autogluon.tabular 1.2.1b20250429__py3-none-any.whl → 1.3.0b20250501__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (20) hide show
  1. autogluon/tabular/configs/config_helper.py +2 -2
  2. autogluon/tabular/models/lgb/callbacks.py +12 -2
  3. autogluon/tabular/models/lgb/lgb_model.py +12 -2
  4. autogluon/tabular/predictor/predictor.py +2 -2
  5. autogluon/tabular/registry/__init__.py +2 -0
  6. autogluon/tabular/{register/_ag_model_register.py → registry/_ag_model_registry.py} +3 -3
  7. autogluon/tabular/{register/_model_register.py → registry/_model_registry.py} +6 -6
  8. autogluon/tabular/trainer/auto_trainer.py +2 -2
  9. autogluon/tabular/trainer/model_presets/presets.py +6 -6
  10. autogluon/tabular/version.py +1 -1
  11. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/METADATA +12 -12
  12. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/RECORD +19 -19
  13. autogluon/tabular/register/__init__.py +0 -2
  14. /autogluon.tabular-1.2.1b20250429-py3.9-nspkg.pth → /autogluon.tabular-1.3.0b20250501-py3.9-nspkg.pth +0 -0
  15. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/LICENSE +0 -0
  16. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/NOTICE +0 -0
  17. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/WHEEL +0 -0
  18. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/namespace_packages.txt +0 -0
  19. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/top_level.txt +0 -0
  20. {autogluon.tabular-1.2.1b20250429.dist-info → autogluon.tabular-1.3.0b20250501.dist-info}/zip-safe +0 -0
@@ -9,7 +9,7 @@ from autogluon.core.scheduler import scheduler_factory
9
9
  from autogluon.features import AutoMLPipelineFeatureGenerator
10
10
  from autogluon.tabular.configs.hyperparameter_configs import hyperparameter_config_dict
11
11
  from autogluon.tabular.configs.presets_configs import tabular_presets_dict
12
- from autogluon.tabular.register import ag_model_register
12
+ from autogluon.tabular.registry import ag_model_registry
13
13
 
14
14
 
15
15
  class FeatureGeneratorBuilder:
@@ -108,7 +108,7 @@ class ConfigBuilder:
108
108
  self.config = {}
109
109
 
110
110
  def _valid_keys(self):
111
- valid_keys = [m for m in ag_model_register.keys if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
111
+ valid_keys = [m for m in ag_model_registry.keys if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
112
112
  return valid_keys
113
113
 
114
114
  def presets(self, presets: Union[str, list, dict]) -> ConfigBuilder:
@@ -133,13 +133,23 @@ def early_stopping_custom(
133
133
  estimated_model_size_mb = (cur_rss - init_mem_rss[0]) >> 20
134
134
  available_mb = available >> 20
135
135
 
136
- model_size_memory_ratio = estimated_model_size_mb / available_mb
136
+ if available_mb != 0:
137
+ model_size_memory_ratio = estimated_model_size_mb / available_mb
138
+ else:
139
+ model_size_memory_ratio = 100
140
+
137
141
  if verbose or (model_size_memory_ratio > 0.25):
138
142
  logger.debug("Available Memory: " + str(available_mb) + " MB")
139
143
  logger.debug("Estimated Model Size: " + str(estimated_model_size_mb) + " MB")
140
144
 
141
145
  early_stop = False
142
- if model_size_memory_ratio > 1.0:
146
+ # FIXME: during parallel fits, model only knows its own memory usage and the overall system memory.
147
+ # Because memory usage can spike during saving, OOM can occur if many models finish at the same time and spike in memory at the same time during save.
148
+ # To fix this, we need to provide the per-model memory limit as a constraint passed to this method,
149
+ # so that we can ensure a given model isn't exceeding its portion of the memory budget.
150
+ # Ditto for XGBoost and CatBoost (ex: "kropt" dataset with 8-fold bagging and 32 GB memory. Fits 10k iterations on all 8 folds, then goes OOM)
151
+ # We also need to estimate the peak memory usage given the estimated_model_size_mb if we were to save. Otherwise we will go OOM during save anyways.
152
+ if model_size_memory_ratio > 0.66:
143
153
  logger.warning("Warning: Large GBM model size may cause OOM error if training continues")
144
154
  logger.warning("Available Memory: " + str(available_mb) + " MB")
145
155
  logger.warning("Estimated GBM model size: " + str(estimated_model_size_mb) + " MB")
@@ -91,12 +91,15 @@ class LGBModel(AbstractModel):
91
91
  """
92
92
  Returns the expected peak memory usage in bytes of the LightGBM model during fit.
93
93
 
