autogluon.multimodal 1.3.2b20250604__py3-none-any.whl → 1.3.2b20250606__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -14,6 +14,9 @@ from ..constants import IMAGE, TEXT
14
14
 
15
15
  logger = logging.getLogger(__name__)
16
16
 
17
+ # Global flag to ensure NLTK resources are downloaded only once
18
+ _nltk_downloaded = False
19
+
17
20
 
18
21
  def scale_parameter(level, maxval, type):
19
22
  """
@@ -205,18 +208,33 @@ def set_image_augmentation_space():
205
208
 
206
209
 
207
210
  def download_nltk():
208
- try:
209
- nltk.data.find("taggers/averaged_perceptron_tagger")
210
- except LookupError:
211
- nltk.download("averaged_perceptron_tagger", quiet=True)
212
- try:
213
- nltk.data.find("corpora/wordnet")
214
- except LookupError:
215
- nltk.download("wordnet", quiet=True)
216
- try:
217
- nltk.data.find("corpora/omw-1.4")
218
- except LookupError:
219
- nltk.download("omw-1.4", quiet=True)
211
+ """
212
+ Download required NLTK resources with singleton pattern to prevent multiple downloads.
213
+
214
+ This function handles NLTK 3.9+ changes where resource names changed and
215
+ the quiet=True parameter behavior was affected. Uses a global flag to ensure
216
+ downloads happen only once even when TrivialAugment is instantiated multiple times.
217
+ """
218
+ global _nltk_downloaded
219
+ if _nltk_downloaded:
220
+ return
221
+
222
+ # Try to download required NLTK data with proper error handling for NLTK 3.9+
223
+ # Include both old and new resource names for compatibility
224
+ resources_to_download = [
225
+ ("taggers/averaged_perceptron_tagger_eng", "averaged_perceptron_tagger_eng"),
226
+ ("taggers/averaged_perceptron_tagger", "averaged_perceptron_tagger"),
227
+ ("corpora/wordnet", "wordnet"),
228
+ ("corpora/omw-1.4", "omw-1.4"),
229
+ ]
230
+
231
+ for resource_path, download_name in resources_to_download:
232
+ try:
233
+ nltk.data.find(resource_path)
234
+ except LookupError:
235
+
236
+ nltk.download(download_name, quiet=True)
237
+ _nltk_downloaded = True
220
238
 
