autogluon.tabular 1.2.1b20250215__py3-none-any.whl → 1.2.1b20250216__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250215"
3
+ __version__ = "1.2.1b20250216"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250215
3
+ Version: 1.2.1b20250216
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,19 +41,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
41
41
  Requires-Dist: pandas<2.3.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.5.3,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.2.1b20250215
45
- Requires-Dist: autogluon.features==1.2.1b20250215
44
+ Requires-Dist: autogluon.core==1.2.1b20250216
45
+ Requires-Dist: autogluon.features==1.2.1b20250216
46
46
  Provides-Extra: all
47
- Requires-Dist: huggingface-hub[torch]; extra == "all"
47
+ Requires-Dist: spacy<3.8; extra == "all"
48
48
  Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
49
- Requires-Dist: autogluon.core[all]==1.2.1b20250215; extra == "all"
50
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
49
+ Requires-Dist: autogluon.core[all]==1.2.1b20250216; extra == "all"
50
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
51
51
  Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
52
- Requires-Dist: torch<2.6,>=2.2; extra == "all"
53
- Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
52
+ Requires-Dist: huggingface-hub[torch]; extra == "all"
54
53
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
55
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
56
- Requires-Dist: spacy<3.8; extra == "all"
54
+ Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
55
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
56
+ Requires-Dist: torch<2.6,>=2.2; extra == "all"
57
57
  Provides-Extra: catboost
58
58
  Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
59
59
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -66,7 +66,7 @@ Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
66
66
  Provides-Extra: lightgbm
67
67
  Requires-Dist: lightgbm<4.6,>=4.0; extra == "lightgbm"
68
68
  Provides-Extra: ray
69
- Requires-Dist: autogluon.core[all]==1.2.1b20250215; extra == "ray"
69
+ Requires-Dist: autogluon.core[all]==1.2.1b20250216; extra == "ray"
70
70
  Provides-Extra: skex
71
71
  Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
72
72
  Provides-Extra: skl2onnx
@@ -117,9 +117,11 @@ Requires-Dist: xgboost<2.2,>=1.6; extra == "xgboost"
117
117
 
118
118
  [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
119
119
 
120
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
121
120
  </div>
122
121
 
122
+ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
123
+
124
+
123
125
  ## 💾 Installation
124
126
 
125
127
  AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
@@ -159,8 +161,8 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
159
161
  | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
160
162
  | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
161
163
  | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
162
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
163
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
164
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
165
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
164
166
  | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
165
167
 
166
168
  ### Scientific Publications
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.2.1b20250215-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.2.1b20250216-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=YOAXby5XakHYhhbbZPSgk1PBG4bkMu4R85_vR00D_DA,91
3
+ autogluon/tabular/version.py,sha256=U2riSgboLHrGAsTKaN_NObA5VbiSqKggEC1ucbkCW7M,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -153,11 +153,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=1E-Z1FxUpyydaoEdxcTCg7
153
153
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
154
154
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
155
155
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
156
- autogluon.tabular-1.2.1b20250215.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
- autogluon.tabular-1.2.1b20250215.dist-info/METADATA,sha256=uMVVaErMeNCbsZmEHRIjMW2thFpuhCcqmQiLA7esAj4,14364
158
- autogluon.tabular-1.2.1b20250215.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
- autogluon.tabular-1.2.1b20250215.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
- autogluon.tabular-1.2.1b20250215.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
- autogluon.tabular-1.2.1b20250215.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
- autogluon.tabular-1.2.1b20250215.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
- autogluon.tabular-1.2.1b20250215.dist-info/RECORD,,
156
+ autogluon.tabular-1.2.1b20250216.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
+ autogluon.tabular-1.2.1b20250216.dist-info/METADATA,sha256=iNeYHWRvVFz_YvM9K-ARo80ul1SpjiRDErvInDZnTFI,14386
158
+ autogluon.tabular-1.2.1b20250216.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
+ autogluon.tabular-1.2.1b20250216.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
+ autogluon.tabular-1.2.1b20250216.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
+ autogluon.tabular-1.2.1b20250216.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
+ autogluon.tabular-1.2.1b20250216.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
+ autogluon.tabular-1.2.1b20250216.dist-info/RECORD,,