autogluon.tabular 1.2.1b20250218__py3-none-any.whl → 1.2.1b20250220__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -57,7 +57,6 @@ from ..learner import AbstractTabularLearner, DefaultLearner
57
57
  from ..trainer.abstract_trainer import AbstractTabularTrainer
58
58
  from ..trainer.model_presets.presets import MODEL_TYPES
59
59
  from ..version import __version__
60
- from ._deprecated_methods import TabularPredictorDeprecatedMixin
61
60
 
62
61
  logger = logging.getLogger(__name__) # return autogluon root logger
63
62
 
@@ -68,7 +67,7 @@ logger = logging.getLogger(__name__) # return autogluon root logger
68
67
  # TODO: consider adding kwarg option for data which has already been preprocessed by feature generator to skip feature generation.
69
68
  # TODO: Resolve raw text feature usage in default feature generator
70
69
  # TODO: num_bag_sets -> ag_args
71
- class TabularPredictor(TabularPredictorDeprecatedMixin):
70
+ class TabularPredictor:
72
71
  """
73
72
  AutoGluon TabularPredictor predicts values in a column of a tabular dataset (classification or regression).
74
73
 
@@ -3793,6 +3792,80 @@ class TabularPredictor(TabularPredictorDeprecatedMixin):
3793
3792
  self._assert_is_fit("info")
3794
3793
  return self._learner.get_info(include_model_info=True, include_model_failures=True)
3795
3794
 
3795
+ def model_info(self, model: str) -> dict:
3796
+ """
3797
+ Returns metadata information about the given model.
3798
+ Equivalent output to `predictor.info()["model_info"][model]`
3799
+
3800
+ Parameters
3801
+ ----------
3802
+ model: str
3803
+ The name of the model to get info for.
3804
+
3805
+ Returns
3806
+ -------
3807
+ model_info: dict
3808
+ Model info dictionary
3809
+
3810
+ """
3811
+ return self._trainer.get_model_info(model=model)
3812
+
3813
+ # TODO: Add entire `hyperparameters` dict method for multiple models (including stack ensemble)
3814
+ # TODO: Add unit test
3815
+ def model_hyperparameters(
3816
+ self,
3817
+ model: str,
3818
+ include_ag_args_ensemble: bool = True,
3819
+ output_format: Literal["user", "all"] = "user",
3820
+ ) -> dict:
3821
+ """
3822
+ Returns the hyperparameters of a given model.
3823
+
3824
+ Parameters
3825
+ ----------
3826
+ model: str
3827
+ The name of the model to get hyperparameters for.
3828
+ include_ag_args_ensemble: bool, default True
3829
+ If True, includes the ag_args_ensemble parameters if they exist (for example, when bagging is enabled).
3830
+ output_format: {"user", "all"}, default "user"
3831
+ If "user", returns the same hyperparameters specified by the user (only non-defaults).
3832
+ If "all", returns all hyperparameters used by the model (including default hyperparameters not specified by the user)
3833
+ Regardless of the output_format, they both are functionally equivalent if passed to AutoGluon.
3834
+
3835
+ Returns
3836
+ -------
3837
+ model_hyperparameters: dict
3838
+ Dictionary of model hyperparameters.
3839
+ Equivalent to the model_hyperparameters specified by the user for this model in:
3840
+ `predictor.fit(..., hyperparameters={..., model_key: [..., model_hyperparameters]})`
3841
+
3842
+ """
3843
+ # TODO: Move logic into trainer?
