autogluon.tabular 1.2.1b20250425__py3-none-any.whl → 1.2.1b20250426__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/models/catboost/catboost_model.py +11 -2
- autogluon/tabular/models/lgb/lgb_model.py +2 -3
- autogluon/tabular/models/rf/rf_model.py +2 -0
- autogluon/tabular/models/xgboost/callbacks.py +1 -1
- autogluon/tabular/models/xgboost/xgboost_model.py +19 -1
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/METADATA +9 -9
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/RECORD +15 -15
- /autogluon.tabular-1.2.1b20250425-py3.9-nspkg.pth → /autogluon.tabular-1.2.1b20250426-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/zip-safe +0 -0
|
@@ -95,17 +95,26 @@ class CatBoostModel(AbstractModel):
|
|
|
95
95
|
Scales roughly by 5080*num_features*2^depth bytes
|
|
96
96
|
For 10000 features and 6 depth, the histogram would be 3.2 GB.
|
|
97
97
|
"""
|
|
98
|
+
if hyperparameters is None:
|
|
99
|
+
hyperparameters = {}
|
|
98
100
|
num_classes = num_classes if num_classes else 1 # self.num_classes could be None after initialization if it's a regression problem
|
|
99
101
|
data_mem_usage = get_approximate_df_mem_usage(X).sum()
|
|
100
102
|
data_mem_usage_bytes = data_mem_usage * 5 + data_mem_usage / 4 * num_classes # TODO: Extremely crude approximation, can be vastly improved
|
|
101
103
|
|
|
102
104
|
border_count = hyperparameters.get("border_count", 254)
|
|
103
105
|
depth = hyperparameters.get("depth", 6)
|
|
106
|
+
|
|
107
|
+
# if depth < 7, treat it as 1 step larger for histogram size estimate
|
|
108
|
+
# this fixes cases where otherwise histogram size appears to be off by around a factor of 2 for depth=6
|
|
109
|
+
histogram_effective_depth = max(min(depth+1, 7), depth)
|
|
110
|
+
|
|
104
111
|
# Formula based on manual testing, aligns with LightGBM histogram sizes
|
|
105
|
-
histogram_mem_usage_bytes =
|
|
112
|
+
histogram_mem_usage_bytes = 24 * math.pow(2, histogram_effective_depth) * len(X.columns) * border_count
|
|
106
113
|
histogram_mem_usage_bytes *= 1.2 # Add a 20% buffer
|
|
107
114
|
|
|
108
|
-
|
|
115
|
+
baseline_memory_bytes = 4e8 # 400 MB baseline memory
|
|
116
|
+
|
|
117
|
+
approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + baseline_memory_bytes
|
|
109
118
|
return approx_mem_size_req
|
|
110
119
|
|
|
111
120
|
# TODO: Use Pool in preprocess, optimize bagging to do Pool.split() to avoid re-computing pool for each fold! Requires stateful + y
|
|
@@ -3,7 +3,6 @@ from __future__ import annotations
|
|
|
3
3
|
import gc
|
|
4
4
|
import logging
|
|
5
5
|
import os
|
|
6
|
-
import random
|
|
7
6
|
import re
|
|
8
7
|
import time
|
|
9
8
|
import warnings
|
|
@@ -99,6 +98,8 @@ class LGBModel(AbstractModel):
|
|
|
99
98
|
Scales roughly by 5100*num_features*num_leaves bytes
|
|
100
99
|
For 10000 features and 128 num_leaves, the histogram would be 6.5 GB.
