autogluon.tabular 1.2.1b20250417__py3-none-any.whl → 1.2.1b20250418__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/configs/config_helper.py +8 -4
- autogluon/tabular/predictor/predictor.py +8 -15
- autogluon/tabular/trainer/auto_trainer.py +3 -2
- autogluon/tabular/trainer/model_presets/presets.py +16 -34
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/METADATA +10 -10
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/RECORD +14 -14
- /autogluon.tabular-1.2.1b20250417-py3.9-nspkg.pth → /autogluon.tabular-1.2.1b20250418-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/zip-safe +0 -0
@@ -9,7 +9,7 @@ from autogluon.core.scheduler import scheduler_factory
|
|
9
9
|
from autogluon.features import AutoMLPipelineFeatureGenerator
|
10
10
|
from autogluon.tabular.configs.hyperparameter_configs import hyperparameter_config_dict
|
11
11
|
from autogluon.tabular.configs.presets_configs import tabular_presets_dict
|
12
|
-
from autogluon.tabular.
|
12
|
+
from autogluon.tabular.register import ag_model_register
|
13
13
|
|
14
14
|
|
15
15
|
class FeatureGeneratorBuilder:
|
@@ -107,6 +107,10 @@ class ConfigBuilder:
|
|
107
107
|
def __init__(self):
|
108
108
|
self.config = {}
|
109
109
|
|
110
|
+
def _valid_keys(self):
|
111
|
+
valid_keys = [m for m in ag_model_register.keys if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
|
112
|
+
return valid_keys
|
113
|
+
|
110
114
|
def presets(self, presets: Union[str, list, dict]) -> ConfigBuilder:
|
111
115
|
"""
|
112
116
|
List of preset configurations for various arguments in `fit()`. Can significantly impact predictive accuracy, memory-footprint, and inference latency of trained models, and various other properties of the returned `predictor`.
|
@@ -137,7 +141,7 @@ class ConfigBuilder:
|
|
137
141
|
return self
|
138
142
|
|
139
143
|
def hyperparameters(self, hyperparameters: Union[str, dict]) -> ConfigBuilder:
|
140
|
-
valid_keys =
|
144
|
+
valid_keys = self._valid_keys()
|
141
145
|
valid_str_values = list(hyperparameter_config_dict.keys())
|
142
146
|
if isinstance(hyperparameters, str):
|
143
147
|
assert hyperparameters in hyperparameter_config_dict, f"{hyperparameters} is not one of the valid presets {valid_str_values}"
|
@@ -270,7 +274,7 @@ class ConfigBuilder:
|
|
270
274
|
Useful when a particular model type such as 'KNN' or 'custom' is not desired but altering the `hyperparameters` dictionary is difficult or time-consuming.
|
271
275
|
Example: To exclude both 'KNN' and 'custom' models, specify `excluded_model_types=['KNN', 'custom']`.
|
272
276
|
"""
|
273
|
-
valid_keys =
|
277
|
+
valid_keys = self._valid_keys()
|
274
278
|
if not isinstance(models, list):
|
275
279
|
models = [models]
|
276
280
|
for model in models:
|
@@ -285,7 +289,7 @@ class ConfigBuilder:
|
|
285
289
|
Useful when only the particular models should be trained such as 'KNN' or 'custom', but altering the `hyperparameters` dictionary is difficult or time-consuming.
|
286
290
|
Example: To keep only 'KNN' and 'custom' models, specify `included_model_types=['KNN', 'custom']`.
|
287
291
|
"""
|
288
|
-
valid_keys =
|
292
|
+
valid_keys = self._valid_keys()
|
289
293
|
if not isinstance(models, list):
|
290
294
|
models = [models]
|
291
295
|
|
@@ -55,7 +55,7 @@ from ..configs.hyperparameter_configs import get_hyperparameter_config
|
|
55
55
|
from ..configs.presets_configs import tabular_presets_alias, tabular_presets_dict
|
56
56
|
from ..learner import AbstractTabularLearner, DefaultLearner
|
57
57
|
from ..trainer.abstract_trainer import AbstractTabularTrainer
|
58
|
-
from ..
