autogluon.multimodal 1.2.1b20250407__py3-none-any.whl → 1.2.1b20250409__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2145,9 +2145,9 @@ class BaseLearner(ExportMixin, DistillationMixin, RealtimeMixin):
2145
2145
 
2146
2146
  convert_zero_checkpoint_to_fp32_state_dict(path + "-dir", path)
2147
2147
  shutil.rmtree(path + "-dir")
2148
- state_dict = torch.load(path, map_location=torch.device("cpu"))["state_dict"] # nosec B614
2148
+ state_dict = torch.load(path, map_location=torch.device("cpu"), weights_only=False)["state_dict"] # nosec B614
2149
2149
  else:
2150
- state_dict = torch.load(path, map_location=torch.device("cpu"))["state_dict"] # nosec B614
2150
+ state_dict = torch.load(path, map_location=torch.device("cpu"), weights_only=False)["state_dict"] # nosec B614
2151
2151
  state_dict = {k.partition(prefix)[2]: v for k, v in state_dict.items() if k.startswith(prefix)}
2152
2152
 
2153
2153
  # Some buffers like `position_ids` are registered as persistent=False since transformers 4.31.0
@@ -54,9 +54,9 @@ def average_checkpoints(
54
54
 
55
55
  convert_zero_checkpoint_to_fp32_state_dict(per_path + "-dir", per_path)
56
56
  shutil.rmtree(per_path + "-dir")
57
- state_dict = torch.load(per_path, map_location=torch.device("cpu"))["state_dict"] # nosec B614
57
+ state_dict = torch.load(per_path, map_location=torch.device("cpu"), weights_only=False)["state_dict"] # nosec B614
58
58
  else:
59
- state_dict = torch.load(per_path, map_location=torch.device("cpu"))["state_dict"] # nosec B614
59
+ state_dict = torch.load(per_path, map_location=torch.device("cpu"), weights_only=False)["state_dict"] # nosec B614
60
60
  for k, v in state_dict.items():
61
61
  if k not in avg_state_dict:
62
62
  avg_state_dict[k] = v.clone().to(dtype=torch.float64)
@@ -74,7 +74,7 @@ def average_checkpoints(
74
74
  for k in avg_state_dict:
75
75
  avg_state_dict[k].clamp_(float32_info.min, float32_info.max).to(dtype=torch.float32)
76
76
  else:
77
- avg_state_dict = torch.load(checkpoint_paths[0], map_location=torch.device("cpu"))["state_dict"] # nosec B614
77
+ avg_state_dict = torch.load(checkpoint_paths[0], map_location=torch.device("cpu"), weights_only=False)["state_dict"] # nosec B614
78
78
 