|
|
101
100
|
"""
|
|
101
|
+
if hyperparameters is None:
|
|
102
|
+
hyperparameters = {}
|
|
102
103
|
num_classes = num_classes if num_classes else 1 # num_classes could be None after initialization if it's a regression problem
|
|
103
104
|
data_mem_usage = get_approximate_df_mem_usage(X).sum()
|
|
104
105
|
data_mem_usage_bytes = data_mem_usage * 5 + data_mem_usage / 4 * num_classes # TODO: Extremely crude approximation, can be vastly improved
|
|
@@ -275,8 +276,6 @@ class LGBModel(AbstractModel):
|
|
|
275
276
|
train_params["params"]["quantile_levels"] = self.quantile_levels
|
|
276
277
|
if seed_val is not None:
|
|
277
278
|
train_params["params"]["seed"] = seed_val
|
|
278
|
-
random.seed(seed_val)
|
|
279
|
-
np.random.seed(seed_val)
|
|
280
279
|
|
|
281
280
|
# Train LightGBM model:
|
|
282
281
|
# Note that self.model contains a <class 'lightgbm.basic.Booster'> not a LightBGMClassifier or LightGBMRegressor object
|
|
@@ -147,6 +147,8 @@ class RFModel(AbstractModel):
|
|
|
147
147
|
num_classes: int = 1,
|
|
148
148
|
**kwargs,
|
|
149
149
|
) -> int:
|
|
150
|
+
if hyperparameters is None:
|
|
151
|
+
hyperparameters = {}
|
|
150
152
|
n_estimators_final = hyperparameters.get("n_estimators", 300)
|
|
151
153
|
if isinstance(n_estimators_final, int):
|
|
152
154
|
n_estimators_minimum = min(40, n_estimators_final)
|
|
@@ -147,7 +147,7 @@ class EarlyStoppingCustom(EarlyStopping):
|
|
|
147
147
|
|
|
148
148
|
model_size_memory_ratio = estimated_model_size_mb / available_mb
|
|
149
149
|
|
|
150
|
-
if (model_size_memory_ratio >
|
|
150
|
+
if (model_size_memory_ratio > 0.75) or (available_mb < 512):
|
|
151
151
|
logger.warning("Warning: Large XGB model size may cause OOM error if training continues")
|
|
152
152
|
logger.warning(f"Available Memory: {available_mb} MB")
|
|
153
153
|
logger.warning(f"Estimated XGB model size: {estimated_model_size_mb} MB")
|
|
@@ -256,12 +256,25 @@ class XGBoostModel(AbstractModel):
|
|
|
256
256
|
num_classes: int = 1,
|
|
257
257
|
**kwargs,
|
|
258
258
|
) -> int:
|
|
259
|
+
if hyperparameters is None:
|
|
260
|
+
hyperparameters = {}
|
|
259
261
|
num_classes = num_classes if num_classes else 1 # self.num_classes could be None after initialization if it's a regression problem
|
|
260
262
|
data_mem_usage = get_approximate_df_mem_usage(X).sum()
|
|
261
263
|
data_mem_usage_bytes = data_mem_usage * 7 + data_mem_usage / 4 * num_classes # TODO: Extremely crude approximation, can be vastly improved
|
|
262
264
|
|
|
263
265
|
max_bin = hyperparameters.get("max_bin", 256)
|
|
264
266
|
max_depth = hyperparameters.get("max_depth", 6)
|
|
267
|
+
max_leaves = hyperparameters.get("max_leaves", 0)
|
|
268
|
+
if max_leaves is None:
|
|
269
|
+
max_leaves = 0
|
|
270
|
+
|
|
271
|
+
if max_depth > 12 or max_depth == 0: # 0 = uncapped
|
|
272
|
+
max_depth = 12 # Try our best if the value is very large, only treat it as 12.
|
|
273
|
+
|
|
274
|
+
if max_leaves != 0: # if capped max_leaves
|
|
275
|
+
# make the effective max_depth for calculations be the lesser of the two constraints
|
|
276
|
+
max_depth = min(max_depth, math.ceil(math.log2(max_leaves)))
|
|
277
|
+
|
|
265
278
|
# Formula based on manual testing, aligns with LightGBM histogram sizes
|
|
266
279
|
# This approximation is less accurate than it is for LightGBM and CatBoost.
|
|
267
280
|
# Note that max_depth didn't appear to reduce memory usage below 6, and it was unclear if it increased memory usage above 6.
