autogluon.tabular 1.2.1b20250228__py3-none-any.whl → 1.2.1b20250301__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (20) hide show
  1. autogluon/tabular/learner/abstract_learner.py +3 -0
  2. autogluon/tabular/models/catboost/catboost_model.py +4 -0
  3. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +4 -0
  4. autogluon/tabular/models/knn/knn_model.py +4 -1
  5. autogluon/tabular/models/lgb/lgb_model.py +4 -0
  6. autogluon/tabular/models/lr/lr_model.py +4 -0
  7. autogluon/tabular/models/rf/rf_model.py +4 -0
  8. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +4 -0
  9. autogluon/tabular/models/xgboost/xgboost_model.py +5 -10
  10. autogluon/tabular/models/xt/xt_model.py +4 -0
  11. autogluon/tabular/version.py +1 -1
  12. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/METADATA +9 -9
  13. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/RECORD +20 -20
  14. /autogluon.tabular-1.2.1b20250228-py3.9-nspkg.pth → /autogluon.tabular-1.2.1b20250301-py3.9-nspkg.pth +0 -0
  15. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/LICENSE +0 -0
  16. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/NOTICE +0 -0
  17. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/WHEEL +0 -0
  18. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/namespace_packages.txt +0 -0
  19. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/top_level.txt +0 -0
  20. {autogluon.tabular-1.2.1b20250228.dist-info → autogluon.tabular-1.2.1b20250301.dist-info}/zip-safe +0 -0
@@ -235,6 +235,9 @@ class AbstractTabularLearner(AbstractLearner):
235
235
  y_pred = y_pred.values
236
236
  else:
237
237
  if as_pandas:
238
+ if len(y_pred) == 0:
239
+ # avoid exception due to mismatched shape for empty predict
240
+ y_pred = None
238
241
  y_pred = pd.DataFrame(data=y_pred, columns=self.quantile_levels, index=index)
239
242
  return y_pred
240
243
 
@@ -344,6 +344,10 @@ class CatBoostModel(AbstractModel):
344
344
  num_gpus = 0
345
345
  return num_cpus, num_gpus
346
346
 
347
+ @classmethod
348
+ def supported_problem_types(cls) -> list[str] | None:
349
+ return ["binary", "multiclass", "regression", "quantile", "softclass"]
350
+
347
351
  @classmethod
348
352
  def _class_tags(cls):
349
353
  return {
@@ -649,6 +649,10 @@ class NNFastAiTabularModel(AbstractModel):
649
649
  minimum_resources["num_gpus"] = 0.5
650
650
  return minimum_resources
651
651
 
652
+ @classmethod
653
+ def supported_problem_types(cls) -> list[str] | None:
654
+ return ["binary", "multiclass", "regression", "quantile"]
655
+
652
656
  @classmethod
653
657
  def _class_tags(cls):
654
658
  return {"can_estimate_memory_usage_static": True}
@@ -74,7 +74,6 @@ class KNNModel(AbstractModel):
74
74
  default_ag_args = super()._get_default_ag_args()
75
75
  extra_ag_args = {
76
76
  "valid_stacker": False,
77
- "problem_types": [BINARY, MULTICLASS, REGRESSION],
78
77
  }
79
78
  default_ag_args.update(extra_ag_args)
80
79
  return default_ag_args
@@ -264,6 +263,10 @@ class KNNModel(AbstractModel):
264
263
  num_gpus = 0
265
264
  return num_cpus, num_gpus
266
265
 
266
+ @classmethod
267
+ def supported_problem_types(cls) -> list[str] | None:
268
+ return ["binary", "multiclass", "regression"]
269
+
267
270
  @classmethod
268
271
  def _class_tags(cls):
269
272
  return {
@@ -528,6 +528,10 @@ class LGBModel(AbstractModel):
528
528
  num_gpus = 0
529
529
  return num_cpus, num_gpus
530
530
 
531
+ @classmethod
532
+ def supported_problem_types(cls) -> list[str] | None:
533
+ return ["binary", "multiclass", "regression", "quantile", "softclass"]
534
+
531
535
  @property
532
536
  def _features(self):
533
537
  return self._features_internal_list
@@ -317,6 +317,10 @@ class LinearModel(AbstractModel):
317
317
  ) -> int:
318
318
  return 4 * get_approximate_df_mem_usage(X).sum()
319
319
 
