autogluon.tabular 1.3.1b20250527__py3-none-any.whl → 1.3.2b20250529__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,7 +8,7 @@ import random
8
8
  import time
9
9
  import warnings
10
10
  from copy import deepcopy
11
- from typing import Dict, Union, TYPE_CHECKING
11
+ from typing import TYPE_CHECKING, Dict, Union
12
12
 
13
13
  import numpy as np
14
14
  import pandas as pd
@@ -103,9 +103,14 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
103
103
  if num_gpus is not None and num_gpus >= 1:
104
104
  if torch.cuda.is_available():
105
105
  device = torch.device("cuda")
106
- logger.log(15, "Training on GPU")
106
+ logger.log(15, "Training on GPU (CUDA)")
107
107
  if num_gpus > 1:
108
108
  logger.warning(f"{self.__class__.__name__} not yet able to use more than 1 GPU. 'num_gpus' is set to >1, but we will be using only 1 GPU.")
109
+ elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
110
+ device = torch.device("mps")
111
+ logger.log(15, "Training on GPU (MPS - Apple Silicon)")
112
+ if num_gpus > 1:
113
+ logger.warning(f"{self.__class__.__name__} on Apple Silicon can only use 1 GPU (MPS). 'num_gpus' is set to >1, but we will be using only 1 GPU.")
109
114
  else:
110
115
  device = torch.device("cpu")
111
116
  logger.log(15, "Training on CPU")
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.1b20250527"
3
+ __version__ = "1.3.2b20250529"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.1b20250527
3
+ Version: 1.3.2b20250529
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.7.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.1b20250527
45
- Requires-Dist: autogluon.features==1.3.1b20250527
44
+ Requires-Dist: autogluon.core==1.3.2b20250529
45
+ Requires-Dist: autogluon.features==1.3.2b20250529
46
46
  Provides-Extra: all
47
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
48
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
49
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
50
47
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
51
- Requires-Dist: spacy<3.9; extra == "all"
52
- Requires-Dist: torch<2.7,>=2.2; extra == "all"
53
- Requires-Dist: autogluon.core[all]==1.3.1b20250527; extra == "all"
48
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
49
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
54
50
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
55
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
+ Requires-Dist: torch<2.7,>=2.2; extra == "all"
52
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
56
53
  Requires-Dist: huggingface-hub[torch]; extra == "all"
54
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
55
+ Requires-Dist: autogluon.core[all]==1.3.2b20250529; extra == "all"
56
+ Requires-Dist: spacy<3.9; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.3.1b20250527; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.3.2b20250529; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.3.1b20250527-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.2b20250529-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=N8iu2DG3X0yfg_BjaJCRe9E2usTOSqG3hy_OP2a_gEI,91
3
+ autogluon/tabular/version.py,sha256=Hy4XtZTl6APQkVccR1dAgsCM0gCd5LhaH-F73Bus7dg,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -110,7 +110,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
110
110
  autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
111
111
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
112
112
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=tDxWg4SLUjBFaNcdmbEYfC8nPWCYtCQMTX_XG00x13s,42587
113
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=enCnQYN9yNkcTEoPirQZ-NkGbLSZdguiilGn5ASDyEE,42997
114
114
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
115
115
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
116
116
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -146,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=3gM_QFpG_BaVFIf8T0nCd-
146
146
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
147
147
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
148
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
149
- autogluon.tabular-1.3.1b20250527.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
- autogluon.tabular-1.3.1b20250527.dist-info/METADATA,sha256=ChB1_wnC2fxOgT2Z-Iw7zxRn2E1OfFDM0H5Kaf0iWqw,14069
151
- autogluon.tabular-1.3.1b20250527.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
- autogluon.tabular-1.3.1b20250527.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
- autogluon.tabular-1.3.1b20250527.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
- autogluon.tabular-1.3.1b20250527.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
- autogluon.tabular-1.3.1b20250527.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
- autogluon.tabular-1.3.1b20250527.dist-info/RECORD,,
149
+ autogluon.tabular-1.3.2b20250529.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
+ autogluon.tabular-1.3.2b20250529.dist-info/METADATA,sha256=D4Pwjalni_x6chydYYvQzl9PBKj9ol6AhV3MVwb78aM,14069
151
+ autogluon.tabular-1.3.2b20250529.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
+ autogluon.tabular-1.3.2b20250529.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
+ autogluon.tabular-1.3.2b20250529.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
+ autogluon.tabular-1.3.2b20250529.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
+ autogluon.tabular-1.3.2b20250529.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
+ autogluon.tabular-1.3.2b20250529.dist-info/RECORD,,