|
|
@@ -274,7 +287,12 @@ class XGBoostModel(AbstractModel):
|
|
|
274
287
|
histogram_mem_usage_bytes = 20 * depth_modifier * len(X.columns) * max_bin
|
|
275
288
|
histogram_mem_usage_bytes *= 1.2 # Add a 20% buffer
|
|
276
289
|
|
|
277
|
-
|
|
290
|
+
mem_size_per_estimator = num_classes * max_depth * 500 # very rough estimate
|
|
291
|
+
n_estimators = hyperparameters.get("n_estimators", 10000)
|
|
292
|
+
n_estimators_min = min(n_estimators, 1000)
|
|
293
|
+
mem_size_estimators = n_estimators_min * mem_size_per_estimator # memory estimate after fitting up to 1000 estimators
|
|
294
|
+
|
|
295
|
+
approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + mem_size_estimators
|
|
278
296
|
return approx_mem_size_req
|
|
279
297
|
|
|
280
298
|
def _validate_fit_memory_usage(self, mem_error_threshold: float = 1.0, mem_warning_threshold: float = 0.75, mem_size_threshold: int = 1e9, **kwargs):
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.2.
|
|
3
|
+
Version: 1.2.1b20250426
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
|
|
|
41
41
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
|
42
42
|
Requires-Dist: scikit-learn<1.7.0,>=1.4.0
|
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
|
44
|
-
Requires-Dist: autogluon.core==1.2.
|
|
45
|
-
Requires-Dist: autogluon.features==1.2.
|
|
44
|
+
Requires-Dist: autogluon.core==1.2.1b20250426
|
|
45
|
+
Requires-Dist: autogluon.features==1.2.1b20250426
|
|
46
46
|
Provides-Extra: all
|
|
47
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
48
|
-
Requires-Dist: autogluon.core[all]==1.2.1b20250425; extra == "all"
|
|
49
|
-
Requires-Dist: torch<2.7,>=2.2; extra == "all"
|
|
50
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
51
47
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
52
|
-
Requires-Dist:
|
|
48
|
+
Requires-Dist: torch<2.7,>=2.2; extra == "all"
|
|
53
49
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
50
|
+
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
|
54
51
|
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
|
55
52
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
56
53
|
Requires-Dist: spacy<3.8; extra == "all"
|
|
54
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
55
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250426; extra == "all"
|
|
56
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
57
57
|
Provides-Extra: catboost
|
|
58
58
|
Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
|
|
59
59
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
|
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
|
66
66
|
Provides-Extra: lightgbm
|
|
67
67
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
68
68
|
Provides-Extra: ray
|
|
69
|
-
Requires-Dist: autogluon.core[all]==1.2.
|
|
69
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250426; extra == "ray"
|
|
70
70
|
Provides-Extra: skex
|
|
71
71
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
|
72
72
|
Provides-Extra: skl2onnx
|
{autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/RECORD
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
autogluon.tabular-1.2.