|
58
|
+
from ..register import ag_model_register
|
59
59
|
from ..version import __version__
|
60
60
|
|
61
61
|
logger = logging.getLogger(__name__) # return autogluon root logger
|
@@ -516,7 +516,6 @@ class TabularPredictor:
|
|
516
516
|
'FT_TRANSFORMER' (Tabular Transformer, GPU is recommended. Does not scale well to >100 features.)
|
517
517
|
'FASTTEXT' (FastText. Note: Has not been tested for a long time.)
|
518
518
|
'TABPFN' (TabPFN. Does not scale well to >100 features or >1000 rows, and does not support regression. Extremely slow inference speed.)
|
519
|
-
'VW' (VowpalWabbit. Note: Has not been tested for a long time.)
|
520
519
|
'AG_TEXT_NN' (Multimodal Text+Tabular model, GPU is required. Recommended to instead use its successor, 'AG_AUTOMM'.)
|
521
520
|
'AG_IMAGE_NN' (Image model, GPU is required. Recommended to instead use its successor, 'AG_AUTOMM'.)
|
522
521
|
If a certain key is missing from hyperparameters, then `fit()` will not train any models of that type. Omitting a model key from hyperparameters is equivalent to including this model key in `excluded_model_types`.
|
@@ -977,17 +976,10 @@ class TabularPredictor:
|
|
977
976
|
sklearn CountVectorizer object to use in TextNgramFeatureGenerator.
|
978
977
|
Only used if `enable_text_ngram_features=True`.
|
979
978
|
unlabeled_data : pd.DataFrame, default = None
|
980
|
-
[Experimental Parameter]
|
981
|
-
Collection of data without labels that we can use to pretrain on.
|
982
|
-
|
983
|
-
|
984
|
-
After the pretraining step, we will finetune using the TabTransformer model as well. If TabTransformer is ensembled
|
985
|
-
with other models, like in typical AutoGluon fashion, then the output of this "pretrain/finetune" will be ensembled
|
986
|
-
with other models, which will not used the unlabeled_data. The "pretrain/finetune flow" is also known as semi-supervised learning.
|
987
|
-
The typical use case for unlabeled_data is to add signal to your model where you may not have sufficient training
|
988
|
-
data. e.g. 500 hand-labeled samples (perhaps a hard human task), whole data set (unlabeled) is thousands/millions.
|
989
|
-
However, this isn't the only use case. Given enough unlabeled data(millions of rows), you may see improvements
|
990
|
-
to any amount of labeled data.
|
979
|
+
[Experimental Parameter] UNUSED.
|
980
|
+
Collection of data without labels that we can use to pretrain on.
|
981
|
+
This is the same schema as train_data, except without the labels.
|
982
|
+
Currently, unlabeled_data is not used by any model.
|
991
983
|
verbosity : int
|
992
984
|
If specified, overrides the existing `predictor.verbosity` value.
|
993
985
|
raise_on_model_failure: bool, default = False
|
@@ -5680,12 +5672,13 @@ class TabularPredictor:
|
|
5680
5672
|
for key in hyperparameters:
|
5681
5673
|
models_in_hyperparameters.add(key)
|
5682
5674
|
models_in_hyperparameters_raw_text_compatible = []
|
5675
|
+
model_key_to_cls_map = ag_model_register.key_to_cls_map()
|
5683
5676
|
for m in models_in_hyperparameters:
|
5684
5677
|
if isinstance(m, str):