320
+ @classmethod
321
+ def supported_problem_types(cls) -> list[str] | None:
322
+ return ["binary", "multiclass", "regression"]
323
+
320
324
  @classmethod
321
325
  def _class_tags(cls):
322
326
  return {"can_estimate_memory_usage_static": True}
@@ -381,6 +381,10 @@ class RFModel(AbstractModel):
381
381
  default_ag_args_ensemble.update(extra_ag_args_ensemble)
382
382
  return default_ag_args_ensemble
383
383
 
384
+ @classmethod
385
+ def supported_problem_types(cls) -> list[str] | None:
386
+ return ["binary", "multiclass", "regression", "quantile", "softclass"]
387
+
384
388
  @classmethod
385
389
  def _class_tags(cls):
386
390
  return {"can_estimate_memory_usage_static": True}
@@ -946,6 +946,10 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
946
946
  )
947
947
  self.processor = self._compiler.compile(model=(self.processor, self.model), path=self.path, input_types=input_types)
948
948
 
949
+ @classmethod
950
+ def supported_problem_types(cls) -> list[str] | None:
951
+ return ["binary", "multiclass", "regression", "quantile", "softclass"]
952
+
949
953
  @classmethod
950
954
  def _class_tags(cls):
951
955
  return {
@@ -10,7 +10,7 @@ from autogluon.common.utils.lite import disable_if_lite_mode
10
10
  from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
11
11
  from autogluon.common.utils.resource_utils import ResourceManager
12
12
  from autogluon.common.utils.try_import import try_import_xgboost
13
- from autogluon.core.constants import BINARY, MULTICLASS, PROBLEM_TYPES_CLASSIFICATION, REGRESSION, SOFTCLASS
13
+ from autogluon.core.constants import MULTICLASS, PROBLEM_TYPES_CLASSIFICATION, REGRESSION, SOFTCLASS
14
14
  from autogluon.core.models import AbstractModel
15
15
  from autogluon.core.models._utils import get_early_stopping_rounds
16
16
 
@@ -45,15 +45,6 @@ class XGBoostModel(AbstractModel):
45
45
  def _get_default_searchspace(self):
46
46
  return get_default_searchspace(problem_type=self.problem_type, num_classes=self.num_classes)
47
47
 
48
- @classmethod
49
- def _get_default_ag_args(cls) -> dict:
50
- default_ag_args = super()._get_default_ag_args()
51
- extra_ag_args = {
52
- "problem_types": [BINARY, MULTICLASS, REGRESSION, SOFTCLASS],
53
- }
54
- default_ag_args.update(extra_ag_args)
55
- return default_ag_args
56
-
57
48
  def _get_default_auxiliary_params(self) -> dict:
58
49
  default_auxiliary_params = super()._get_default_auxiliary_params()
59
50
  extra_auxiliary_params = dict(
@@ -325,6 +316,10 @@ class XGBoostModel(AbstractModel):
325
316
  model._xgb_model_type = None
326
317
  return model
327
318
 
319
+ @classmethod
320
+ def supported_problem_types(cls) -> list[str] | None:
321
+ return ["binary", "multiclass", "regression", "softclass"]
322
+
328
323
  @classmethod
329
324
  def _class_tags(cls):
330
325
  return {
@@ -24,3 +24,7 @@ class XTModel(RFModel):
24
24
  from sklearn.ensemble import ExtraTreesClassifier
25
25
 
