autogluon.tabular 1.2.1b20250407__py3-none-any.whl → 1.2.1b20250409__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (22) hide show
  1. autogluon/tabular/register/_ag_model_register.py +0 -2
  2. autogluon/tabular/version.py +1 -1
  3. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/METADATA +13 -13
  4. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/RECORD +11 -22
  5. autogluon/tabular/models/tab_transformer/__init__.py +0 -1
  6. autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -1
  7. autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -66
  8. autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -17
  9. autogluon/tabular/models/tab_transformer/modified_transformer.py +0 -494
  10. autogluon/tabular/models/tab_transformer/pretexts.py +0 -150
  11. autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -86
  12. autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -183
  13. autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +0 -668
  14. autogluon/tabular/models/tab_transformer/tab_transformer_model.py +0 -540
  15. autogluon/tabular/models/tab_transformer/utils.py +0 -124
  16. /autogluon.tabular-1.2.1b20250407-py3.9-nspkg.pth → /autogluon.tabular-1.2.1b20250409-py3.9-nspkg.pth +0 -0
  17. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/LICENSE +0 -0
  18. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/NOTICE +0 -0
  19. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/WHEEL +0 -0
  20. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/namespace_packages.txt +0 -0
  21. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/top_level.txt +0 -0
  22. {autogluon.tabular-1.2.1b20250407.dist-info → autogluon.tabular-1.2.1b20250409.dist-info}/zip-safe +0 -0
@@ -28,7 +28,6 @@ from ..models import (
28
28
  XGBoostModel,
29
29
  XTModel,
30
30
  )
31
- from ..models.tab_transformer.tab_transformer_model import TabTransformerModel
32
31
 
33
32
 
34
33
  # When adding a new model officially to AutoGluon, the model class should be added to the bottom of this list.
@@ -42,7 +41,6 @@ REGISTERED_MODEL_CLS_LST = [
42
41
  TabularNeuralNetTorchModel,
43
42
  LinearModel,
44
43
  NNFastAiTabularModel,
45
- TabTransformerModel,
46
44
  TextPredictorModel,
47
45
  ImagePredictorModel,
48
46
  MultiModalPredictorModel,
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250407"
3
+ __version__ = "1.2.1b20250409"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250407
3
+ Version: 1.2.1b20250409
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,32 +41,32 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.5.3,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250407
45
- Requires-Dist: autogluon.features==1.2.1b20250407
44
+ Requires-Dist: autogluon.core==1.2.1b20250409
45
+ Requires-Dist: autogluon.features==1.2.1b20250409
46
46
  Provides-Extra: all
47
+ Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
48
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
47
49
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
50
+ Requires-Dist: torch<2.7,>=2.2; extra == "all"
48
51
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
52
+ Requires-Dist: autogluon.core[all]==1.2.1b20250409; extra == "all"
53
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
54
+ Requires-Dist: xgboost<2.2,>=2.0; extra == "all"
49
55
  Requires-Dist: einops<0.9,>=0.7; extra == "all"
50
56
  Requires-Dist: spacy<3.8; extra == "all"
51
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
52
- Requires-Dist: torch<2.6,>=2.2; extra == "all"
53
- Requires-Dist: xgboost<2.2,>=2.0; extra == "all"
54
- Requires-Dist: huggingface-hub[torch]; extra == "all"
55
- Requires-Dist: autogluon.core[all]==1.2.1b20250407; extra == "all"
56
- Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
60
60
  Provides-Extra: fastai
61
61
  Requires-Dist: spacy<3.8; extra == "fastai"
62
- Requires-Dist: torch<2.6,>=2.2; extra == "fastai"
62
+ Requires-Dist: torch<2.7,>=2.2; extra == "fastai"
63
63
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
64
64
  Provides-Extra: imodels
65
65
  Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250407; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.2.1b20250409; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -78,11 +78,11 @@ Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "
78
78
  Provides-Extra: tabpfn
79
79
  Requires-Dist: tabpfn<0.2,>=0.1.11; extra == "tabpfn"
80
80
  Provides-Extra: tabpfnmix
81
- Requires-Dist: torch<2.6,>=2.2; extra == "tabpfnmix"
81
+ Requires-Dist: torch<2.7,>=2.2; extra == "tabpfnmix"
82
82
  Requires-Dist: huggingface-hub[torch]; extra == "tabpfnmix"
83
83
  Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
84
84
  Provides-Extra: tests
85
- Requires-Dist: torch<2.6,>=2.2; extra == "tests"
85
+ Requires-Dist: torch<2.7,>=2.2; extra == "tests"
86
86
  Requires-Dist: huggingface-hub[torch]; extra == "tests"
87
87
  Requires-Dist: einops<0.9,>=0.7; extra == "tests"
88
88
  Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "tests"
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.2.1b20250407-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.2.1b20250409-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=Hl84ugmOnqfU18pLVhKVOks3lzI2_-__H8uz6UWTQvY,91
3
+ autogluon/tabular/version.py,sha256=A9BqrXhLrOJhH5qPbhMof-jLGxRS5nRGGDYPGWeziJE,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -74,17 +74,6 @@ autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLg
74
74
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
75
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
76
76
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
77
- autogluon/tabular/models/tab_transformer/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
78
- autogluon/tabular/models/tab_transformer/modified_transformer.py,sha256=3UNhZqKChkWCPtSP4YP23JhtggLqa4mLlP__jvxfBko,22894
79
- autogluon/tabular/models/tab_transformer/pretexts.py,sha256=UEoDq_8hLKbY7EbE5IyL_gUXpuQ607XTtS-jKqf8j8U,6564
80
- autogluon/tabular/models/tab_transformer/tab_model_base.py,sha256=4rmY1IrwoFuJejy-9gOoYSz-ar3DvZY8uXyDUBKk7Iw,3615
81
- autogluon/tabular/models/tab_transformer/tab_transformer.py,sha256=1c1oTJfSsGxQjzZJVN8doqFmYV-Wwwbqcu7RcW77kJk,6991
82
- autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py,sha256=v2G1S_MSESzKqtvSfxS5uEse2CWtOn_K2E-uIwuE6zI,24701
83
- autogluon/tabular/models/tab_transformer/tab_transformer_model.py,sha256=5J3xeIWEoSMljJ-ghMeRmHv0sFqY3ASJ2aN7ivOIqww,22917
84
- autogluon/tabular/models/tab_transformer/utils.py,sha256=rrNk0X6Y0vzt7ivylRmTf0zjDx1DIF-5_ibf6B9Taz8,4554
85
- autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
86
- autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py,sha256=-vJRG8PVj5FgQnF9FNJHMvoIzzyazGE4XLRyQKL5VT8,3854
87
- autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py,sha256=poiOFwOVIf1ONcPIjOqsA31YbqBgWxy0DlVFpVwKNHM,650
88
77
  autogluon/tabular/models/tabpfn/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
89
78
  autogluon/tabular/models/tabpfn/tabpfn_model.py,sha256=PEYMuIh5TFLIDy3hcjfz1DcvDu77rbwRq0pKWyuUR04,6787
90
79
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -143,7 +132,7 @@ autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD
143
132
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
144
133
  autogluon/tabular/predictor/predictor.py,sha256=jOkpypHAPrL2nsI4iypVkZV90TpMORK-G_Ixr3Kw3XQ,357182
145
134
  autogluon/tabular/register/__init__.py,sha256=7CLOTWIUho0wi4eAwhYJ5Y0PfvNCWKnRwlw3bwYoTNE,93
146
- autogluon/tabular/register/_ag_model_register.py,sha256=JNnmL6cwL_zvObRmyuRbwYsCxDT-qrVF5PY8dzJ5U9k,1518
135
+ autogluon/tabular/register/_ag_model_register.py,sha256=afDg51h07vImG8p2YZvzT5IT1lkpti4m2n92FhbDcfw,1414
147
136
  autogluon/tabular/register/_model_register.py,sha256=jqSg0d89dXAAcp-OT4II90ce994ByKMMzAYmpkyaRbI,6824
148
137
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
149
138
  autogluon/tabular/testing/fit_helper.py,sha256=gVHTdAsp_lSZ_qbwjXM7aA5fI32zHj3_zXwEXC9C_ds,19586
@@ -157,11 +146,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=bTPGPyz07a7GG6327yO6ry
157
146
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
158
147
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
159
148
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
160
- autogluon.tabular-1.2.1b20250407.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
161
- autogluon.tabular-1.2.1b20250407.dist-info/METADATA,sha256=Lvftvyi0rNeomszPNZ8mfOfD_BWn1UBW3o49Y27nhKQ,14069
162
- autogluon.tabular-1.2.1b20250407.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
163
- autogluon.tabular-1.2.1b20250407.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
164
- autogluon.tabular-1.2.1b20250407.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
165
- autogluon.tabular-1.2.1b20250407.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
166
- autogluon.tabular-1.2.1b20250407.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
167
- autogluon.tabular-1.2.1b20250407.dist-info/RECORD,,
149
+ autogluon.tabular-1.2.1b20250409.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
150
+ autogluon.tabular-1.2.1b20250409.dist-info/METADATA,sha256=iDCe-gsgrr9MAg1N87btX4Zb2DQUAO-v1k14CK-BJKw,14069
151
+ autogluon.tabular-1.2.1b20250409.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
152
+ autogluon.tabular-1.2.1b20250409.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
153
+ autogluon.tabular-1.2.1b20250409.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
154
+ autogluon.tabular-1.2.1b20250409.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
155
+ autogluon.tabular-1.2.1b20250409.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
156
+ autogluon.tabular-1.2.1b20250409.dist-info/RECORD,,
@@ -1,66 +0,0 @@
1
- def get_fixed_params():
2
- """Parameters that currently cannot be searched during HPO"""
3
- fixed_params = {
4
- "batch_size": 512, # The size of example chunks to predict on.
