autogluon.tabular 1.2.1b20250306__py3-none-any.whl → 1.2.1b20250308__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2148,8 +2148,9 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
2148
2148
  # is required
2149
2149
  if not isinstance(model, BaggedEnsembleModel) and X_pseudo is not None and y_pseudo is not None and X_pseudo.columns.equals(X.columns):
2150
2150
  assert_pseudo_column_match(X=X, X_pseudo=X_pseudo)
2151
- X_w_pseudo = pd.concat([X, X_pseudo])
2152
- y_w_pseudo = pd.concat([y, y_pseudo])
2151
+ # Needs .astype(X.dtypes) because pd.concat will convert categorical features to int/float unexpectedly. Need to convert them back to original.
2152
+ X_w_pseudo = pd.concat([X, X_pseudo], ignore_index=True).astype(X.dtypes)
2153
+ y_w_pseudo = pd.concat([y, y_pseudo], ignore_index=True)
2153
2154
  logger.log(15, f"{len(X_pseudo)} extra rows of pseudolabeled data added to training set for {model.name}")
2154
2155
  model_fit_kwargs["X"] = X_w_pseudo
2155
2156
  model_fit_kwargs["y"] = y_w_pseudo
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250306"
3
+ __version__ = "1.2.1b20250308"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250306
3
+ Version: 1.2.1b20250308
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.5.3,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250306
45
- Requires-Dist: autogluon.features==1.2.1b20250306
44
+ Requires-Dist: autogluon.core==1.2.1b20250308
45
+ Requires-Dist: autogluon.features==1.2.1b20250308
46
46
  Provides-Extra: all
47
47
  Requires-Dist: spacy<3.8; extra == "all"
48
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
48
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
49
+ Requires-Dist: xgboost<2.2,>=2.0; extra == "all"
50
+ Requires-Dist: autogluon.core[all]==1.2.1b20250308; extra == "all"
51
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
49
52
  Requires-Dist: torch<2.6,>=2.2; extra == "all"
50
53
  Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
51
- Requires-Dist: huggingface-hub[torch]; extra == "all"
52
- Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
53
- Requires-Dist: autogluon.core[all]==1.2.1b20250306; extra == "all"
54
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
54
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
55
55
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
56
- Requires-Dist: xgboost<2.2,>=2.0; extra == "all"
56
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -64,9 +64,9 @@ Requires-Dist: fastai<2.8,>=2.3.1; extra == "fastai"
64
64
  Provides-Extra: imodels
65
65
  Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
- Requires-Dist: lightgbm<4.6,>=4.0; extra == "lightgbm"
67
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250306; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.2.1b20250308; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.2.1b20250306-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.2.1b20250308-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=vpLPQw8Tz1FiEFDl7STt_ZrtxXTVYzhhywUGcg_8Fec,91
3
+ autogluon/tabular/version.py,sha256=hEltA28xjQZluR9kZu7xMHB0PNrfraZqGe-bAnGshFE,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -153,18 +153,18 @@ autogluon/tabular/testing/fit_helper.py,sha256=gVHTdAsp_lSZ_qbwjXM7aA5fI32zHj3_z
153
153
  autogluon/tabular/testing/generate_datasets.py,sha256=UXPNfviUNZqGcx4mTYIloJxRED6DRMxAgHqbOvjEUCs,3603
154
154
  autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
155
155
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
156
- autogluon/tabular/trainer/abstract_trainer.py,sha256=lqOjVTLUaZNue4B7u47PYXTXsBEFbSJ4SyruNeChFCk,231925
156
+ autogluon/tabular/trainer/abstract_trainer.py,sha256=EEjZCcO5W-034o_fzbmcIYbJD7xt1K7pYiw3zPZEhUk,232136
157
157
  autogluon/tabular/trainer/auto_trainer.py,sha256=FyRWM8iUJuDvw_aqV5EV_xdh_pb-nHzAvG1sbEhvs0g,8680
158
158
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
159
159
  autogluon/tabular/trainer/model_presets/presets.py,sha256=bTPGPyz07a7GG6327yO6ryuWbNc1aq3hF1qzZL-Xe4c,16733
160
160
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
161
161
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
162
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
163
- autogluon.tabular-1.2.1b20250306.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
164
- autogluon.tabular-1.2.1b20250306.dist-info/METADATA,sha256=YgXdgjQUF_qTbiUXze0zDW5m1-lQO6pPMBOhZPp8Jqs,14386
165
- autogluon.tabular-1.2.1b20250306.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
166
- autogluon.tabular-1.2.1b20250306.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
167
- autogluon.tabular-1.2.1b20250306.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
168
- autogluon.tabular-1.2.1b20250306.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
169
- autogluon.tabular-1.2.1b20250306.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
170
- autogluon.tabular-1.2.1b20250306.dist-info/RECORD,,
163
+ autogluon.tabular-1.2.1b20250308.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
164
+ autogluon.tabular-1.2.1b20250308.dist-info/METADATA,sha256=ptC7ktNuz2I5tyToXXbZiCvYPQAzCZcXPcLZxoD0Kzs,14386
165
+ autogluon.tabular-1.2.1b20250308.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
166
+ autogluon.tabular-1.2.1b20250308.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
167
+ autogluon.tabular-1.2.1b20250308.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
168
+ autogluon.tabular-1.2.1b20250308.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
169
+ autogluon.tabular-1.2.1b20250308.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
170
+ autogluon.tabular-1.2.1b20250308.dist-info/RECORD,,