221
239
 
222
240
  def set_text_augmentation_space(space):
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250604"
3
+ __version__ = "1.3.2b20250606"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.multimodal
3
- Version: 1.3.2b20250604
3
+ Version: 1.3.2b20250606
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -57,12 +57,12 @@ Requires-Dist: scikit-image<0.26.0,>=0.19.1
57
57
  Requires-Dist: text-unidecode<1.4,>=1.3
58
58
  Requires-Dist: torchmetrics<1.8,>=1.2.0
59
59
  Requires-Dist: omegaconf<2.4.0,>=2.1.1
60
- Requires-Dist: autogluon.core[raytune]==1.3.2b20250604
61
- Requires-Dist: autogluon.features==1.3.2b20250604
62
- Requires-Dist: autogluon.common==1.3.2b20250604
60
+ Requires-Dist: autogluon.core[raytune]==1.3.2b20250606
61
+ Requires-Dist: autogluon.features==1.3.2b20250606
62
+ Requires-Dist: autogluon.common==1.3.2b20250606
63
63
  Requires-Dist: pytorch-metric-learning<2.9,>=1.3.0
64
64
  Requires-Dist: nlpaug<1.2.0,>=1.1.10
65
- Requires-Dist: nltk<3.9,>=3.4.5
65
+ Requires-Dist: nltk<3.10,>=3.4.5
66
66
  Requires-Dist: openmim<0.4.0,>=0.3.7
67
67
  Requires-Dist: defusedxml<0.7.2,>=0.7.1
68
68
  Requires-Dist: jinja2<3.2,>=3.0.3
@@ -1,8 +1,8 @@
1
- autogluon.multimodal-1.3.2b20250604-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.multimodal-1.3.2b20250606-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/multimodal/__init__.py,sha256=6WuDt3sMP1QLJs9se-20mmHCsFR-q2ZttPc8s0k1QWA,204
3
3
  autogluon/multimodal/constants.py,sha256=eLF3t-447nw3aNrYPh4Y8pycdECGu__wv6TC-amfXw8,9509
4
4
  autogluon/multimodal/predictor.py,sha256=4lou5yGysY1O86A-PX8AgsJvjB5bq2eHJ9zB1DyZFew,42847
5
- autogluon/multimodal/version.py,sha256=x3rNSxfgtF6eLbObDbIxAKNwdZvvo_FIJl4QCIfjB30,91
5
+ autogluon/multimodal/version.py,sha256=JwXAOGSy8iz4_t2x8nMnhwQKhZ4r7H9r9yhfUhFQD5w,91
6
6
  autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
8
8
  autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
@@ -56,7 +56,7 @@ autogluon/multimodal/data/process_text.py,sha256=akQqiufnWmWZbnZRqCRISWpV3pQMDH1
56
56
  autogluon/multimodal/data/randaug.py,sha256=iidjz4CtqWnhxtJKafr7yNoJOpmwdlYyMWHrpVoejY0,7005
57
57
  autogluon/multimodal/data/template_engine.py,sha256=r57P_eLSSkjgI5B8czow7CNxlPsqqaDdPlaMTqVlHUw,3433
58
58
  autogluon/multimodal/data/templates.py,sha256=UwElnQvBE2qZtnv3-1E8nQhOmcVzcFfonRnQKwpov2M,25346
59
- autogluon/multimodal/data/trivial_augmenter.py,sha256=YhRYe36kiU-pb7LNdMFP1-wd5eJ2Vx0geAHxOOeLBgk,8389
59
+ autogluon/multimodal/data/trivial_augmenter.py,sha256=ciYEJsJJjCEgu9TBqPO5cTjd504eqdZQwaE5uYu2bS0,9164
60
60
  autogluon/multimodal/data/utils.py,sha256=kFK_pLyaAzw6mbed_PlY-fF6pyw6Gw6Y2mTuC8hcJbk,28900
61
61
  autogluon/multimodal/data/dataset_mmlab/__init__.py,sha256=MXibqfVtAX2jjveMUtdHmSH6SabXEDrAOfZzTs3pK3Y,119
62
62
  autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=2rABeHdUo8S9Amv7wQqft80AASrfEtCDD5ixfs85jDc,32960
@@ -153,11 +153,11 @@ autogluon/multimodal/utils/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8
153
153
  autogluon/multimodal/utils/save.py,sha256=aXZa_iue34dAEfTz7nCaRowktG1emEi5uVXe_tDmHBA,4408
154
154
  autogluon/multimodal/utils/strategy.py,sha256=tT9PWh_ZLwNdGFgPsXgZsgKRhpnfBQDjh1mB1_y8G18,833
155
155
  autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
156
- autogluon.multimodal-1.3.2b20250604.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
- autogluon.multimodal-1.3.2b20250604.dist-info/METADATA,sha256=HnxvaHjvhLNfJykmkovMtqqgVcZgti0xr_Zn_vJVPKI,13222
158
- autogluon.multimodal-1.3.2b20250604.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
- autogluon.multimodal-1.3.2b20250604.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
- autogluon.multimodal-1.3.2b20250604.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
- autogluon.multimodal-1.3.2b20250604.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
- autogluon.multimodal-1.3.2b20250604.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
- autogluon.multimodal-1.3.2b20250604.dist-info/RECORD,,
156
+ autogluon.multimodal-1.3.2b20250606.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
+ autogluon.multimodal-1.3.2b20250606.dist-info/METADATA,sha256=yeFyUHbvJBQLRg2zPG5OZ8LMUc-HO-UEpo-Al57dWlk,13223
158
+ autogluon.multimodal-1.3.2b20250606.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
+ autogluon.multimodal-1.3.2b20250606.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
+ autogluon.multimodal-1.3.2b20250606.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
+ autogluon.multimodal-1.3.2b20250606.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
+ autogluon.multimodal-1.3.2b20250606.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
+ autogluon.multimodal-1.3.2b20250606.dist-info/RECORD,,