5
- "n_cont_embeddings": 0, # How many continuous feature embeddings to use.
6
- "norm_class_name": "LayerNorm", # What kind of normalization to use on continuous features.
7
- "column_embedding": True, # If True, 1/(n_shared_embs)th of every embedding will be reserved for a learned parameter that's common to all embeddings.
8
- #'shared_embedding': False,
9
- #'n_shared_embs': 8,
10
- "orig_emb_resid": False, # If True, concatenate the original embeddings on top of the feature embeddings in the Transformer layers.
11
- "one_hot_embeddings": False, # If True, one-hot encode variables whose cardinality is < max_emb_dim.
12
- "drop_whole_embeddings": False, # If True, dropout pretends the embedding was a missing value. If false, dropout sets embed features to 0
13
- "max_emb_dim": 8, # Maximum allowable amount of embeddings.
14
- "base_exp_decay": 0.95, # Rate of exponential decay for learning rate, used during finetuning.
15
- "encoders": {
16
- "CATEGORICAL": "CategoricalOrdinalEnc", # How to "encode"(vectorize) each column type.
17
- "DATETIME": "DatetimeOrdinalEnc",
18
- "LATLONG": "LatLongQuantileOrdinalEnc",
19
- "SCALAR": "ScalarQuantileOrdinalEnc",
20
- "TEXT": "TextSummaryScalarEnc",
21
- },
22
- "aug_mask_prob": 0.4, # What percentage of values to apply augmentation to.
23
- "num_augs": 0, # Number of augmentations to add.
24
- "pretext": "BERTPretext", # What pretext to use when performing pretraining/semi-supervised learning.
25
- "n_cont_features": 8, # How many continuous features to concatenate onto the categorical features
26
- "fix_attention": False, # If True, use the categorical embeddings in the transformer architecture.
27
- "epochs": 200, # How many epochs to train on with labeled data.
28
- "pretrain_epochs": 200, # How many epochs to pretrain on with unlabeled data.
29
- "epochs_wo_improve": 30, # How many epochs to continue running without improving on metric. aka "Early Stopping Patience"
30
- "num_workers": 16, # How many workers to use for torch DataLoader.
31
- "max_columns": 500, # Maximum number of columns TabTransformer will accept as input. This is to combat huge memory requirements/errors.
32
- "tab_readout": "none", # What sort of readout from the transformer. Options: ['readout_emb', 'mean', 'concat_pool', 'concat_pool_all', 'concat_pool_add', 'all_feat_embs', 'mean_feat_embs', 'none']
33
- }
34
-
35
- return fixed_params
36
-
37
-
38
- def get_hyper_params():
39
- """Parameters that currently can be tuned during HPO"""
40
- hyper_params = {
41
- "lr": 3.6e-3, # Learning rate
42
- # Options: Real(5e-5, 5e-3)
43
- "weight_decay": 1e-6, # Rate of linear weight decay for learning rate
44
- # Options: Real(1e-6, 5e-2)
45
- "p_dropout": 0, # dropout probability, 0 turns off Dropout.
46
- # Options: Categorical(0, 0.1, 0.2, 0.3, 0.4, 0.5)
47
- "n_heads": 4, # Number of attention heads
48
- # Options: Categorical(2, 4, 8)
49
- "hidden_dim": 128, # hidden dimension size
50
- # Options: Categorical(32, 64, 128, 256)
51
- "n_layers": 2, # Number of Tab Transformer encoder layers,
52
- # Options: Categorical(1, 2, 3, 4, 5)
53
- "feature_dim": 64, # Size of fully connected layer in TabNet.
54
- # Options: Int(8, 128)
55
- "num_output_layers": 1, # How many fully-connected layers on top of transformer to produce predictions. Minimum 1 layer.
56
- # Options: Categorical(1, 2, 3)
57
- }
58
-
59
- return hyper_params
60
-
61
-
62
- def get_default_param():
63
- params = get_fixed_params()
64
- params.update(get_hyper_params())
65
-
66
- return params
@@ -1,17 +0,0 @@
1
- from autogluon.common import space
2
-
3
-
4
- # TODO: May have to split search space's by problem type. Not necessary right now.
5
- def get_default_searchspace():
6
- params = {
7
- "lr": space.Real(5e-5, 5e-3, default=1e-3, log=True),
8
- "weight_decay": space.Real(1e-6, 5e-2, default=1e-6, log=True),
9
- "p_dropout": space.Categorical(0.1, 0, 0.5),
10
- "n_heads": space.Categorical(8, 4),
11
- "hidden_dim": space.Categorical(128, 32, 64, 256),
12
- "n_layers": space.Categorical(2, 1, 3, 4, 5),
13
- "feature_dim": space.Int(8, 128, default=64),
14
- "num_output_layers": space.Categorical(1, 2),
15
- }
16
-
17
- return params.copy()