autogluon.tabular 1.2.1b20250205__py3-none-any.whl → 1.2.1b20250207__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -44,7 +44,6 @@ from autogluon.core.problem_type import problem_type_info
44
44
  from autogluon.core.pseudolabeling.pseudolabeling import filter_ensemble_pseudo, filter_pseudo
45
45
  from autogluon.core.scheduler.scheduler_factory import scheduler_factory
46
46
  from autogluon.core.stacked_overfitting.utils import check_stacked_overfitting_from_leaderboard
47
- from autogluon.core.trainer import AbstractTrainer
48
47
  from autogluon.core.utils import get_pred_from_proba_df, plot_performance_vs_trials, plot_summary_of_models, plot_tabular_models
49
48
  from autogluon.core.utils.decorators import apply_presets
50
49
  from autogluon.core.utils.loaders import load_pkl, load_str
@@ -55,6 +54,7 @@ from ..configs.feature_generator_presets import get_default_feature_generator
55
54
  from ..configs.hyperparameter_configs import get_hyperparameter_config
56
55
  from ..configs.presets_configs import tabular_presets_alias, tabular_presets_dict
57
56
  from ..learner import AbstractTabularLearner, DefaultLearner
57
+ from ..trainer.abstract_trainer import AbstractTabularTrainer
58
58
  from ..trainer.model_presets.presets import MODEL_TYPES
59
59
  from ..version import __version__
60
60
  from ._deprecated_methods import TabularPredictorDeprecatedMixin
@@ -163,8 +163,8 @@ class TabularPredictor(TabularPredictorDeprecatedMixin):
163
163
  cache_data : bool, default = True
164
164
  When enabled, the training and validation data are saved to disk for future reuse.
165
165
  Enables advanced functionality in predictor such as `fit_extra()` and feature importance calculation on the original data.
166
- trainer_type : AbstractTrainer, default = AutoTrainer
167
- A class inheriting from `AbstractTrainer` that controls training/ensembling of many models.
166
+ trainer_type : AbstractTabularTrainer, default = AutoTrainer
167
+ A class inheriting from `AbstractTabularTrainer` that controls training/ensembling of many models.
168
168
  If you don't know what this is, keep it as the default.
169
169
  """
170
170
 
@@ -223,7 +223,7 @@ class TabularPredictor(TabularPredictorDeprecatedMixin):
223
223
  **learner_kwargs,
224
224
  )
225
225
  self._learner_type = type(self._learner)
226
- self._trainer: AbstractTrainer = None
226
+ self._trainer: AbstractTabularTrainer = None
227
227
  self._sub_fits: list[str] = []
228
228
  self._stacked_overfitting_occurred: bool | None = None
229
229
  self._fit_strategy = None
@@ -828,7 +828,7 @@ class TabularPredictor(TabularPredictorDeprecatedMixin):
828
828
  again with the pruned set of features, and updates input feature lists for models whose validation score improved.
829
829
  If None, do not perform feature pruning. If empty dictionary, perform feature pruning with default configurations.
830
830
  For valid dictionary keys, refer to :class:`autogluon.core.utils.feature_selection.FeatureSelector` and
831
- `autogluon.core.trainer.abstract_trainer.AbstractTrainer._proxy_model_feature_prune` documentation.
831
+ `autogluon.core.trainer.abstract_trainer.AbstractTabularTrainer._proxy_model_feature_prune` documentation.
832
832
  To force all models to work with the pruned set of features, set force_prune=True in the dictionary.
833
833
  ag_args : dict, default = None
834
834
  Keyword arguments to pass to all models (i.e. common hyperparameters shared by all AutoGluon models).
@@ -4665,7 +4665,7 @@ class TabularPredictor(TabularPredictorDeprecatedMixin):
4665
4665
  self._learner_type = type(self._learner)
4666
4666
  if self._learner.trainer_path is not None:
4667
4667
  self._learner.persist_trainer(low_memory=True)
4668
- self._trainer: AbstractTrainer = self._learner.load_trainer() # Trainer object
4668
+ self._trainer: AbstractTabularTrainer = self._learner.load_trainer() # Trainer object
4669
4669
 
4670
4670
  @classmethod
4671
4671
  def _load_version_file(cls, path: str) -> str: