autogluon.multimodal 1.2b20241206__py3-none-any.whl → 1.2.1b20241208__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.2b20241206'
2
+ __version__ = '1.2.1b20241208'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.multimodal
3
- Version: 1.2b20241206
3
+ Version: 1.2.1b20241208
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -55,9 +55,9 @@ Requires-Dist: scikit-image<0.25.0,>=0.19.1
55
55
  Requires-Dist: text-unidecode<1.4,>=1.3
56
56
  Requires-Dist: torchmetrics<1.3.0,>=1.2.0
57
57
  Requires-Dist: omegaconf<2.3.0,>=2.1.1
58
- Requires-Dist: autogluon.core[raytune]==1.2b20241206
59
- Requires-Dist: autogluon.features==1.2b20241206
60
- Requires-Dist: autogluon.common==1.2b20241206
58
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20241208
59
+ Requires-Dist: autogluon.features==1.2.1b20241208
60
+ Requires-Dist: autogluon.common==1.2.1b20241208
61
61
  Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
62
62
  Requires-Dist: nlpaug<1.2.0,>=1.1.10
63
63
  Requires-Dist: nltk<3.9,>=3.4.5
@@ -86,7 +86,7 @@ Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "
86
86
 
87
87
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
88
88
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
89
- [![Python Versions](https://img.shields.io/badge/python-3.8%20%7C%203.9%20%7C%203.10%20%7C%203.11-blue)](https://pypi.org/project/autogluon/)
89
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
90
90
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
91
91
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
92
92
  [![Discord](https://img.shields.io/discord/1043248669505368144?logo=discord&style=flat)](https://discord.gg/wjUmjqAc2N)
@@ -101,7 +101,7 @@ AutoGluon automates machine learning tasks enabling you to easily achieve strong
101
101
 
102
102
  ## 💾 Installation
103
103
 
104
- AutoGluon is supported on Python 3.8 - 3.11 and is available on Linux, MacOS, and Windows.
104
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
105
105
 
106
106
  You can install AutoGluon with:
107
107
 
@@ -135,7 +135,8 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
135
135
 
136
136
  | Title | Format | Location | Date |
137
137
  |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
138
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML Conf 2023](https://2023.automl.cc/) | 2023/09/12 |
138
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
139
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
139
140
  | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
140
141
  | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
141
142
  | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
@@ -1,11 +1,11 @@
1
- autogluon.multimodal-1.2b20241206-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.multimodal-1.2.1b20241208-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/multimodal/__init__.py,sha256=EuWb-QmtFBKePJw4_4Kpp9dKrabv121haYw_Oiu2jfI,238
3
3
  autogluon/multimodal/constants.py,sha256=8IDFqC45Sz3fD0VO2wpzj5Ino387yMAvmKMt-QRhzK0,9122
4
4
  autogluon/multimodal/predictor.py,sha256=beV2gOcTnviYtU8UWTWdqWYTbuk5sC6Sba-pAEaFQyg,40936
5
5
  autogluon/multimodal/presets.py,sha256=VR_arn7X4eiQcGcvJVmwxDopPJGvYP1W1cBZ2AOcdJM,25882
6
6
  autogluon/multimodal/problem_types.py,sha256=H0q2V--d_KH7YL_AxMrs77SHR5SBVLDsdie9F2Uu1kM,8627
7
7
  autogluon/multimodal/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
8
- autogluon/multimodal/version.py,sha256=pRVH-WiqrPA7EbSpAv8wv6pA61VydalWy-zbUWfj3nY,88
8
+ autogluon/multimodal/version.py,sha256=sQ8a4LJ1zFRNHr7xaUMJNCf8xSKIdwaycY5xcj5NbdI,90
9
9
  autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
11
11
  autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
@@ -135,11 +135,11 @@ autogluon/multimodal/utils/object_detection.py,sha256=fHZxon5LoYRmNu_7jm_pDjesVx
135
135
  autogluon/multimodal/utils/onnx.py,sha256=rblWnphKTsfbosbieJu8PsH6SMDw4on9BS8bR1plL2U,5607
136
136
  autogluon/multimodal/utils/save.py,sha256=zYIO3mYMGBvHfZcmCUaLpsQa14nVq1LPv2F76uaz89w,3951
137
137
  autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
138
- autogluon.multimodal-1.2b20241206.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
139
- autogluon.multimodal-1.2b20241206.dist-info/METADATA,sha256=6htnCPWMXigq3fARzrakOxrcWv73tx-1MFlMQF2AsBA,12873
140
- autogluon.multimodal-1.2b20241206.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
141
- autogluon.multimodal-1.2b20241206.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
142
- autogluon.multimodal-1.2b20241206.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
143
- autogluon.multimodal-1.2b20241206.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
144
- autogluon.multimodal-1.2b20241206.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
145
- autogluon.multimodal-1.2b20241206.dist-info/RECORD,,
138
+ autogluon.multimodal-1.2.1b20241208.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
139
+ autogluon.multimodal-1.2.1b20241208.dist-info/METADATA,sha256=jac0Zumbhnl8pWKtN7AYyUWnqn_wFRSeul3vXcjRjfQ,13114
140
+ autogluon.multimodal-1.2.1b20241208.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
141
+ autogluon.multimodal-1.2.1b20241208.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
142
+ autogluon.multimodal-1.2.1b20241208.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
143
+ autogluon.multimodal-1.2.1b20241208.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
144
+ autogluon.multimodal-1.2.1b20241208.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
145
+ autogluon.multimodal-1.2.1b20241208.dist-info/RECORD,,