autogluon.multimodal 1.4.1b20250804__py3-none-any.whl → 1.4.1b20250806__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py +1 -1
- autogluon/multimodal/data/process_document.py +6 -6
- autogluon/multimodal/data/process_mmlab/process_mmdet.py +3 -3
- autogluon/multimodal/data/process_mmlab/process_mmlab_base.py +3 -3
- autogluon/multimodal/data/process_ner.py +6 -6
- autogluon/multimodal/data/process_semantic_seg_img.py +8 -8
- autogluon/multimodal/learners/object_detection.py +11 -1
- autogluon/multimodal/utils/object_detection.py +5 -2
- autogluon/multimodal/version.py +1 -1
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/METADATA +7 -7
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/RECORD +18 -18
- /autogluon.multimodal-1.4.1b20250804-py3.9-nspkg.pth → /autogluon.multimodal-1.4.1b20250806-py3.9-nspkg.pth +0 -0
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/LICENSE +0 -0
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/NOTICE +0 -0
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/WHEEL +0 -0
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/namespace_packages.txt +0 -0
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/top_level.txt +0 -0
- {autogluon.multimodal-1.4.1b20250804.dist-info → autogluon.multimodal-1.4.1b20250806.dist-info}/zip-safe +0 -0
@@ -134,7 +134,7 @@ class MultiImageMixDataset(torch.utils.data.Dataset):
|
|
134
134
|
per_ret = apply_data_processor(
|
135
135
|
per_sample_features=per_sample_features,
|
136
136
|
data_processors=per_processors_group,
|
137
|
-
|
137
|
+
data_types=getattr(self, f"modality_types_{group_id}"),
|
138
138
|
is_training=self.is_training,
|
139
139
|
load_only=True,
|
140
140
|
)
|
@@ -236,7 +236,7 @@ class DocumentProcessor(ImageProcessor):
|
|
236
236
|
def process_one_sample(
|
237
237
|
self,
|
238
238
|
document_features: Dict[str, Union[NDArray, list]],
|
239
|
-
|
239
|
+
data_types: Dict[str, Union[NDArray, list]],
|
240
240
|
is_training: bool,
|
241
241
|
image_mode: Optional[str] = "RGB",
|
242
242
|
):
|
@@ -247,8 +247,8 @@ class DocumentProcessor(ImageProcessor):
|
|
247
247
|
----------
|
248
248
|
document_features
|
249
249
|
One sample has one document image column in a pd.DataFrame.
|
250
|
-
|
251
|
-
|
250
|
+
data_types
|
251
|
+
Data type of all columns.
|
252
252
|
is_training
|
253
253
|
Whether to process document images in the training mode.
|
254
254
|
image_mode
|
@@ -263,7 +263,7 @@ class DocumentProcessor(ImageProcessor):
|
|
263
263
|
for per_col_name, per_col_image_features in document_features.items():
|
264
264
|
try:
|
265
265
|
# Process PDF documents.
|
266
|
-
if
|
266
|
+
if data_types[per_col_name] == DOCUMENT_PDF:
|
267
267
|
from pdf2image import convert_from_path
|
268
268
|
|
269
269
|
# Convert PDF to PIL images.
|
@@ -388,7 +388,7 @@ class DocumentProcessor(ImageProcessor):
|
|
388
388
|
def __call__(
|
389
389
|
self,
|
390
390
|
all_features: Dict[str, Union[NDArray, list]],
|
391
|
-
|
391
|
+
data_types: Dict[str, Union[NDArray, list]],
|
392
392
|
is_training: bool,
|
393
393
|
) -> Dict:
|
394
394
|
"""
|
@@ -406,6 +406,6 @@ class DocumentProcessor(ImageProcessor):
|
|
406
406
|
A dictionary containing one sample's features and/or labels.
|
407
407
|
"""
|
408
408
|
|
409
|
-
ret = self.process_one_sample(all_features,
|
409
|
+
ret = self.process_one_sample(all_features, data_types, is_training)
|
410
410
|
|
411
411
|
return ret
|
@@ -171,7 +171,7 @@ class MMDetProcessor(MMLabProcessor):
|
|
171
171
|
def __call__(
|
172
172
|
self,
|
173
173
|
images: Dict[str, List[str]],
|
174
|
-
|
174
|
+
data_types: Dict[str, Union[int, float, list]],
|
175
175
|
is_training: bool,
|
176
176
|
load_only: bool = False,
|
177
177
|
) -> Dict:
|
@@ -182,8 +182,8 @@ class MMDetProcessor(MMLabProcessor):
|
|
182
182
|
----------
|
183
183
|
images
|
184
184
|
Images of one sample.