|
5685
5678
|
# TODO: Technically the use of MODEL_TYPES here is a hack since we should derive valid types from trainer,
|
5686
5679
|
# but this is required prior to trainer existing.
|
5687
|
-
if m in
|
5688
|
-
m =
|
5680
|
+
if m in model_key_to_cls_map:
|
5681
|
+
m = model_key_to_cls_map[m]
|
5689
5682
|
else:
|
5690
5683
|
continue
|
5691
5684
|
if m._get_class_tags().get("handles_text", False):
|
@@ -5,8 +5,9 @@ from autogluon.core.utils import generate_train_test_split
|
|
5
5
|
|
6
6
|
from ..models.lgb.lgb_model import LGBModel
|
7
7
|
from .abstract_trainer import AbstractTabularTrainer
|
8
|
-
from .model_presets.presets import
|
8
|
+
from .model_presets.presets import get_preset_models
|
9
9
|
from .model_presets.presets_distill import get_preset_models_distillation
|
10
|
+
from ..register import ag_model_register
|
10
11
|
|
11
12
|
logger = logging.getLogger(__name__)
|
12
13
|
|
@@ -186,4 +187,4 @@ class AutoTrainer(AbstractTabularTrainer):
|
|
186
187
|
return super().compile(model_names=model_names, with_ancestors=with_ancestors, compiler_configs=compiler_configs)
|
187
188
|
|
188
189
|
def _get_model_types_map(self) -> dict[str, AbstractModel]:
|
189
|
-
return
|
190
|
+
return ag_model_register.key_to_cls_map()
|
@@ -33,31 +33,8 @@ from ...version import __version__
|
|
33
33
|
|
34
34
|
logger = logging.getLogger(__name__)
|
35
35
|
|
36
|
-
# TODO: Replace with ag_model_register
|
37
|
-
# Problem type specific model priority overrides (will update default values in DEFAULT_MODEL_PRIORITY)
|
38
|
-
PROBLEM_TYPE_MODEL_PRIORITY = {
|
39
|
-
MULTICLASS: dict(
|
40
|
-
FASTAI=95,
|
41
|
-
),
|
42
|
-
}
|
43
|
-
|
44
|
-
# TODO: Replace with ag_model_register
|
45
|
-
DEFAULT_SOFTCLASS_PRIORITY = dict(
|
46
|
-
GBM=100,
|
47
|
-
RF=80,
|
48
|
-
CAT=60,
|
49
|
-
custom=0,
|
50
|
-
)
|
51
|
-
|
52
36
|
DEFAULT_CUSTOM_MODEL_PRIORITY = 0
|
53
37
|
|
54
|
-
# FIXME: Don't do this, use ag_model_register lazily so users can register custom models before calling fit
|
55
|
-
DEFAULT_MODEL_PRIORITY = {ag_model_register.key(model_cls): ag_model_register.priority(model_cls) for model_cls in ag_model_register.model_cls_list}
|
56
|
-
DEFAULT_MODEL_NAMES = ag_model_register.name_map()
|
57
|
-
REGISTERED_MODEL_CLS_LST = ag_model_register.model_cls_list
|
58
|
-
MODEL_TYPES = ag_model_register.key_to_cls_map()
|
59
|
-
|
60
|
-
|
61
38
|
VALID_AG_ARGS_KEYS = {
|
62
39
|
"name",
|
63
40
|
"name_main",
|
@@ -122,9 +99,10 @@ def get_preset_models(
|
|
122
99
|
invalid_name_set.update(invalid_model_names)
|
123
100
|
|
124
101
|
if default_priorities is None:
|
125
|
-
|
126
|
-
|
127
|
-
|
102
|
+
priority_cls_map = ag_model_register.priority_map(problem_type=problem_type)
|
103
|
+
default_priorities = {
|
104
|
+
ag_model_register.key(model_cls): priority for model_cls, priority in priority_cls_map.items()
|
105
|
+
}
|
128
106
|
|
129
107
|
level_key = level if level in hyperparameters.keys() else "default"
|
130
108
|
if level_key not in hyperparameters.keys() and level_key == "default":
|
@@ -197,20 +175,22 @@ def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ense
|
|
197
175
|
if model_cfg[AG_ARGS]["model_type"] is None:
|
198
176
|
raise AssertionError(f"model_type was not specified for model! Model: {model_cfg}")
|
199
177
|
model_type = model_cfg[AG_ARGS]["model_type"]
|
178
|
+
model_types = ag_model_register.key_to_cls_map()
|
200
179
|
if not inspect.isclass(model_type):
|
201
|
-
if model_type not in
|
202
|
-
raise AssertionError(f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(
|
203
|
-
model_type =
|
180
|
+
if model_type not in model_types:
|
181
|
+
raise AssertionError(f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(model_types.keys())}")
|
182
|
+
model_type = model_types[model_type]
|
204
183
|
elif not issubclass(model_type, AbstractModel):
|
205
184
|
logger.warning(
|
206
185
|
f"Warning: Custom model type {model_type} does not inherit from {AbstractModel}. This may lead to instability. Consider wrapping {model_type} with an implementation of {AbstractModel}!"
