autogluon.tabular 1.2.1b20250215__py3-none-any.whl → 1.2.1b20250217__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/METADATA +14 -12
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/RECORD +10 -10
- /autogluon.tabular-1.2.1b20250215-py3.9-nspkg.pth → /autogluon.tabular-1.2.1b20250217-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/zip-safe +0 -0
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250217
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -41,17 +41,17 @@ Requires-Dist: scipy<1.16,>=1.5.4
|
|
41
41
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
42
42
|
Requires-Dist: scikit-learn<1.5.3,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.2.
|
45
|
-
Requires-Dist: autogluon.features==1.2.
|
44
|
+
Requires-Dist: autogluon.core==1.2.1b20250217
|
45
|
+
Requires-Dist: autogluon.features==1.2.1b20250217
|
46
46
|
Provides-Extra: all
|
47
|
-
Requires-Dist:
|
47
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250217; extra == "all"
|
48
48
|
Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
|
49
|
-
Requires-Dist:
|
50
|
-
Requires-Dist:
|
49
|
+
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
50
|
+
Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
|
51
51
|
Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
|
52
52
|
Requires-Dist: torch<2.6,>=2.2; extra == "all"
|
53
|
-
Requires-Dist:
|
54
|
-
Requires-Dist:
|
53
|
+
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
54
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
55
55
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
56
56
|
Requires-Dist: spacy<3.8; extra == "all"
|
57
57
|
Provides-Extra: catboost
|
@@ -66,7 +66,7 @@ Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
|
|
66
66
|
Provides-Extra: lightgbm
|
67
67
|
Requires-Dist: lightgbm<4.6,>=4.0; extra == "lightgbm"
|
68
68
|
Provides-Extra: ray
|
69
|
-
Requires-Dist: autogluon.core[all]==1.2.
|
69
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250217; extra == "ray"
|
70
70
|
Provides-Extra: skex
|
71
71
|
Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
|
72
72
|
Provides-Extra: skl2onnx
|
@@ -117,9 +117,11 @@ Requires-Dist: xgboost<2.2,>=1.6; extra == "xgboost"
|
|
117
117
|
|
118
118
|
[Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
|
119
119
|
|
120
|
-
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
121
120
|
</div>
|
122
121
|
|
122
|
+
AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
123
|
+
|
124
|
+
|
123
125
|
## 💾 Installation
|
124
126
|
|
125
127
|
AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
|
@@ -159,8 +161,8 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
159
161
|
| :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
|
160
162
|
| :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
|
161
163
|
| :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
|
162
|
-
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
163
|
-
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
164
|
+
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
165
|
+
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
164
166
|
| :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
|
165
167
|
|
166
168
|
### Scientific Publications
|
{autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.2.
|
1
|
+
autogluon.tabular-1.2.1b20250217-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=KtJNzyEXgs-zqexx_OthJT01Df0QPzQ_fCAJ0rRSse0,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -153,11 +153,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=1E-Z1FxUpyydaoEdxcTCg7
|
|
153
153
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
154
154
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
155
155
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
156
|
-
autogluon.tabular-1.2.
|
157
|
-
autogluon.tabular-1.2.
|
158
|
-
autogluon.tabular-1.2.
|
159
|
-
autogluon.tabular-1.2.
|
160
|
-
autogluon.tabular-1.2.
|
161
|
-
autogluon.tabular-1.2.
|
162
|
-
autogluon.tabular-1.2.
|
163
|
-
autogluon.tabular-1.2.
|
156
|
+
autogluon.tabular-1.2.1b20250217.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
157
|
+
autogluon.tabular-1.2.1b20250217.dist-info/METADATA,sha256=JHDeOQkt3zij8aq5ybUAy9DYMR6eAbkrkSUMfZoU9mE,14386
|
158
|
+
autogluon.tabular-1.2.1b20250217.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
159
|
+
autogluon.tabular-1.2.1b20250217.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
160
|
+
autogluon.tabular-1.2.1b20250217.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
161
|
+
autogluon.tabular-1.2.1b20250217.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
162
|
+
autogluon.tabular-1.2.1b20250217.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
163
|
+
autogluon.tabular-1.2.1b20250217.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.2.1b20250215.dist-info → autogluon.tabular-1.2.1b20250217.dist-info}/zip-safe
RENAMED
File without changes
|