|
185
|
-
|
186
|
-
|
185
|
+
data_types
|
186
|
+
Data types of all columns.
|
187
187
|
is_training
|
188
188
|
Whether to process images in the training mode.
|
189
189
|
load_only
|
@@ -171,7 +171,7 @@ class MMLabProcessor:
|
|
171
171
|
def __call__(
|
172
172
|
self,
|
173
173
|
images: Dict[str, List[str]],
|
174
|
-
|
174
|
+
data_types: Dict[str, Union[int, float, list]],
|
175
175
|
is_training: bool,
|
176
176
|
) -> Dict:
|
177
177
|
"""
|
@@ -181,8 +181,8 @@ class MMLabProcessor:
|
|
181
181
|
----------
|
182
182
|
images
|
183
183
|
Images of one sample.
|
184
|
-
|
185
|
-
|
184
|
+
data_types
|
185
|
+
Data type of all columns.
|
186
186
|
is_training
|
187
187
|
Whether to process images in the training mode.
|
188
188
|
|
@@ -94,7 +94,7 @@ class NerProcessor:
|
|
94
94
|
def process_ner(
|
95
95
|
self,
|
96
96
|
all_features: Dict[str, Union[int, float, list]],
|
97
|
-
|
97
|
+
data_types: Dict[str, Union[int, float, list]],
|
98
98
|
is_training: bool,
|
99
99
|
) -> Dict:
|
100
100
|
"""
|
@@ -105,8 +105,8 @@ class NerProcessor:
|
|
105
105
|
----------
|
106
106
|
all_features
|
107
107
|
All features including text and ner annotations.
|
108
|
-
|
109
|
-
|
108
|
+
data_types
|
109
|
+
Data type of all columns.
|
110
110
|
|
111
111
|
Returns
|
112
112
|
-------
|
@@ -117,7 +117,7 @@ class NerProcessor:
|
|
117
117
|
if self.max_len is not None and self.tokenizer.model_max_length > 10**6:
|
118
118
|
self.tokenizer.model_max_length = self.max_len
|
119
119
|
text_column, annotation_column = None, None
|
120
|
-
for column_name, column_modality in
|
120
|
+
for column_name, column_modality in data_types.items():
|
121
121
|
if column_modality.startswith((TEXT_NER, TEXT)):
|
122
122
|
text_column = column_name
|
123
123
|
if column_modality == NER_ANNOTATION:
|
@@ -335,7 +335,7 @@ class NerProcessor:
|
|
335
335
|
def __call__(
|
336
336
|
self,
|
337
337
|
all_features: Dict[str, Union[NDArray, list]],
|
338
|
-
|
338
|
+
data_types: Dict[str, Union[NDArray, list]],
|
339
339
|
is_training: bool,
|
340
340
|
) -> Dict:
|
341
341
|
"""
|
@@ -354,6 +354,6 @@ class NerProcessor:
|
|
354
354
|
"""
|
355
355
|
ret = {}
|
356
356
|
if self.prefix == NER_TEXT:
|
357
|
-
ret = self.process_ner(all_features,
|
357
|
+
ret = self.process_ner(all_features, data_types, is_training)
|
358
358
|
|
359
359
|
return ret
|
@@ -157,7 +157,7 @@ class SemanticSegImageProcessor(ImageProcessor):
|
|
157
157
|
def process_one_sample(
|
158
158
|
self,
|
159
159
|
image_features: Dict[str, Union[List[str], List[bytearray]]],
|
160
|
-
|
160
|
+
data_types: Dict[str, List[str]],
|
161
161
|
is_training: bool,
|
162
162
|
image_mode: Optional[str] = "RGB",
|
163
163
|
) -> Dict:
|
@@ -169,8 +169,8 @@ class SemanticSegImageProcessor(ImageProcessor):
|
|
169
169
|
image_features
|
170
170
|
One sample may have multiple image columns in a pd.DataFrame and multiple images
|
171
171
|
inside each image column.
|
172
|
-
|
173
|
-
|
172
|
+
data_types
|
173
|
+
Data type of all columns.
|
174
174
|
is_training
|
175
175
|
Whether to process images in the training mode.
