1.3.2b20250616.dist-info/METADATA,sha256=8D5eieiD9qeVspY9rX76QKhIAvtYfb6k-UsZdPZD8WA,14069
151
+ autogluon.tabular-1.3.2b20250616.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
+ autogluon.tabular-1.3.2b20250616.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
+ autogluon.tabular-1.3.2b20250616.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
+ autogluon.tabular-1.3.2b20250616.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
+ autogluon.tabular-1.3.2b20250616.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
+ autogluon.tabular-1.3.2b20250616.dist-info/RECORD,,