94
- The memory usage of LightGBM is primarily made up of two sources:
94
+ The memory usage of LightGBM is primarily made up of three sources:
95
95
 
96
96
  1. The size of the data
97
97
  2. The size of the histogram cache
98
98
  Scales roughly by 5100*num_features*num_leaves bytes
99
99
  For 10000 features and 128 num_leaves, the histogram would be 6.5 GB.
100
+ 3. The size of the model
101
+ Scales linearly with the number of estimators, number of classes, and number of leaves.
102
+ Memory usage peaks during model saving, with the peak consuming approximately 2-4x the size of the model in memory.
100
103
  """
101
104
  if hyperparameters is None:
102
105
  hyperparameters = {}
@@ -104,6 +107,8 @@ class LGBModel(AbstractModel):
104
107
  data_mem_usage = get_approximate_df_mem_usage(X).sum()
105
108
  data_mem_usage_bytes = data_mem_usage * 5 + data_mem_usage / 4 * num_classes # TODO: Extremely crude approximation, can be vastly improved
106
109
 
110
+ n_trees_per_estimator = num_classes if num_classes > 2 else 1
111
+
107
112
  max_bins = hyperparameters.get("max_bins", 255)
108
113
  num_leaves = hyperparameters.get("num_leaves", 31)
109
114
  # Memory usage of histogram based on https://github.com/microsoft/LightGBM/issues/562#issuecomment-304524592
@@ -115,7 +120,12 @@ class LGBModel(AbstractModel):
115
120
  histogram_mem_usage_bytes = histogram_mem_usage_bytes_max
116
121
  histogram_mem_usage_bytes *= 1.2 # Add a 20% buffer
117
122
 
118
- approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes
123
+ mem_size_per_estimator = n_trees_per_estimator * num_leaves * 100 # very rough estimate
124
+ n_estimators = hyperparameters.get("num_boost_round", DEFAULT_NUM_BOOST_ROUND)
125
+ n_estimators_min = min(n_estimators, 1000)
126
+ mem_size_estimators = n_estimators_min * mem_size_per_estimator # memory estimate after fitting up to 1000 estimators
127
+
128
+ approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + mem_size_estimators
119
129
  return approx_mem_size_req
120
130
 
121
131
  def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=0, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
@@ -55,7 +55,7 @@ from ..configs.hyperparameter_configs import get_hyperparameter_config
55
55
  from ..configs.presets_configs import tabular_presets_alias, tabular_presets_dict
56
56
  from ..learner import AbstractTabularLearner, DefaultLearner
57
57
  from ..trainer.abstract_trainer import AbstractTabularTrainer
58
- from ..register import ag_model_register
58
+ from ..registry import ag_model_registry
59
59
  from ..version import __version__
60
60
 
61
61
  logger = logging.getLogger(__name__) # return autogluon root logger
@@ -5672,7 +5672,7 @@ class TabularPredictor:
5672
5672
  for key in hyperparameters:
5673
5673
  models_in_hyperparameters.add(key)
5674
5674
  models_in_hyperparameters_raw_text_compatible = []
5675
- model_key_to_cls_map = ag_model_register.key_to_cls_map()
5675
+ model_key_to_cls_map = ag_model_registry.key_to_cls_map()
5676
5676
  for m in models_in_hyperparameters:
5677
5677
  if isinstance(m, str):
5678
5678
  # TODO: Technically the use of MODEL_TYPES here is a hack since we should derive valid types from trainer,
@@ -0,0 +1,2 @@
1
+ from ._model_registry import ModelRegistry
2
+ from ._ag_model_registry import ag_model_registry
@@ -4,7 +4,7 @@ from autogluon.core.models import (
4
4
  SimpleWeightedEnsembleModel,
5
5
  )
6
6
 
7
- from . import ModelRegister
7
+ from . import ModelRegistry
8
8
  from ..models import (
9
9
  BoostedRulesModel,
10
10
  CatBoostModel,
@@ -58,5 +58,5 @@ REGISTERED_MODEL_CLS_LST = [
58
58
  DummyModel,
59
59
  ]
60
60
 