|
176
176
|
image_mode
|
@@ -190,7 +190,7 @@ class SemanticSegImageProcessor(ImageProcessor):
|
|
190
190
|
|
191
191
|
ret = {}
|
192
192
|
annotation_column = None
|
193
|
-
for column_name, column_modality in
|
193
|
+
for column_name, column_modality in data_types.items():
|
194
194
|
if column_modality == SEMANTIC_SEGMENTATION_IMG:
|
195
195
|
image_column = column_name
|
196
196
|
if column_modality == SEMANTIC_SEGMENTATION_GT:
|
@@ -276,7 +276,7 @@ class SemanticSegImageProcessor(ImageProcessor):
|
|
276
276
|
def __call__(
|
277
277
|
self,
|
278
278
|
images: Dict[str, List[str]],
|
279
|
-
|
279
|
+
data_types: Dict[str, Union[int, float, list]],
|
280
280
|
is_training: bool,
|
281
281
|
) -> Dict:
|
282
282
|
"""
|
@@ -286,8 +286,8 @@ class SemanticSegImageProcessor(ImageProcessor):
|
|
286
286
|
----------
|
287
287
|
images
|
288
288
|
Images of one sample.
|
289
|
-
|
290
|
-
|
289
|
+
data_types
|
290
|
+
Data type of all columns.
|
291
291
|
is_training
|
292
292
|
Whether to process images in the training mode.
|
293
293
|
|
@@ -296,7 +296,7 @@ class SemanticSegImageProcessor(ImageProcessor):
|
|
296
296
|
A dictionary containing one sample's processed images and their number.
|
297
297
|
"""
|
298
298
|
images = {k: [v] if isinstance(v, str) else v for k, v in images.items()}
|
299
|
-
return self.process_one_sample(images,
|
299
|
+
return self.process_one_sample(images, data_types, is_training)
|
300
300
|
|
301
301
|
def get_train_transforms(self, train_transforms):
|
302
302
|
train_trans = []
|
@@ -711,6 +711,10 @@ class ObjectDetectionLearner(BaseLearner):
|
|
711
711
|
and sample number.
|
712
712
|
save_results
|
713
713
|
Whether to save the prediction results (only works for detection now)
|
714
|
+
**kwargs
|
715
|
+
Additional arguments including:
|
716
|
+
- result_save_path (str, optional): Custom path to save results. If not provided,
|
717
|
+
uses default path setup.
|
714
718
|
|
715
719
|
Returns
|
716
720
|
-------
|
@@ -758,8 +762,14 @@ class ObjectDetectionLearner(BaseLearner):
|
|
758
762
|
old_save_path=self._save_path,
|
759
763
|
warn_if_exist=False,
|
760
764
|
)
|
761
|
-
|
765
|
+
custom_save_path = kwargs.get('result_save_path')
|
766
|
+
if custom_save_path:
|
767
|
+
result_path = custom_save_path
|
768
|
+
elif as_coco:
|
762
769
|
result_path = os.path.join(self._save_path, "result.json")
|
770
|
+
else:
|
771
|
+
result_path = os.path.join(self._save_path, "result.txt")
|
772
|
+
if as_coco:
|
763
773
|
save_result_coco_format(
|
764
774
|
data_path=data_path,
|
765
775
|
pred=pred,
|
@@ -990,6 +990,9 @@ def cocoeval_pycocotools(
|
|
990
990
|
coco_dataset.save_result(ret, data, cache_path)
|
991
991
|
|
992
992
|
cocoGt = COCO(anno_file)
|
993
|
+
# https://github.com/ppwwyyxx/cocoapi/commit/617836ce3551927ec94e2024b18d6c899226a742#diff-51af02f519555c402db0216fd229e4fcb51fe55c25f446e7af8890d73269c7bdR313-R314
|
994
|
+
if "info" not in cocoGt.dataset:
|
995
|
+
cocoGt.dataset["info"] = ""
|
993
996
|
cocoDt = cocoGt.loadRes(cache_path)
|
994
997
|
annType = "bbox"
|
995
998
|
|
@@ -1607,14 +1610,14 @@ def save_result_coco_format(data_path, pred, category_ids, result_path, coco_roo
|
|
1607
1610
|
result_name, _ = os.path.splitext(result_path)
|
1608
1611
|
result_path = result_name + ".json"
|
1609
1612
|
coco_dataset.save_result(pred, from_coco_or_voc(data_path, "test", coco_root=coco_root), save_path=result_path)
|
1610
|
-
logger.info(
|
1613
|
+
logger.info(f"Saved detection result to {result_path}")
|
1611
1614
|
|
1612
1615
|
|
1613
1616
|
def save_result_voc_format(pred, result_path):
|
1614
1617
|
result_name, _ = os.path.splitext(result_path)
|
1615
1618
|
result_path = result_name + ".npy"
|
1616
1619
|
np.save(result_path, pred)
|
1617
|
-
logger.info(
|
1620
|
+
logger.info(f"Saved detection result to {result_path}")
|
1618
1621
|
|
1619
1622
|
|
1620
1623
|
def convert_pred_to_xywh(pred: Optional[List]) -> Optional[List]:
|
autogluon/multimodal/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.multimodal
|
3
|
-
Version: 1.4.
