autogluon.tabular 1.2.1b20250114__py3-none-any.whl → 1.2.1b20250116__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +43 -31
- autogluon/tabular/version.py +2 -1
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/METADATA +9 -9
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/RECORD +11 -11
- /autogluon.tabular-1.2.1b20250114-py3.8-nspkg.pth → /autogluon.tabular-1.2.1b20250116-py3.8-nspkg.pth +0 -0
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/zip-safe +0 -0
@@ -156,12 +156,26 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
156
156
|
|
157
157
|
return processor_kwargs, optimizer_kwargs, fit_kwargs, loss_kwargs, params
|
158
158
|
|
159
|
-
def _fit(
|
159
|
+
def _fit(
|
160
|
+
self,
|
161
|
+
X: pd.DataFrame,
|
162
|
+
y: pd.Series,
|
163
|
+
X_val: pd.DataFrame = None,
|
164
|
+
y_val: pd.Series = None,
|
165
|
+
X_test: pd.DataFrame = None,
|
166
|
+
y_test: pd.Series = None,
|
167
|
+
time_limit: float = None,
|
168
|
+
sample_weight=None,
|
169
|
+
num_cpus: int = 1,
|
170
|
+
num_gpus: float = 0,
|
171
|
+
reporter=None,
|
172
|
+
verbosity: int = 2,
|
173
|
+
**kwargs,
|
174
|
+
):
|
160
175
|
try_import_torch()
|
161
176
|
import torch
|
162
177
|
|
163
178
|
torch.set_num_threads(num_cpus)
|
164
|
-
from .tabular_torch_dataset import TabularTorchDataset
|
165
179
|
|
166
180
|
start_time = time.time()
|
167
181
|
|
@@ -188,19 +202,20 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
188
202
|
self.num_dataloading_workers = 0 # TODO: verify 0 is typically faster and uses less memory than 1 in pytorch
|
189
203
|
self.num_dataloading_workers = 0 # TODO: >0 crashes on MacOS
|
190
204
|
self.max_batch_size = params.pop("max_batch_size", 512)
|
191
|
-
batch_size = params.pop("batch_size", None)
|
192
|
-
if batch_size is None:
|
193
|
-
if isinstance(X, TabularTorchDataset):
|
194
|
-
batch_size = min(int(2 ** (3 + np.floor(np.log10(len(X))))), self.max_batch_size)
|
195
|
-
else:
|
196
|
-
batch_size = min(int(2 ** (3 + np.floor(np.log10(X.shape[0])))), self.max_batch_size)
|
197
205
|
|
198
|
-
|
199
|
-
|
206
|
+
train_dataset = self._generate_dataset(X=X, y=y, train_params=processor_kwargs, is_train=True)
|
207
|
+
if X_val is not None and y_val is not None:
|
208
|
+
val_dataset = self._generate_dataset(X=X_val, y=y_val)
|
209
|
+
else:
|
210
|
+
val_dataset = None
|
211
|
+
if X_test is not None and y_test is not None:
|
212
|
+
test_dataset = self._generate_dataset(X=X_test, y=y_test)
|
213
|
+
else:
|
214
|
+
test_dataset = None
|
200
215
|
|
201
|
-
|
202
|
-
|
203
|
-
|
216
|
+
batch_size = params.pop("batch_size", None)
|
217
|
+
if batch_size is None:
|
218
|
+
batch_size = min(int(2 ** (3 + np.floor(np.log10(len(X))))), self.max_batch_size, len(X))
|
204
219
|
|
205
220
|
logger.log(
|
206
221
|
15,
|
@@ -255,16 +270,16 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
255
270
|
|
256
271
|
def _train_net(
|
257
272
|
self,
|
258
|
-
train_dataset,
|
259
|
-
loss_kwargs,
|
260
|
-
batch_size,
|
261
|
-
num_epochs,
|
262
|
-
epochs_wo_improve,
|
263
|
-
val_dataset=None,
|
264
|
-
test_dataset=None,
|
265
|
-
time_limit=None,
|
273
|
+
train_dataset: TabularTorchDataset,
|
274
|
+
loss_kwargs: dict,
|
275
|
+
batch_size: int,
|
276
|
+
num_epochs: int,
|
277
|
+
epochs_wo_improve: int,
|
278
|
+
val_dataset: TabularTorchDataset = None,
|
279
|
+
test_dataset: TabularTorchDataset = None,
|
280
|
+
time_limit: float = None,
|
266
281
|
reporter=None,
|
267
|
-
verbosity=2,
|
282
|
+
verbosity: int = 2,
|
268
283
|
):
|
269
284
|
import torch
|
270
285
|
|
@@ -634,13 +649,13 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
634
649
|
preds_dataset = np.concatenate(preds_dataset, 0)
|
635
650
|
return preds_dataset
|
636
651
|
|
637
|
-
def _generate_dataset(self, X: pd.DataFrame, y: pd.Series, train_params: dict = {}, is_train: bool = False):
|
652
|
+
def _generate_dataset(self, X: pd.DataFrame | TabularTorchDataset, y: pd.Series, train_params: dict = {}, is_train: bool = False) -> TabularTorchDataset:
|
638
653
|
"""
|
639
654
|
Generate TabularTorchDataset from X and y.
|
640
655
|
|
641
656
|
Params:
|
642
657
|
-------
|
643
|
-
X: pd.DataFrame
|
658
|
+
X: pd.DataFrame | TabularTorchDataset
|
644
659
|
The X data.
|
645
660
|
y: pd.Series
|
646
661
|
The y data.