61
- # TODO: Replace logic in `autogluon.tabular.trainer.model_presets.presets` with `ag_model_register`
62
- ag_model_register = ModelRegister(model_cls_list=REGISTERED_MODEL_CLS_LST)
61
+ # TODO: Replace logic in `autogluon.tabular.trainer.model_presets.presets` with `ag_model_registry`
62
+ ag_model_registry = ModelRegistry(model_cls_list=REGISTERED_MODEL_CLS_LST)
@@ -11,9 +11,9 @@ from autogluon.core.models import AbstractModel
11
11
  # TODO: Use this / refer to this in the custom model tutorial
12
12
  # TODO: Add to documentation website
13
13
  # TODO: Test register logic in AG
14
- class ModelRegister:
14
+ class ModelRegistry:
15
15
  """
16
- ModelRegister keeps track of all known model classes to AutoGluon.
16
+ ModelRegistry keeps track of all known model classes to AutoGluon.
17
17
  It can provide information such as:
18
18
  What model classes and keys are valid to specify in an AutoGluon predictor fit call.
19
19
  What a model's name is.
@@ -21,7 +21,7 @@ class ModelRegister:
21
21
  What a model's priority is (aka which order to fit a list of models).
22
22
 
23
23
  Additionally, users can register custom models to AutoGluon so the key is recognized in `hyperparameters` and is treated with the proper priority and name.
24
- They can register new models via `ModelRegister.add(model_cls)`.
24
+ They can register new models via `ModelRegistry.add(model_cls)`.
25
25
 
26
26
  Therefore, if a user creates a custom model `MyCustomModel` that inherits from `AbstractModel`, they can set the class attributes in `MyCustomModel`:
27
27
  ag_key: The string key that can be specified in `hyperparameters`. Example: "GBM" for LGBModel
@@ -29,7 +29,7 @@ class ModelRegister:
29
29
  ag_priority: The int priority that is used to order the fitting of models. Higher values will be fit before lower values. Default 0. Example: 90 for LGBModel
30
30
  ag_priority_to_problem_type: A dictionary of problem_type to priority that overrides `ag_priority` if specified for a given problem_type. Optional.
31
31
 