|
3
|
+
Version: 1.4.1b20250806
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -43,8 +43,8 @@ Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
43
43
|
Requires-Dist: Pillow<12,>=10.0.1
|
44
44
|
Requires-Dist: tqdm<5,>=4.38
|
45
45
|
Requires-Dist: boto3<2,>=1.10
|
46
|
-
Requires-Dist: torch<2.8,>=2.
|
47
|
-
Requires-Dist: lightning<2.8,>=2.
|
46
|
+
Requires-Dist: torch<2.8,>=2.6
|
47
|
+
Requires-Dist: lightning<2.8,>=2.5.1
|
48
48
|
Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
|
49
49
|
Requires-Dist: accelerate<2.0,>=0.34.0
|
50
50
|
Requires-Dist: fsspec[http]<=2025.3
|
@@ -53,14 +53,14 @@ Requires-Dist: jsonschema<4.24,>=4.18
|
|
53
53
|
Requires-Dist: seqeval<1.3.0,>=1.2.2
|
54
54
|
Requires-Dist: evaluate<0.5.0,>=0.4.0
|
55
55
|
Requires-Dist: timm<1.0.7,>=0.9.5
|
56
|
-
Requires-Dist: torchvision<0.23.0,>=0.
|
56
|
+
Requires-Dist: torchvision<0.23.0,>=0.21.0
|
57
57
|
Requires-Dist: scikit-image<0.26.0,>=0.19.1
|
58
58
|
Requires-Dist: text-unidecode<1.4,>=1.3
|
59
59
|
Requires-Dist: torchmetrics<1.8,>=1.2.0
|
60
60
|
Requires-Dist: omegaconf<2.4.0,>=2.1.1
|
61
|
-
Requires-Dist: autogluon.core[raytune]==1.4.
|
62
|
-
Requires-Dist: autogluon.features==1.4.
|
63
|
-
Requires-Dist: autogluon.common==1.4.
|
61
|
+
Requires-Dist: autogluon.core[raytune]==1.4.1b20250806
|
62
|
+
Requires-Dist: autogluon.features==1.4.1b20250806
|
63
|
+
Requires-Dist: autogluon.common==1.4.1b20250806
|
64
64
|
Requires-Dist: pytorch-metric-learning<2.9,>=1.3.0
|
65
65
|
Requires-Dist: nlpaug<1.2.0,>=1.1.10
|
66
66
|
Requires-Dist: nltk<3.10,>=3.4.5
|
@@ -1,8 +1,8 @@
|
|
1
|
-
autogluon.multimodal-1.4.