79
79
  return avg_state_dict
80
80
 
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250407"
3
+ __version__ = "1.2.1b20250409"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.multimodal
3
- Version: 1.2.1b20250407
3
+ Version: 1.2.1b20250409
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -43,23 +43,23 @@ Requires-Dist: scikit-learn<1.5.3,>=1.4.0
43
43
  Requires-Dist: Pillow<12,>=10.0.1
44
44
  Requires-Dist: tqdm<5,>=4.38
45
45
  Requires-Dist: boto3<2,>=1.10
46
- Requires-Dist: torch<2.6,>=2.2
47
- Requires-Dist: lightning<2.6,>=2.2
46
+ Requires-Dist: torch<2.7,>=2.2
47
+ Requires-Dist: lightning<2.7,>=2.2
48
48
  Requires-Dist: transformers[sentencepiece]<4.50,>=4.38.0
49
- Requires-Dist: accelerate<1.0,>=0.34.0
49
+ Requires-Dist: accelerate<2.0,>=0.34.0
50
50
  Requires-Dist: requests<3,>=2.30
51
51
  Requires-Dist: jsonschema<4.22,>=4.18
52
52
  Requires-Dist: seqeval<1.3.0,>=1.2.2
53
53
  Requires-Dist: evaluate<0.5.0,>=0.4.0
54
54
  Requires-Dist: timm<1.0.7,>=0.9.5
55
- Requires-Dist: torchvision<0.21.0,>=0.16.0
55
+ Requires-Dist: torchvision<0.22.0,>=0.16.0
56
56
  Requires-Dist: scikit-image<0.25.0,>=0.19.1
57
57
  Requires-Dist: text-unidecode<1.4,>=1.3
58
58
  Requires-Dist: torchmetrics<1.6.2,>=1.2.0
59
59
  Requires-Dist: omegaconf<2.3.0,>=2.1.1
60
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250407
61
- Requires-Dist: autogluon.features==1.2.1b20250407
62
- Requires-Dist: autogluon.common==1.2.1b20250407
60
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250409
61
+ Requires-Dist: autogluon.features==1.2.1b20250409
62
+ Requires-Dist: autogluon.common==1.2.1b20250409
63
63
  Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
64
64
  Requires-Dist: nlpaug<1.2.0,>=1.1.10
65
65
  Requires-Dist: nltk<3.9,>=3.4.5
@@ -1,8 +1,8 @@
1
- autogluon.multimodal-1.2.1b20250407-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.multimodal-1.2.1b20250409-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/multimodal/__init__.py,sha256=6WuDt3sMP1QLJs9se-20mmHCsFR-q2ZttPc8s0k1QWA,204
3
3
  autogluon/multimodal/constants.py,sha256=eLF3t-447nw3aNrYPh4Y8pycdECGu__wv6TC-amfXw8,9509
4
4
  autogluon/multimodal/predictor.py,sha256=4lou5yGysY1O86A-PX8AgsJvjB5bq2eHJ9zB1DyZFew,42847
5
- autogluon/multimodal/version.py,sha256=Hl84ugmOnqfU18pLVhKVOks3lzI2_-__H8uz6UWTQvY,91
5
+ autogluon/multimodal/version.py,sha256=A9BqrXhLrOJhH5qPbhMof-jLGxRS5nRGGDYPGWeziJE,91
6
6
  autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
8
8
  autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
@@ -65,7 +65,7 @@ autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=wWcoeLoostH4y9oi
65
65
  autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=7RorcwDoMRfLgtFEmH26uEg0csKvxyD21gdPh-9N4YM,6540
66
66
  autogluon/multimodal/data/process_mmlab/process_mmocr.py,sha256=dwhPDq1A84eqwZHnQMZFyg9GcnFTEkMCLBhJfhUeqQk,2913
67
67
  autogluon/multimodal/learners/__init__.py,sha256=BnOY7nwfXJ6rjPawF1mebSxB5Jx-OdiGwc_P53kNXOc,294
68
- autogluon/multimodal/learners/base.py,sha256=CkEq1RispBsW99vpDLuBIVU3_KwIc3yuHiEneF4BKww,99600
68
+ autogluon/multimodal/learners/base.py,sha256=YzJnVr_FamfJa9sSEQq4n7ekSz0QFjeWuZRMVAMiUSM,99640
69
69
  autogluon/multimodal/learners/ensemble.py,sha256=yJOyGdgeqKeriSCdiv809pn8AEdx6uGIKG5O5RGp_wY,30525
70
70
  autogluon/multimodal/learners/few_shot_svm.py,sha256=XWD7uufpyemGSM9z8rIXksbHvU3YRlgQ0Vq_Wm0Sxe0,23919
71
71
  autogluon/multimodal/learners/matching.py,sha256=l0gXRAECBlO7G9_pYSaytl3RDERngMNLm7pzxUcPYwg,88428
@@ -126,7 +126,7 @@ autogluon/multimodal/optim/metrics/semantic_seg_metrics.py,sha256=tIbSk3iyBRRx7H
126
126
  autogluon/multimodal/optim/metrics/utils.py,sha256=VU7MJbJplgl89aYqyKrs2WbX-BkU5_0vYGWpPnTjJDQ,12738
127
127
  autogluon/multimodal/utils/__init__.py,sha256=WBfesTQWIpeH1EDxPWgPqr_mUk_X9g-WW-rgwmtqvOE,2543
128
128
  autogluon/multimodal/utils/cache.py,sha256=USg-uBtrhrxKlf0OMz-xbM67A8olfSBRAWU4VYuT4Vg,8180
129
- autogluon/multimodal/utils/checkpoint.py,sha256=aF65wkLzMS6ng4YE_1LZuCbbjaNudn0Cfi0insm8I6Q,9745
129
+ autogluon/multimodal/utils/checkpoint.py,sha256=OvD6Bkj6XCwkdDkOKsrPcEwUNGEteivaRBrSr4mH3EI,9805
130
130
  autogluon/multimodal/utils/colormap.py,sha256=DOSPCgeQXk87B2ae3iM7T0RGjrIVozvwp7RHEXzyb-4,3882
131
131
  autogluon/multimodal/utils/config.py,sha256=b-vNiCzmVezygBSkGTtGRyFmVXdznxQIm6P6O_tKi-w,32518
132
132
  autogluon/multimodal/utils/device.py,sha256=60g5-tKCVnn_LAvxG_dnS5cZEzgzLTwU-A4gd-uvIfg,3523
@@ -153,11 +153,11 @@ autogluon/multimodal/utils/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8
153
153
  autogluon/multimodal/utils/save.py,sha256=aXZa_iue34dAEfTz7nCaRowktG1emEi5uVXe_tDmHBA,4408
154
154
  autogluon/multimodal/utils/strategy.py,sha256=tT9PWh_ZLwNdGFgPsXgZsgKRhpnfBQDjh1mB1_y8G18,833
155
155
  autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
156
- autogluon.multimodal-1.2.1b20250407.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
- autogluon.multimodal-1.2.1b20250407.dist-info/METADATA,sha256=JuhvoMA5lfVc8bCOfoCcWO34Z21gPC0jJGKVYaCBPzs,13221
158
- autogluon.multimodal-1.2.1b20250407.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
- autogluon.multimodal-1.2.1b20250407.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
- autogluon.multimodal-1.2.1b20250407.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
- autogluon.multimodal-1.2.1b20250407.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
- autogluon.multimodal-1.2.1b20250407.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
- autogluon.multimodal-1.2.1b20250407.dist-info/RECORD,,
156
+ autogluon.multimodal-1.2.1b20250409.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
+ autogluon.multimodal-1.2.1b20250409.dist-info/METADATA,sha256=b9pjfmxED3_ZjOVsKMMLMXIzbE7CYoy3LD2gUTMWztw,13221
158
+ autogluon.multimodal-1.2.1b20250409.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
+ autogluon.multimodal-1.2.1b20250409.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
+ autogluon.multimodal-1.2.1b20250409.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
+ autogluon.multimodal-1.2.1b20250409.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
+ autogluon.multimodal-1.2.1b20250409.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
+ autogluon.multimodal-1.2.1b20250409.dist-info/RECORD,,