3844
+ info_model = self.model_info(model=model)
3845
+ if output_format == "user":
3846
+ if "bagged_info" in info_model:
3847
+ hyperparameters = info_model["bagged_info"]["child_hyperparameters_user"].copy()
3848
+ if include_ag_args_ensemble and info_model["hyperparameters_user"]:
3849
+ hyperparameters["ag_args_ensemble"] = info_model["hyperparameters_user"]
3850
+ else:
3851
+ hyperparameters = info_model["hyperparameters_user"]
3852
+ elif output_format == "all":
3853
+ if "bagged_info" in info_model:
3854
+ hyperparameters = info_model["bagged_info"]["child_hyperparameters"].copy()
3855
+ if info_model["bagged_info"]["child_ag_args_fit"]:
3856
+ hyperparameters["ag_args_fit"] = info_model["bagged_info"]["child_ag_args_fit"]
3857
+ if include_ag_args_ensemble:
3858
+ bag_hyperparameters = info_model["hyperparameters"].copy()
3859
+ if info_model["ag_args_fit"]:
3860
+ bag_hyperparameters["ag_args_fit"] = info_model["ag_args_fit"]
3861
+ if bag_hyperparameters:
3862
+ hyperparameters["ag_args_ensemble"] = bag_hyperparameters
3863
+ else:
3864
+ hyperparameters = info_model["hyperparameters"]
3865
+ else:
3866
+ raise ValueError(f"output_format={output_format} is unknown!")
3867
+ return hyperparameters
3868
+
3796
3869
  # TODO: Add data argument
3797
3870
  # TODO: Add option to disable OOF generation of newly fitted models
3798
3871
  # TODO: Move code logic to learner/trainer
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250218"
3
+ __version__ = "1.2.1b20250220"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250218
3
+ Version: 1.2.1b20250220
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.5.3,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250218
45
- Requires-Dist: autogluon.features==1.2.1b20250218
44
+ Requires-Dist: autogluon.core==1.2.1b20250220
45
+ Requires-Dist: autogluon.features==1.2.1b20250220
46
46
  Provides-Extra: all
47
- Requires-Dist: huggingface-hub[torch]; extra == "all"
48
- Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
47
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
48
+ Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
49
+ Requires-Dist: autogluon.core[all]==1.2.1b20250220; extra == "all"
49
50
  Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
50
- Requires-Dist: spacy<3.8; extra == "all"
51
- Requires-Dist: autogluon.core[all]==1.2.1b20250218; extra == "all"
51
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
52
52
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
53
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
54
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
53
+ Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
55
54
  Requires-Dist: torch<2.6,>=2.2; extra == "all"
56
- Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
55
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
56
+ Requires-Dist: spacy<3.8; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +66,7 @@ Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.6,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250218; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.2.1b20250220; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.2.1b20250218-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.2.1b20250220-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=7H9aiBFc3yZ4VAfYTXCxWQ-TNBEjD1nB5tqyO9XpoOs,91
3
+ autogluon/tabular/version.py,sha256=5_5isKRJ9Kd7emAdEPGzl72mtp4GDkqLCtc4C6IuV6k,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -142,9 +142,8 @@ autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py,sha256=lFwI34pc
142
142
  autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
143
143
  autogluon/tabular/models/xt/xt_model.py,sha256=gimCfMeTmhAJTy4ekCI_dbK1FluJ7EQMoHt0pGMvVgs,759
144
144
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
145
- autogluon/tabular/predictor/_deprecated_methods.py,sha256=cBZjVYxY7blOj2eH1y9JsdW0n-AZtnsK4B6dzUqrTAw,3476
146
145
  autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
147
- autogluon/tabular/predictor/predictor.py,sha256=cObeqYL75aqf2UNVbbY6HnO9nnJqmqyAYqgZdBYKfpM,352467
146
+ autogluon/tabular/predictor/predictor.py,sha256=nJu66FgSjjKUrHmflj90eq0SlPfVluz-uI84E7zHL-k,355670
148
147
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
149
148
  autogluon/tabular/trainer/abstract_trainer.py,sha256=daz6_IfYX9bvQ5c5RpbxZ9f5JytUDq2-XDO1wAXpXtk,231155
150
149
  autogluon/tabular/trainer/auto_trainer.py,sha256=FyRWM8iUJuDvw_aqV5EV_xdh_pb-nHzAvG1sbEhvs0g,8680
@@ -153,11 +152,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=1E-Z1FxUpyydaoEdxcTCg7
153
152
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
154
153
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
155
154
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
156
- autogluon.tabular-1.2.1b20250218.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
- autogluon.tabular-1.2.1b20250218.dist-info/METADATA,sha256=T4lgfczkCeVP2H9DrCFruDc6VrvKALXjVI8wW6En6aw,14386
158
- autogluon.tabular-1.2.1b20250218.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
- autogluon.tabular-1.2.1b20250218.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
- autogluon.tabular-1.2.1b20250218.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
- autogluon.tabular-1.2.1b20250218.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
- autogluon.tabular-1.2.1b20250218.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
- autogluon.tabular-1.2.1b20250218.dist-info/RECORD,,
155
+ autogluon.tabular-1.2.1b20250220.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
156
+ autogluon.tabular-1.2.1b20250220.dist-info/METADATA,sha256=GX_UkgUo4nTLg-VL4ztu90fgUD9_kCreN-GF6Fj0nVg,14386
157
+ autogluon.tabular-1.2.1b20250220.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
158
+ autogluon.tabular-1.2.1b20250220.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
159
+ autogluon.tabular-1.2.1b20250220.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
160
+ autogluon.tabular-1.2.1b20250220.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
+ autogluon.tabular-1.2.1b20250220.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
162
+ autogluon.tabular-1.2.1b20250220.dist-info/RECORD,,
@@ -1,65 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import numpy as np
4
- import pandas as pd
5
-
6
- from autogluon.common.utils import Deprecated
7
-
8
-
9
- class TabularPredictorDeprecatedMixin:
10
- """Contains deprecated methods from TabularPredictor that shouldn't show up in API documentation."""
11
-
12
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="persist")
13
- def persist_models(self, *args, **kwargs) -> list[str]:
14
- """Deprecated method. Use `persist` instead."""
15
- return self.persist(*args, **kwargs)
16
-
17
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="unpersist")
18
- def unpersist_models(self, *args, **kwargs) -> list[str]:
19
- """Deprecated method. Use `unpersist` instead."""
20
- return self.unpersist(*args, **kwargs)
21
-
22
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names")
23
- def get_model_names(self, *args, **kwargs) -> list[str]:
24
- """Deprecated method. Use `model_names` instead."""
25
- return self.model_names(*args, **kwargs)
26
-
27
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_best")
28
- def get_model_best(self) -> str:
29
- """Deprecated method. Use `model_best` instead."""
30
- return self.model_best
31
-
32
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="predict_from_proba")
33
- def get_pred_from_proba(self, *args, **kwargs) -> pd.Series | np.array:
34
- """Deprecated method. Use `predict_from_proba` instead."""
35
- return self.predict_from_proba(*args, **kwargs)
36
-
37
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_refit_map")
38
- def get_model_full_dict(self, *args, **kwargs) -> dict[str, str]:
39
- """Deprecated method. Use `model_refit_map` instead."""
40
- return self.model_refit_map(*args, **kwargs)
41
-
42
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="predict_proba_oof")
43
- def get_oof_pred_proba(self, *args, **kwargs) -> pd.DataFrame | pd.Series:
44
- """Deprecated method. Use `predict_proba_oof` instead."""
45
- return self.predict_proba_oof(*args, **kwargs)
46
-
47
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="predict_oof")
48
- def get_oof_pred(self, *args, **kwargs) -> pd.Series:
49
- """Deprecated method. Use `predict_oof` instead."""
50
- return self.predict_oof(*args, **kwargs)
51
-
52
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="disk_usage_per_file")
53
- def get_size_disk_per_file(self, *args, **kwargs) -> pd.Series:
54
- """Deprecated method. Use `disk_usage_per_file` instead."""
55
- return self.disk_usage_per_file(*args, **kwargs)
56
-
57
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="disk_usage")
58
- def get_size_disk(self) -> int:
59
- """Deprecated method. Use `disk_usage` instead."""
60
- return self.disk_usage()
61
-
62
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names(persisted=True)")
63
- def get_model_names_persisted(self) -> list[str]:
64
- """Deprecated method. Use `model_names(persisted=True)` instead."""
65
- return self.model_names(persisted=True)