|
1
|
+
autogluon.multimodal-1.4.1b20250806-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/multimodal/__init__.py,sha256=6WuDt3sMP1QLJs9se-20mmHCsFR-q2ZttPc8s0k1QWA,204
|
3
3
|
autogluon/multimodal/constants.py,sha256=eLF3t-447nw3aNrYPh4Y8pycdECGu__wv6TC-amfXw8,9509
|
4
4
|
autogluon/multimodal/predictor.py,sha256=4lou5yGysY1O86A-PX8AgsJvjB5bq2eHJ9zB1DyZFew,42847
|
5
|
-
autogluon/multimodal/version.py,sha256
|
5
|
+
autogluon/multimodal/version.py,sha256=FExUXdidHlJIW0FUwXAosP_z3-r9rAGcWmM40IGvRAg,91
|
6
6
|
autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
|
8
8
|
autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
|
@@ -46,12 +46,12 @@ autogluon/multimodal/data/mixup.py,sha256=zYj3tgKxE25868bbBuQEiAZnch-yHR5bqJWk9c
|
|
46
46
|
autogluon/multimodal/data/nlpaug.py,sha256=2Dh_Q_CL3DQtMUW_4YyHKdyIoOnPgIFMq5xA3ZMrYfY,2549
|
47
47
|
autogluon/multimodal/data/preprocess_dataframe.py,sha256=CgdlqqkBRy0tRQj-ZHYFhE-oExJ7_wYHFuqXGTcIh7o,35801
|
48
48
|
autogluon/multimodal/data/process_categorical.py,sha256=B4OXfMdi7cJwsR9gi0QF9s6Bm3OtmfAcokMrJyqyhME,4819
|
49
|
-
autogluon/multimodal/data/process_document.py,sha256=
|
49
|
+
autogluon/multimodal/data/process_document.py,sha256=5oT9FO0ulzvES1moxuZ_KjRjIz8XZkIQ5Z45xWNu6vE,14773
|
50
50
|
autogluon/multimodal/data/process_image.py,sha256=LN_xiN8B6NiGlra3LGMGveZURyfgqVbwuEhcF3Ljz0U,15150
|
51
51
|
autogluon/multimodal/data/process_label.py,sha256=WnRTD4gFtlcD3LW9BL3ML3OSYHH388_4b0LOl1YYDOk,2858
|
52
|
-
autogluon/multimodal/data/process_ner.py,sha256=
|
52
|
+
autogluon/multimodal/data/process_ner.py,sha256=Azn6oc3Tymn_qxxsmnWk-9sKNujrlI0pTa8nlaqeJzg,13605
|
53
53
|
autogluon/multimodal/data/process_numerical.py,sha256=9ttKKCxk0EybZNQTuKlRwdHbbIvR4o944oUnU6o6M6Y,4883
|
54
|
-
autogluon/multimodal/data/process_semantic_seg_img.py,sha256=
|
54
|
+
autogluon/multimodal/data/process_semantic_seg_img.py,sha256=9b-3MKdT6kYVzy97E8RkgxMcB2qtbHZxZGIRAaSGkyo,11722
|
55
55
|
autogluon/multimodal/data/process_text.py,sha256=akQqiufnWmWZbnZRqCRISWpV3pQMDH1lZbnFdIADJOs,20118
|
56
56
|
autogluon/multimodal/data/randaug.py,sha256=iidjz4CtqWnhxtJKafr7yNoJOpmwdlYyMWHrpVoejY0,7005
|
57
57
|
autogluon/multimodal/data/template_engine.py,sha256=r57P_eLSSkjgI5B8czow7CNxlPsqqaDdPlaMTqVlHUw,3433
|
@@ -59,10 +59,10 @@ autogluon/multimodal/data/templates.py,sha256=UwElnQvBE2qZtnv3-1E8nQhOmcVzcFfonR
|
|
59
59
|
autogluon/multimodal/data/trivial_augmenter.py,sha256=ciYEJsJJjCEgu9TBqPO5cTjd504eqdZQwaE5uYu2bS0,9164
|
60
60
|
autogluon/multimodal/data/utils.py,sha256=kFK_pLyaAzw6mbed_PlY-fF6pyw6Gw6Y2mTuC8hcJbk,28900
|
61
61
|
autogluon/multimodal/data/dataset_mmlab/__init__.py,sha256=MXibqfVtAX2jjveMUtdHmSH6SabXEDrAOfZzTs3pK3Y,119
|
62
|
-
autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=
|
62
|
+
autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=K_bv63dW1TZk-yXqAtA-sdq5rqunsyHVgfXcSmXfQLI,32952
|
63
63
|
autogluon/multimodal/data/process_mmlab/__init__.py,sha256=EWrLTx1ZcBdWDDPVirBW5VXonpKqY4jSPPmqYSwJbvY,84
|
64
|
-
autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=
|
65
|
-
autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=
|
64
|
+
autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=sahxX1rlCYOqbeE0XMDq8raoF33bOXbh_UJbm8mGVtk,6858
|
65
|
+
autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=LPhF0PmM0Zf91F7D1rA0hcWGFH9U4WM9Og2lbYpELnE,6513
|
66
66
|