26
26
  return ExtraTreesClassifier
27
+
28
+ @classmethod
29
+ def supported_problem_types(cls) -> list[str] | None:
30
+ return ["binary", "multiclass", "regression", "quantile"]
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250228"
3
+ __version__ = "1.2.1b20250301"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250228
3
+ Version: 1.2.1b20250301
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.5.3,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250228
45
- Requires-Dist: autogluon.features==1.2.1b20250228
44
+ Requires-Dist: autogluon.core==1.2.1b20250301
45
+ Requires-Dist: autogluon.features==1.2.1b20250301
46
46
  Provides-Extra: all
47
- Requires-Dist: huggingface-hub[torch]; extra == "all"
48
47
  Requires-Dist: torch<2.6,>=2.2; extra == "all"
49
48
  Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
50
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
- Requires-Dist: autogluon.core[all]==1.2.1b20250228; extra == "all"
52
- Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
53
49
  Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
54
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
55
50
  Requires-Dist: spacy<3.8; extra == "all"
56
51
  Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
52
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
53
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
54
+ Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
55
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
56
+ Requires-Dist: autogluon.core[all]==1.2.1b20250301; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +66,7 @@ Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.6,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250228; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.2.1b20250301; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.2.1b20250228-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.2.1b20250301-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=4RzEVBLupX6W_qKJDfxEuDLJ2Ppi02arrX2mkTUJanE,91
3
+ autogluon/tabular/version.py,sha256=6kceKq_ABW7D8n2TxlTDuCVTTOR7a0FEMpqKYUmZerA,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -14,7 +14,7 @@ autogluon/tabular/experimental/_tabular_classifier.py,sha256=7lGoFdvkHiZS3VpcXo9
14
14
  autogluon/tabular/experimental/_tabular_regressor.py,sha256=EzEDL-19T5QUVNmLkSHNzzGwYrUxyqlNpIDPMgtV6Gg,1932
15
15
  autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF67GCV20zo8yV51HKKj1SCY,9481
16
16
  autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
17
- autogluon/tabular/learner/abstract_learner.py,sha256=HmnW7KO3sV4H1QSquJn9DYOwoWa2vohKThq_hr4OHM4,55102
17
+ autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
18
18
  autogluon/tabular/learner/default_learner.py,sha256=hjdKbcFtIQxQ3-k1LiGOo-w5sLxIIQAyFLs3-R35aw0,24781
19
19
  autogluon/tabular/models/__init__.py,sha256=tDVqwVG9q2ctLWRouyXeYs5NiSBnOnwh3anAfZyM3jg,1099
20
20
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -25,7 +25,7 @@ autogluon/tabular/models/automm/automm_model.py,sha256=_FPkXiHjowuc_KTKVkrzstaj1
25
25
  autogluon/tabular/models/automm/ft_transformer.py,sha256=8T80u3SbWr2-0KagOXhYpZkTvFIbRF91rE8sVZN0w_0,3901
26
26
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
27
  autogluon/tabular/models/catboost/callbacks.py,sha256=l8x17n_w7oEFs-iDECSdBKZ89yW5g1z-zvj4XLgQPkw,7098
28
- autogluon/tabular/models/catboost/catboost_model.py,sha256=lzHsaY-EuihoSjZ7owVqAfzmdT5VVlMTQeIZ8_PJcxY,17225
28
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=UmM7vnDAeQnIXRZ2MXYMP0mwB3Vw_oNhUGmRrxBJ5sw,17380
29
29
  autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
30
30
  autogluon/tabular/models/catboost/catboost_utils.py,sha256=YSc94V4DjrwbmkeUM8306zV7z21oq-K-qGCOj0UE_wg,3167
31
31
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -36,7 +36,7 @@ autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCL
36
36
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
37
37
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
38
38
  autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
39
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=SsBtfYRFuBXrN7LaCaJqLSLd1ZLVad5SXtHa_pxdG1w,29282
39
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=OqiOP3dw9HsZCw9AXvJqlTNwheupkuhaMiKWDnVLpjc,29424
40
40
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
41
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
42
42
  autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
@@ -50,25 +50,25 @@ autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRk
50
50
  autogluon/tabular/models/imodels/imodels_models.py,sha256=JE-VFeFc8Ot2T1IUtlNMP4_T-9F1I1NzQt4zA5aZ-to,4712
51
51
  autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
52
  autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
53
- autogluon/tabular/models/knn/knn_model.py,sha256=fN8ybCC3zb9aVXS18M41RS78u58bvEvrv3ImELY_WOg,13874
53
+ autogluon/tabular/models/knn/knn_model.py,sha256=SdNIJW4fSV6Ae7JG5CwIDkUOmLuqibSC-FT2PXMtVC0,13941
54
54
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
55
55
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
56
56
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
57
  autogluon/tabular/models/lgb/callbacks.py,sha256=0X42-nAbftKnu_zmFPDf8S3RrUJJjsJ1Qs_TPAJxzjU,11367
58