32
- Then they can say `ag_model_register.add(MyCustomModel)`.
32
+ Then they can say `ag_model_registry.add(MyCustomModel)`.
33
33
  Assuming MyCustomModel.ag_key = "MY_MODEL", they can now do:
34
34
  ```
35
35
  predictor.fit(..., hyperparameters={"MY_MODEL": ...})
@@ -49,7 +49,7 @@ class ModelRegister:
49
49
 
50
50
  def add(self, model_cls: Type[AbstractModel]):
51
51
  """
52
- Adds `model_cls` to the model register
52
+ Adds `model_cls` to the model registry
53
53
  """
54
54
  assert not self.exists(model_cls), f"Cannot add model_cls that is already registered: {model_cls}"
55
55
  if model_cls.ag_key is None:
@@ -80,7 +80,7 @@ class ModelRegister:
80
80
 
81
81
  def remove(self, model_cls: Type[AbstractModel]):
82
82
  """
83
- Removes `model_cls` from the model register
83
+ Removes `model_cls` from the model registry
84
84
  """
85
85
  assert self.exists(model_cls), f"Cannot remove model_cls that isn't registered: {model_cls}"
86
86
  self._model_cls_list = [m for m in self._model_cls_list if m != model_cls]
@@ -7,7 +7,7 @@ from ..models.lgb.lgb_model import LGBModel
7
7
  from .abstract_trainer import AbstractTabularTrainer
8
8
  from .model_presets.presets import get_preset_models
9
9
  from .model_presets.presets_distill import get_preset_models_distillation
10
- from ..register import ag_model_register
10
+ from ..registry import ag_model_registry
11
11
 
12
12
  logger = logging.getLogger(__name__)
13
13
 
@@ -187,4 +187,4 @@ class AutoTrainer(AbstractTabularTrainer):
187
187
  return super().compile(model_names=model_names, with_ancestors=with_ancestors, compiler_configs=compiler_configs)
188
188
 
189
189
  def _get_model_types_map(self) -> dict[str, AbstractModel]:
190
- return ag_model_register.key_to_cls_map()
190
+ return ag_model_registry.key_to_cls_map()
@@ -28,7 +28,7 @@ from autogluon.core.models import (
28
28
  )
29
29
  from autogluon.core.trainer.utils import process_hyperparameters
30
30
 
31
- from ...register import ag_model_register
31
+ from ...registry import ag_model_registry
32
32
  from ...version import __version__
33
33
 
34
34
  logger = logging.getLogger(__name__)
@@ -99,9 +99,9 @@ def get_preset_models(
99
99
  invalid_name_set.update(invalid_model_names)
100
100
 
101
101
  if default_priorities is None:
102
- priority_cls_map = ag_model_register.priority_map(problem_type=problem_type)
102
+ priority_cls_map = ag_model_registry.priority_map(problem_type=problem_type)
103
103
  default_priorities = {
104
- ag_model_register.key(model_cls): priority for model_cls, priority in priority_cls_map.items()
104
+ ag_model_registry.key(model_cls): priority for model_cls, priority in priority_cls_map.items()
105
105
  }
106
106
 
107
107
  level_key = level if level in hyperparameters.keys() else "default"
@@ -175,7 +175,7 @@ def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ense
175
175
  if model_cfg[AG_ARGS]["model_type"] is None:
176
176
  raise AssertionError(f"model_type was not specified for model! Model: {model_cfg}")
177
177
  model_type = model_cfg[AG_ARGS]["model_type"]
178
- model_types = ag_model_register.key_to_cls_map()
178
+ model_types = ag_model_registry.key_to_cls_map()
179
179
  if not inspect.isclass(model_type):
180
180
  if model_type not in model_types:
181
181
  raise AssertionError(f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(model_types.keys())}")
@@ -185,7 +185,7 @@ def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ense
185
185
  f"Warning: Custom model type {model_type} does not inherit from {AbstractModel}. This may lead to instability. Consider wrapping {model_type} with an implementation of {AbstractModel}!"
186
186
  )
187
187
  else:
188
- if not ag_model_register.exists(model_type):
188
+ if not ag_model_registry.exists(model_type):
189
189
  logger.log(20, f"Custom Model Type Detected: {model_type}")
190
190
  model_cfg[AG_ARGS]["model_type"] = model_type
191
191
  model_type_real = model_cfg[AG_ARGS]["model_type"]
@@ -280,7 +280,7 @@ def model_factory(
280
280
  invalid_name_set = set()
281
281
  model_type = model[AG_ARGS]["model_type"]
282
282
  if not inspect.isclass(model_type):
283
- model_type = ag_model_register.key_to_cls(model_type)
283
+ model_type = ag_model_registry.key_to_cls(model_type)
284
284
  name_orig = model[AG_ARGS].get("name", None)
285
285
  if name_orig is None:
286
286
  ag_name = model_type.ag_name
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250429"
3
+ __version__ = "1.3.0b20250501"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250429
3
+ Version: 1.3.0b20250501
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,24 +41,24 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.7.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250429
45
- Requires-Dist: autogluon.features==1.2.1b20250429
44
+ Requires-Dist: autogluon.core==1.3.0b20250501
45
+ Requires-Dist: autogluon.features==1.3.0b20250501
46
46
  Provides-Extra: all
47
47
  Requires-Dist: huggingface-hub[torch]; extra == "all"
48
- Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
49
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
48
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
49
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
50
+ Requires-Dist: autogluon.core[all]==1.3.0b20250501; extra == "all"
50
51
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
52
+ Requires-Dist: spacy<3.9; extra == "all"
53
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
54
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
51
55
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
52
- Requires-Dist: autogluon.core[all]==1.2.1b20250429; extra == "all"
53
56
  Requires-Dist: torch<2.7,>=2.2; extra == "all"
54
- Requires-Dist: spacy<3.8; extra == "all"
55
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
56
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
57
57
  Provides-Extra: catboost