autogluon/multimodal/data/process_mmlab/process_mmocr.py,sha256=dwhPDq1A84eqwZHnQMZFyg9GcnFTEkMCLBhJfhUeqQk,2913
|
67
67
|
autogluon/multimodal/learners/__init__.py,sha256=BnOY7nwfXJ6rjPawF1mebSxB5Jx-OdiGwc_P53kNXOc,294
|
68
68
|
autogluon/multimodal/learners/base.py,sha256=YzJnVr_FamfJa9sSEQq4n7ekSz0QFjeWuZRMVAMiUSM,99640
|
@@ -70,7 +70,7 @@ autogluon/multimodal/learners/ensemble.py,sha256=yJOyGdgeqKeriSCdiv809pn8AEdx6uG
|
|
70
70
|
autogluon/multimodal/learners/few_shot_svm.py,sha256=XWD7uufpyemGSM9z8rIXksbHvU3YRlgQ0Vq_Wm0Sxe0,23919
|
71
71
|
autogluon/multimodal/learners/matching.py,sha256=l0gXRAECBlO7G9_pYSaytl3RDERngMNLm7pzxUcPYwg,88428
|
72
72
|
autogluon/multimodal/learners/ner.py,sha256=guxVA3Oc9JMQXALir0mINdcU1UcbIcSqGoywbsQkibw,18820
|
73
|
-
autogluon/multimodal/learners/object_detection.py,sha256=
|
73
|
+
autogluon/multimodal/learners/object_detection.py,sha256=XIn7y_RkuFJDNOxmFy6l9S-34Y4e8jAnZ34i6NsjnLo,31363
|
74
74
|
autogluon/multimodal/learners/semantic_segmentation.py,sha256=sO-Jl85IQlT3hrE7RAXzaYttJY65N-8D0UhMTJw6Acw,19900
|
75
75
|
autogluon/multimodal/models/__init__.py,sha256=PWplL_fQEIKoKv3f7CSMXqZOMXQYNVUvsyt5s8MpRpk,1045
|
76
76
|
autogluon/multimodal/models/adaptation_layers.py,sha256=NuzwU_ghk8D2axmDuD8UEZ_HamoMSCcKMV9DB1AYWAg,38425
|
@@ -143,7 +143,7 @@ autogluon/multimodal/utils/log.py,sha256=2NsqHauLivy8dt76BEVg33MW7FdpgQ1di21JwVk
|
|
143
143
|
autogluon/multimodal/utils/matcher.py,sha256=FSLPXoaBAw3sRioHLPABls8RBtzbGJY0m46fLF4U6Ok,18300
|
144
144
|
autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3bCQp2A,4772
|
145
145
|
autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
|
146
|
-
autogluon/multimodal/utils/object_detection.py,sha256=
|
146
|
+
autogluon/multimodal/utils/object_detection.py,sha256=1Ll8utg0FRslAtzVKtmRAIXtVSMj-OlcFFLVdEn5IhM,53769
|
147
147
|
autogluon/multimodal/utils/onnx.py,sha256=nyj0Zy5SzK0tRw4tO-BfsHwUh48UPHxp7mVQX0JiF-c,5517
|
148
148
|
autogluon/multimodal/utils/path.py,sha256=snyfAMZTqa_v0pJTEBX-v56zcSuX6VoqXHrqbSGriso,219
|
149
149
|
autogluon/multimodal/utils/precision.py,sha256=vcJDPIIn9mgTmba_m4sFqGYC0AmiIXiVSTusGr4RDFo,3757
|
@@ -153,11 +153,11 @@ autogluon/multimodal/utils/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8
|
|
153
153
|
autogluon/multimodal/utils/save.py,sha256=aXZa_iue34dAEfTz7nCaRowktG1emEi5uVXe_tDmHBA,4408
|
154
154
|
autogluon/multimodal/utils/strategy.py,sha256=tT9PWh_ZLwNdGFgPsXgZsgKRhpnfBQDjh1mB1_y8G18,833
|
155
155
|
autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
|
156
|
-
autogluon.multimodal-1.4.
|
157
|
-
autogluon.multimodal-1.4.
|
158
|
-
autogluon.multimodal-1.4.
|
159
|
-
autogluon.multimodal-1.4.
|
160
|
-
autogluon.multimodal-1.4.
|
161
|
-
autogluon.multimodal-1.4.
|
162
|
-
autogluon.multimodal-1.4.
|
163
|
-
autogluon.multimodal-1.4.
|
156
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
157
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/METADATA,sha256=-MJeZX6e9L5_-cpWqBIspKowr5P340Lbr76alA4qwpE,13277
|
158
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
159
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
160
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
161
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
162
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
163
|
+
autogluon.multimodal-1.4.1b20250806.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|