|
|
1
|
+
autogluon.tabular-1.2.1b20250426-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
|
3
|
-
autogluon/tabular/version.py,sha256=
|
|
3
|
+
autogluon/tabular/version.py,sha256=OsP4ql15uiax-GUPsVJ1sGZMaTOWMBXWWMnLOe5tRrY,91
|
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=wLgu94NjV-l2fwZacpKqjPfvk8E_RwAl_L1hfH5xO8E,21085
|
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
|
@@ -25,7 +25,7 @@ autogluon/tabular/models/automm/automm_model.py,sha256=GvrMBC8Z-zobalmSzX1iDHTYM
|
|
|
25
25
|
autogluon/tabular/models/automm/ft_transformer.py,sha256=yZ9-TTA4GbtutHhz0Djkrl-rIFNxc7A2LBOFOXYOxVY,3886
|
|
26
26
|
autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
27
27
|
autogluon/tabular/models/catboost/callbacks.py,sha256=l8x17n_w7oEFs-iDECSdBKZ89yW5g1z-zvj4XLgQPkw,7098
|
|
28
|
-
autogluon/tabular/models/catboost/catboost_model.py,sha256=
|
|
28
|
+
autogluon/tabular/models/catboost/catboost_model.py,sha256=Dv62XDuJ_sFvU95xeY1gHuV_F2RoYDGaFa6-4XNwnnU,17849
|
|
29
29
|
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
|
|
30
30
|
autogluon/tabular/models/catboost/catboost_utils.py,sha256=YSc94V4DjrwbmkeUM8306zV7z21oq-K-qGCOj0UE_wg,3167
|
|
31
31
|
autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -55,7 +55,7 @@ autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-
|
|
|
55
55
|
autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
|
|
56
56
|
autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
57
57
|
autogluon/tabular/models/lgb/callbacks.py,sha256=0X42-nAbftKnu_zmFPDf8S3RrUJJjsJ1Qs_TPAJxzjU,11367
|
|
58
|
-
autogluon/tabular/models/lgb/lgb_model.py,sha256=
|
|
58
|
+
autogluon/tabular/models/lgb/lgb_model.py,sha256=jBoku48tvxqWToCc0qUZWRhTWPUHxcDm_8ku435_eSg,25037
|
|
59
59
|
autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
|
|
60
60
|
autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
61
61
|
autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
|
|
@@ -68,7 +68,7 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
|
|
|
68
68
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
|
69
69
|
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
|
|
70
70
|
autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
71
|
-
autogluon/tabular/models/rf/rf_model.py,sha256=
|
|
71
|
+
autogluon/tabular/models/rf/rf_model.py,sha256=2iG45F0k17No7ycrfVMWBfU_WqJwC4MTehaFGsguLzE,21598
|
|
72
72
|
autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
|
|
73
73
|
autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
|
|
74
74
|
autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -120,8 +120,8 @@ autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=tttzR5
|
|
|
120
120
|
autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
121
121
|
autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
|
|
122
122
|
autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
123
|
-
autogluon/tabular/models/xgboost/callbacks.py,sha256=
|
|
124
|
-
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=
|
|
123
|
+
autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
|
|
124
|
+
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=_HFwfEbAg0CllEUEk9HVLsXXVBcuC_qsGd7z7arJYPs,15220
|
|
125
125
|
autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
|
|
126
126
|
autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
127
127
|
autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
|
|
@@ -146,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=IMBRSBc-djd35gkb2rtXrW
|
|
|
146
146
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
|
147
147
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
148
148
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
|
149
|
-
autogluon.tabular-1.2.
|
|
150
|
-
autogluon.tabular-1.2.
|
|
151
|
-
autogluon.tabular-1.2.
|
|
152
|
-
autogluon.tabular-1.2.
|
|
153
|
-
autogluon.tabular-1.2.
|
|
154
|
-
autogluon.tabular-1.2.
|
|
155
|
-
autogluon.tabular-1.2.
|
|
156
|
-
autogluon.tabular-1.2.
|
|
149
|
+
autogluon.tabular-1.2.1b20250426.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
150
|
+
autogluon.tabular-1.2.1b20250426.dist-info/METADATA,sha256=g4AxiS8dTRMHEO6FuxALlnv6-njEhYubb6rBmohshOo,14069
|
|
151
|
+
autogluon.tabular-1.2.1b20250426.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
152
|
+
autogluon.tabular-1.2.1b20250426.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
|
153
|
+
autogluon.tabular-1.2.1b20250426.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
154
|
+
autogluon.tabular-1.2.1b20250426.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
155
|
+
autogluon.tabular-1.2.1b20250426.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
156
|
+
autogluon.tabular-1.2.1b20250426.dist-info/RECORD,,
|
|
File without changes
|
{autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/LICENSE
RENAMED
|
File without changes
|
{autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/NOTICE
RENAMED
|
File without changes
|
{autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/WHEEL
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
{autogluon.tabular-1.2.1b20250425.dist-info → autogluon.tabular-1.2.1b20250426.dist-info}/zip-safe
RENAMED
|
File without changes
|