58
- Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
58
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
60
60
  Provides-Extra: fastai
61
- Requires-Dist: spacy<3.8; extra == "fastai"
61
+ Requires-Dist: spacy<3.9; extra == "fastai"
62
62
  Requires-Dist: torch<2.7,>=2.2; extra == "fastai"
63
63
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
64
64
  Provides-Extra: imodels
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250429; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.3.0b20250501; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,8 +1,8 @@
1
- autogluon.tabular-1.2.1b20250429-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.0b20250501-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=7Ru02g92ATlpPSc5oE62C9C2_CdKOiHq1BfsG7ZFpxY,91
3
+ autogluon/tabular/version.py,sha256=PjN3L7xta4S4qi2utrf_E5wFSxflAwpGbX75OwEys3I,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- autogluon/tabular/configs/config_helper.py,sha256=wLgu94NjV-l2fwZacpKqjPfvk8E_RwAl_L1hfH5xO8E,21085
5
+ autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
7
  autogluon/tabular/configs/hyperparameter_configs.py,sha256=hp8J7g5GY3Couz929f1ItawobCw-isLTZJBcLoJY348,18035
8
8
  autogluon/tabular/configs/presets_configs.py,sha256=2Jlq1X9sVmVlyUxWsZpDV7ma2TncH5Y2HXDML7x2gYc,6810
@@ -54,8 +54,8 @@ autogluon/tabular/models/knn/knn_model.py,sha256=qZwBnDVPT2Fd5aDPZqcwugszeUYREm5
54
54
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
55
55
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
56
56
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
- autogluon/tabular/models/lgb/callbacks.py,sha256=0X42-nAbftKnu_zmFPDf8S3RrUJJjsJ1Qs_TPAJxzjU,11367
58
- autogluon/tabular/models/lgb/lgb_model.py,sha256=jBoku48tvxqWToCc0qUZWRhTWPUHxcDm_8ku435_eSg,25037
57
+ autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
58
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=yCCro6D--vyQSFQBow9jnsUhbAp5iRkSV0TcLrPgqQM,25756
59
59
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
60
60
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
61
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
@@ -130,27 +130,27 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
130
130
  autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
131
131
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
132
132
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
133
- autogluon/tabular/predictor/predictor.py,sha256=tcgoqZw5WZB6ztcoqkeTYOUi_zH86tTKVt4_8f9rXMo,356183
134
- autogluon/tabular/register/__init__.py,sha256=7CLOTWIUho0wi4eAwhYJ5Y0PfvNCWKnRwlw3bwYoTNE,93
135
- autogluon/tabular/register/_ag_model_register.py,sha256=afDg51h07vImG8p2YZvzT5IT1lkpti4m2n92FhbDcfw,1414
136
- autogluon/tabular/register/_model_register.py,sha256=jqSg0d89dXAAcp-OT4II90ce994ByKMMzAYmpkyaRbI,6824
133
+ autogluon/tabular/predictor/predictor.py,sha256=v8a2mbkFwx317qwILuLhw2EMcglooTp4g63ixIHUbfM,356183
134
+ autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
135
+ autogluon/tabular/registry/_ag_model_registry.py,sha256=m39NrbsmKjzxAVLrzQBS2dlDJk_t0jwXRb-gM5ROyr8,1414
136
+ autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
137
137
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
138
138
  autogluon/tabular/testing/fit_helper.py,sha256=gVHTdAsp_lSZ_qbwjXM7aA5fI32zHj3_zXwEXC9C_ds,19586
139
139
  autogluon/tabular/testing/generate_datasets.py,sha256=UXPNfviUNZqGcx4mTYIloJxRED6DRMxAgHqbOvjEUCs,3603
140
140
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
141
141
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
142
142
  autogluon/tabular/trainer/abstract_trainer.py,sha256=F9bT78KHyQi96FbPs6ufaswVQJBzxoK3sTXyRXXpK_g,232416
143
- autogluon/tabular/trainer/auto_trainer.py,sha256=vhDCvz3fsTFamVsx2wwMMOUhgCBUmj7vgspzwfrT4zY,8731
143
+ autogluon/tabular/trainer/auto_trainer.py,sha256=ZQgQKFT1iHzzun5o5ojdq5pSQmr9ctTkNhe2r9OPOr0,8731
144
144
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
145
- autogluon/tabular/trainer/model_presets/presets.py,sha256=IMBRSBc-djd35gkb2rtXrW4Ez5Sb27Inl8B8JSpEArs,16120
145
+ autogluon/tabular/trainer/model_presets/presets.py,sha256=3gM_QFpG_BaVFIf8T0nCd-GFMQHhRJU3WrD563AcouY,16120
146
146
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
147
147
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
148
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
149
- autogluon.tabular-1.2.1b20250429.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
- autogluon.tabular-1.2.1b20250429.dist-info/METADATA,sha256=DjRiEdZnlw2KD8DfUf31BIdbL7GlIFLIWytV6Hsbwto,14069
151
- autogluon.tabular-1.2.1b20250429.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
- autogluon.tabular-1.2.1b20250429.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
- autogluon.tabular-1.2.1b20250429.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
- autogluon.tabular-1.2.1b20250429.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
- autogluon.tabular-1.2.1b20250429.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
- autogluon.tabular-1.2.1b20250429.dist-info/RECORD,,
149
+ autogluon.tabular-1.3.0b20250501.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
+ autogluon.tabular-1.3.0b20250501.dist-info/METADATA,sha256=BTnNE2x_sCmeczJMBErqSA7HcNnlYOZxOnY1ryP4UWM,14069
151
+ autogluon.tabular-1.3.0b20250501.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
+ autogluon.tabular-1.3.0b20250501.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
+ autogluon.tabular-1.3.0b20250501.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
+ autogluon.tabular-1.3.0b20250501.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
+ autogluon.tabular-1.3.0b20250501.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
+ autogluon.tabular-1.3.0b20250501.dist-info/RECORD,,
@@ -1,2 +0,0 @@
1
- from ._model_register import ModelRegister
2
- from ._ag_model_register import ag_model_register