- autogluon/tabular/models/lgb/lgb_model.py,sha256=BKS9zMfj65Xnp74IK2IU_i9RfY4dWmiJxGqp7IiyWCQ,24898
58
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=3hIk24x3HZErGKW9VfgN7-qu92-fovjATXqhxh81EPo,25053
59
59
  autogluon/tabular/models/lgb/lgb_utils.py,sha256=jzTDTzP-z7gcBGZyy1_0YkyTOLbU5DLeRqtil4FCZPI,7382
60
60
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
61
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
62
62
  autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
63
63
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
- autogluon/tabular/models/lr/lr_model.py,sha256=t2rZJf47bGJ5YlGrg100-LpAhNIPXE2KwaxDTyHxgSs,15433
64
+ autogluon/tabular/models/lr/lr_model.py,sha256=NqkK5eH-9HLXW-uuEcPeQWteq6H4F6WzvAwaXKTWZOQ,15563
65
65
  autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=zkmVZtv05BQPDasVBz1J8LmXEfLgoggsv57s6cXuTMQ,1094
66
66
  autogluon/tabular/models/lr/lr_rapids_model.py,sha256=a07JvjWemrL0L08moA3K4lnYieukRlAdb2Z_uWA44k8,2127
67
67
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
69
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
70
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/rf/rf_model.py,sha256=U9prO0B3Uk7Ycvagau7rgm_fNkBaJS1Km40iY9XMa3I,21342
71
+ autogluon/tabular/models/rf/rf_model.py,sha256=V_lnpaVArQkt3QuzyUDGzKaGHax5srRw_sKZ2_G-RAE,21497
72
72
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
73
73
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
74
74
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -121,7 +121,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
121
121
  autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
122
122
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
123
123
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
124
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=QxZZ9XILnO4VdZ3avNNaPV7K16OsINq4SAWN9W9O3o4,42400
124
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=mQt3zso10kSsbka1bJDeTake9yGpcooZR6SRp6J9r4w,42555
125
125
  autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
126
126
  autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
127
127
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -135,13 +135,13 @@ autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py,sha256=hToCVe0KP3PIk
135
135
  autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py,sha256=jZ0STjvqwKw8jJDeoo5yAXTvgwFvY8Fsz6OqSif_JGI,3677
136
136
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
137
  autogluon/tabular/models/xgboost/callbacks.py,sha256=uynimXya07XQMBkDvec-7mXK6OfMGP6M8MiVYu8OVRI,7008
138
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=4hMABSzg3CJnpWwiS3A7qhzWpNcC6BWyVAoC2MMr-TI,14322
138
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=8LovgYAW61zLDcNCqRzzPD2OKx_cdhsXKbnEMa29AFk,14152
139
139
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
140
140
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
141
141
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
142
142
  autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py,sha256=lFwI34pcRtlVQkxmsdZsSaPry8t_WSMBhig4soMK54k,2140
143
143
  autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
144
- autogluon/tabular/models/xt/xt_model.py,sha256=z9Hcp3CR_QS4XMlE9-g5rFknj2KPHfFLtyqb0qvOYbw,825
144
+ autogluon/tabular/models/xt/xt_model.py,sha256=vXy1HQ06fG1YjPTf0-THBKgcA9Edw1XhmBC4aOB3qVA,967
145
145
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
146
146
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
147
147
  autogluon/tabular/predictor/predictor.py,sha256=A86C_9ixByrSrcU-Bxy9eTTZ7nCnIvRDN2uY-0ANLVY,357082
@@ -156,11 +156,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=bTPGPyz07a7GG6327yO6ry
156
156
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
157
157
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
158
158
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
159
- autogluon.tabular-1.2.1b20250228.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
160
- autogluon.tabular-1.2.1b20250228.dist-info/METADATA,sha256=I6Rt3uCCQBkySE4WJRAtjnbW3nlftxkX_NZAtOPJIas,14386
161
- autogluon.tabular-1.2.1b20250228.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
162
- autogluon.tabular-1.2.1b20250228.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
163
- autogluon.tabular-1.2.1b20250228.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
164
- autogluon.tabular-1.2.1b20250228.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
165
- autogluon.tabular-1.2.1b20250228.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
166
- autogluon.tabular-1.2.1b20250228.dist-info/RECORD,,
159
+ autogluon.tabular-1.2.1b20250301.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
160
+ autogluon.tabular-1.2.1b20250301.dist-info/METADATA,sha256=omibYY2m3fvkDSys_0El4LW6333bUFIJesmS5oK2P5o,14386
161
+ autogluon.tabular-1.2.1b20250301.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
162
+ autogluon.tabular-1.2.1b20250301.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
163
+ autogluon.tabular-1.2.1b20250301.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
164
+ autogluon.tabular-1.2.1b20250301.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
165
+ autogluon.tabular-1.2.1b20250301.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
166
+ autogluon.tabular-1.2.1b20250301.dist-info/RECORD,,