|
207
186
|
)
|
208
187
|
else:
|
209
|
-
|
188
|
+
if not ag_model_register.exists(model_type):
|
189
|
+
logger.log(20, f"Custom Model Type Detected: {model_type}")
|
210
190
|
model_cfg[AG_ARGS]["model_type"] = model_type
|
211
191
|
model_type_real = model_cfg[AG_ARGS]["model_type"]
|
212
192
|
if not inspect.isclass(model_type_real):
|
213
|
-
model_type_real =
|
193
|
+
model_type_real = model_types[model_type_real]
|
214
194
|
default_ag_args = model_type_real._get_default_ag_args()
|
215
195
|
if ag_args is not None:
|
216
196
|
model_extra_ag_args = ag_args.copy()
|
@@ -300,10 +280,13 @@ def model_factory(
|
|
300
280
|
invalid_name_set = set()
|
301
281
|
model_type = model[AG_ARGS]["model_type"]
|
302
282
|
if not inspect.isclass(model_type):
|
303
|
-
model_type =
|
283
|
+
model_type = ag_model_register.key_to_cls(model_type)
|
304
284
|
name_orig = model[AG_ARGS].get("name", None)
|
305
285
|
if name_orig is None:
|
306
|
-
|
286
|
+
ag_name = model_type.ag_name
|
287
|
+
if ag_name is None:
|
288
|
+
ag_name = model_type.__name__
|
289
|
+
name_main = model[AG_ARGS].get("name_main", ag_name)
|
307
290
|
name_prefix = model[AG_ARGS].get("name_prefix", "")
|
308
291
|
name_suff = model[AG_ARGS].get("name_suffix", "")
|
309
292
|
name_orig = name_prefix + name_main + name_suff
|
@@ -372,7 +355,6 @@ def get_preset_models_softclass(hyperparameters, invalid_model_names: list = Non
|
|
372
355
|
problem_type=SOFTCLASS,
|
373
356
|
eval_metric=soft_log_loss,
|
374
357
|
hyperparameters=hyperparameters_standard,
|
375
|
-
default_priorities=DEFAULT_SOFTCLASS_PRIORITY,
|
376
358
|
invalid_model_names=invalid_model_names,
|
377
359
|
**kwargs,
|
378
360
|
)
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250418
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
|
|
41
41
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
42
42
|
Requires-Dist: scikit-learn<1.7.0,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.2.
|
45
|
-
Requires-Dist: autogluon.features==1.2.
|
44
|
+
Requires-Dist: autogluon.core==1.2.1b20250418
|
45
|
+
Requires-Dist: autogluon.features==1.2.1b20250418
|
46
46
|
Provides-Extra: all
|
47
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
48
|
-
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
49
47
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
48
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
49
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
50
50
|
Requires-Dist: torch<2.7,>=2.2; extra == "all"
|
51
|
-
Requires-Dist: autogluon.core[all]==1.2.
|
52
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
51
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250418; extra == "all"
|
53
52
|
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
54
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
55
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
56
53
|
Requires-Dist: spacy<3.8; extra == "all"
|
54
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
55
|
+
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
56
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
57
57
|
Provides-Extra: catboost
|
58
58
|
Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
|
59
59
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -66,7 +66,7 @@ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
66
66
|
Provides-Extra: lightgbm
|
67
67
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
68
68
|
Provides-Extra: ray
|
69
|
-
Requires-Dist: autogluon.core[all]==1.2.
|
69
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250418; extra == "ray"
|
70
70
|
Provides-Extra: skex
|
71
71
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
72
72
|
Provides-Extra: skl2onnx
|
{autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/RECORD
RENAMED
@@ -1,8 +1,8 @@
|
|
1
|
-
autogluon.tabular-1.2.