|
@@ -676,14 +691,11 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
676
691
|
use_ngram_features=use_ngram_features,
|
677
692
|
)
|
678
693
|
else:
|
679
|
-
if X
|
680
|
-
|
681
|
-
dataset = X
|
682
|
-
else:
|
683
|
-
X = self.preprocess(X)
|
684
|
-
dataset = self._process_test_data(df=X, labels=y)
|
694
|
+
if isinstance(X, TabularTorchDataset):
|
695
|
+
dataset = X
|
685
696
|
else:
|
686
|
-
|
697
|
+
X = self.preprocess(X)
|
698
|
+
dataset = self._process_test_data(df=X, labels=y)
|
687
699
|
|
688
700
|
return dataset
|
689
701
|
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250116
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -39,19 +39,19 @@ Requires-Dist: scipy<1.16,>=1.5.4
|
|
39
39
|
Requires-Dist: pandas<2.3.0,>=2.0.0
|
40
40
|
Requires-Dist: scikit-learn<1.5.3,>=1.4.0
|
41
41
|
Requires-Dist: networkx<4,>=3.0
|
42
|
-
Requires-Dist: autogluon.core==1.2.
|
43
|
-
Requires-Dist: autogluon.features==1.2.
|
42
|
+
Requires-Dist: autogluon.core==1.2.1b20250116
|
43
|
+
Requires-Dist: autogluon.features==1.2.1b20250116
|
44
44
|
Provides-Extra: all
|
45
45
|
Requires-Dist: numpy<2.0.0,>=1.25; extra == "all"
|
46
|
-
Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
|
47
|
-
Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
|
48
|
-
Requires-Dist: torch<2.6,>=2.2; extra == "all"
|
49
|
-
Requires-Dist: spacy<3.8; extra == "all"
|
50
46
|
Requires-Dist: xgboost<2.2,>=1.6; extra == "all"
|
51
|
-
Requires-Dist: autogluon.core[all]==1.2.1b20250114; extra == "all"
|
52
47
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
48
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250116; extra == "all"
|
53
49
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
50
|
+
Requires-Dist: torch<2.6,>=2.2; extra == "all"
|
51
|
+
Requires-Dist: spacy<3.8; extra == "all"
|
52
|
+
Requires-Dist: fastai<2.8,>=2.3.1; extra == "all"
|
54
53
|
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
54
|
+
Requires-Dist: lightgbm<4.6,>=4.0; extra == "all"
|
55
55
|
Provides-Extra: catboost
|
56
56
|
Requires-Dist: numpy<2.0.0,>=1.25; extra == "catboost"
|
57
57
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -64,7 +64,7 @@ Requires-Dist: imodels<1.4.0,>=1.3.10; extra == "imodels"
|
|
64
64
|
Provides-Extra: lightgbm
|
65
65
|
Requires-Dist: lightgbm<4.6,>=4.0; extra == "lightgbm"
|
66
66
|
Provides-Extra: ray
|
67
|
-
Requires-Dist: autogluon.core[all]==1.2.
|
67
|
+
Requires-Dist: autogluon.core[all]==1.2.1b20250116; extra == "ray"
|
68
68
|
Provides-Extra: skex
|
69
69
|
Requires-Dist: scikit-learn-intelex<2025.1,>=2024.0; extra == "skex"
|
70
70
|
Provides-Extra: skl2onnx
|
{autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.2.
|
1
|
+
autogluon.tabular-1.2.1b20250116-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=qtf1yrCzRdeJXfqZGb9YWrrjOFhl2omGSnhF5i131QY,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=Pb2aW9Z9w77pYKPRVZ3nBzHY3KJaiEJSJ747zZcJIVk,21132
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -120,7 +120,7 @@ autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8H
|
|
120
120
|
autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=Z3t_U1f7jfolPey6lzqgJyoFbVgoncFNSvCKXSuLxeU,6465
|
121
121
|
autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
|
122
122
|
autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
123
|
-
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=
|
123
|
+
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=1ZJHM52wMZHSbXty19ykKA5tNql6ISO7nuFmAAuR-uU,42324
|
124
124
|
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=oelC0uA9KNVtNKXU5jTywg-OfIF-5AguAXFYSKwN3zU,13499
|
125
125
|
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
|
126
126
|
autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -152,11 +152,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=1E-Z1FxUpyydaoEdxcTCg7
|
|
152
152
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
153
153
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
154
154
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
155
|
-
autogluon.tabular-1.2.
|
156
|
-
autogluon.tabular-1.2.
|
157
|
-
autogluon.tabular-1.2.
|
158
|
-
autogluon.tabular-1.2.
|
159
|
-
autogluon.tabular-1.2.
|
160
|
-
autogluon.tabular-1.2.
|
161
|
-
autogluon.tabular-1.2.
|
162
|
-
autogluon.tabular-1.2.
|
155
|
+
autogluon.tabular-1.2.1b20250116.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
156
|
+
autogluon.tabular-1.2.1b20250116.dist-info/METADATA,sha256=QSKAy7j9NWzgoqH_awYRFKYq2fif9r603N26Xl6eweM,14315
|
157
|
+
autogluon.tabular-1.2.1b20250116.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
158
|
+
autogluon.tabular-1.2.1b20250116.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
159
|
+
autogluon.tabular-1.2.1b20250116.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
160
|
+
autogluon.tabular-1.2.1b20250116.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
161
|
+
autogluon.tabular-1.2.1b20250116.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
162
|
+
autogluon.tabular-1.2.1b20250116.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.2.1b20250114.dist-info → autogluon.tabular-1.2.1b20250116.dist-info}/zip-safe
RENAMED
File without changes
|