|
1
|
+
autogluon.tabular-1.2.1b20250418-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=0zPPTGxy3-f1WXziWDw672VIyU_d25Uy_412DqQY6ww,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
|
-
autogluon/tabular/configs/config_helper.py,sha256=
|
5
|
+
autogluon/tabular/configs/config_helper.py,sha256=wLgu94NjV-l2fwZacpKqjPfvk8E_RwAl_L1hfH5xO8E,21085
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
7
7
|
autogluon/tabular/configs/hyperparameter_configs.py,sha256=hp8J7g5GY3Couz929f1ItawobCw-isLTZJBcLoJY348,18035
|
8
8
|
autogluon/tabular/configs/presets_configs.py,sha256=2Jlq1X9sVmVlyUxWsZpDV7ma2TncH5Y2HXDML7x2gYc,6810
|
@@ -130,7 +130,7 @@ autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
|
|
130
130
|
autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
|
131
131
|
autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
|
132
132
|
autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
|
133
|
-
autogluon/tabular/predictor/predictor.py,sha256=
|
133
|
+
autogluon/tabular/predictor/predictor.py,sha256=tcgoqZw5WZB6ztcoqkeTYOUi_zH86tTKVt4_8f9rXMo,356183
|
134
134
|
autogluon/tabular/register/__init__.py,sha256=7CLOTWIUho0wi4eAwhYJ5Y0PfvNCWKnRwlw3bwYoTNE,93
|
135
135
|
autogluon/tabular/register/_ag_model_register.py,sha256=afDg51h07vImG8p2YZvzT5IT1lkpti4m2n92FhbDcfw,1414
|
136
136
|
autogluon/tabular/register/_model_register.py,sha256=jqSg0d89dXAAcp-OT4II90ce994ByKMMzAYmpkyaRbI,6824
|
@@ -140,17 +140,17 @@ autogluon/tabular/testing/generate_datasets.py,sha256=UXPNfviUNZqGcx4mTYIloJxRED
|
|
140
140
|
autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
|
141
141
|
autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
|
142
142
|
autogluon/tabular/trainer/abstract_trainer.py,sha256=F9bT78KHyQi96FbPs6ufaswVQJBzxoK3sTXyRXXpK_g,232416
|
143
|
-
autogluon/tabular/trainer/auto_trainer.py,sha256=
|
143
|
+
autogluon/tabular/trainer/auto_trainer.py,sha256=vhDCvz3fsTFamVsx2wwMMOUhgCBUmj7vgspzwfrT4zY,8731
|
144
144
|
autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
145
|
-
autogluon/tabular/trainer/model_presets/presets.py,sha256=
|
145
|
+
autogluon/tabular/trainer/model_presets/presets.py,sha256=IMBRSBc-djd35gkb2rtXrW4Ez5Sb27Inl8B8JSpEArs,16120
|
146
146
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
147
147
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
148
148
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
149
|
-
autogluon.tabular-1.2.
|
150
|
-
autogluon.tabular-1.2.
|
151
|
-
autogluon.tabular-1.2.
|
152
|
-
autogluon.tabular-1.2.
|
153
|
-
autogluon.tabular-1.2.
|
154
|
-
autogluon.tabular-1.2.
|
155
|
-
autogluon.tabular-1.2.
|
156
|
-
autogluon.tabular-1.2.
|
149
|
+
autogluon.tabular-1.2.1b20250418.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
150
|
+
autogluon.tabular-1.2.1b20250418.dist-info/METADATA,sha256=8GEi9EnAc9Zkju0dilwliJbVDqkYZf1uusuadOK4WrU,14069
|
151
|
+
autogluon.tabular-1.2.1b20250418.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
152
|
+
autogluon.tabular-1.2.1b20250418.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
153
|
+
autogluon.tabular-1.2.1b20250418.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
154
|
+
autogluon.tabular-1.2.1b20250418.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
155
|
+
autogluon.tabular-1.2.1b20250418.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
156
|
+
autogluon.tabular-1.2.1b20250418.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.2.1b20250417.dist-info → autogluon.tabular-1.2.1b20250418.dist-info}/zip-safe
RENAMED
File without changes
|