autogluon.multimodal 1.2.1b20250303__py3-none-any.whl → 1.2.1b20250304__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/multimodal/__init__.py +4 -2
- autogluon/multimodal/configs/data/default.yaml +4 -2
- autogluon/multimodal/configs/{environment → env}/default.yaml +2 -3
- autogluon/multimodal/configs/model/default.yaml +58 -11
- autogluon/multimodal/configs/{optimization → optim}/default.yaml +21 -4
- autogluon/multimodal/constants.py +16 -5
- autogluon/multimodal/data/__init__.py +14 -2
- autogluon/multimodal/data/dataset.py +2 -2
- autogluon/multimodal/data/infer_types.py +16 -2
- autogluon/multimodal/data/label_encoder.py +3 -3
- autogluon/multimodal/{utils → data}/nlpaug.py +4 -4
- autogluon/multimodal/data/preprocess_dataframe.py +55 -38
- autogluon/multimodal/data/process_categorical.py +35 -6
- autogluon/multimodal/data/process_document.py +59 -33
- autogluon/multimodal/data/process_image.py +198 -163
- autogluon/multimodal/data/process_label.py +7 -3
- autogluon/multimodal/data/process_mmlab/process_mmdet.py +1 -8
- autogluon/multimodal/data/process_mmlab/process_mmlab_base.py +2 -9
- autogluon/multimodal/data/process_mmlab/process_mmocr.py +1 -9
- autogluon/multimodal/data/process_ner.py +192 -4
- autogluon/multimodal/data/process_numerical.py +32 -5
- autogluon/multimodal/data/process_semantic_seg_img.py +23 -28
- autogluon/multimodal/data/process_text.py +95 -58
- autogluon/multimodal/data/template_engine.py +7 -9
- autogluon/multimodal/data/templates.py +0 -2
- autogluon/multimodal/data/trivial_augmenter.py +2 -2
- autogluon/multimodal/data/utils.py +564 -338
- autogluon/multimodal/learners/__init__.py +2 -1
- autogluon/multimodal/learners/base.py +189 -189
- autogluon/multimodal/learners/ensemble.py +748 -0
- autogluon/multimodal/learners/few_shot_svm.py +6 -15
- autogluon/multimodal/learners/matching.py +59 -84
- autogluon/multimodal/learners/ner.py +23 -22
- autogluon/multimodal/learners/object_detection.py +26 -21
- autogluon/multimodal/learners/semantic_segmentation.py +16 -18
- autogluon/multimodal/models/__init__.py +12 -3
- autogluon/multimodal/models/augmenter.py +175 -0
- autogluon/multimodal/models/categorical_mlp.py +13 -8
- autogluon/multimodal/models/clip.py +92 -18
- autogluon/multimodal/models/custom_transformer.py +75 -75
- autogluon/multimodal/models/document_transformer.py +23 -9
- autogluon/multimodal/models/ft_transformer.py +40 -35
- autogluon/multimodal/models/fusion/base.py +2 -4
- autogluon/multimodal/models/fusion/fusion_mlp.py +82 -18
- autogluon/multimodal/models/fusion/fusion_ner.py +1 -1
- autogluon/multimodal/models/fusion/fusion_transformer.py +23 -23
- autogluon/multimodal/models/{huggingface_text.py → hf_text.py} +21 -2
- autogluon/multimodal/models/meta_transformer.py +336 -0
- autogluon/multimodal/models/mlp.py +6 -6
- autogluon/multimodal/models/mmocr_text_detection.py +1 -1
- autogluon/multimodal/models/mmocr_text_recognition.py +0 -1
- autogluon/multimodal/models/ner_text.py +1 -8
- autogluon/multimodal/models/numerical_mlp.py +14 -8
- autogluon/multimodal/models/sam.py +12 -2
- autogluon/multimodal/models/t_few.py +21 -5
- autogluon/multimodal/models/timm_image.py +74 -32
- autogluon/multimodal/models/utils.py +877 -16
- autogluon/multimodal/optim/__init__.py +17 -0
- autogluon/multimodal/{optimization → optim}/lit_distiller.py +2 -1
- autogluon/multimodal/{optimization → optim}/lit_matcher.py +4 -10
- autogluon/multimodal/{optimization → optim}/lit_mmdet.py +2 -10
- autogluon/multimodal/{optimization → optim}/lit_module.py +139 -14
- autogluon/multimodal/{optimization → optim}/lit_ner.py +3 -3
- autogluon/multimodal/{optimization → optim}/lit_semantic_seg.py +1 -1
- autogluon/multimodal/optim/losses/__init__.py +14 -0
- autogluon/multimodal/optim/losses/bce_loss.py +25 -0
- autogluon/multimodal/optim/losses/focal_loss.py +81 -0
- autogluon/multimodal/optim/losses/lemda_loss.py +39 -0
- autogluon/multimodal/optim/losses/rkd_loss.py +103 -0
- autogluon/multimodal/optim/losses/softmax_losses.py +177 -0
- autogluon/multimodal/optim/losses/structure_loss.py +26 -0
- autogluon/multimodal/optim/losses/utils.py +313 -0
- autogluon/multimodal/optim/lr/__init__.py +1 -0
- autogluon/multimodal/optim/lr/utils.py +332 -0
- autogluon/multimodal/optim/metrics/__init__.py +4 -0
- autogluon/multimodal/optim/metrics/coverage_metrics.py +42 -0
- autogluon/multimodal/optim/metrics/hit_rate_metrics.py +78 -0
- autogluon/multimodal/optim/metrics/ranking_metrics.py +231 -0
- autogluon/multimodal/optim/metrics/utils.py +359 -0
- autogluon/multimodal/optim/utils.py +284 -0
- autogluon/multimodal/predictor.py +51 -12
- autogluon/multimodal/utils/__init__.py +19 -45
- autogluon/multimodal/utils/cache.py +23 -2
- autogluon/multimodal/utils/checkpoint.py +58 -5
- autogluon/multimodal/utils/config.py +127 -55
- autogluon/multimodal/utils/device.py +120 -0
- autogluon/multimodal/utils/distillation.py +8 -8
- autogluon/multimodal/utils/download.py +1 -1
- autogluon/multimodal/utils/env.py +22 -0
- autogluon/multimodal/utils/export.py +3 -3
- autogluon/multimodal/utils/hpo.py +5 -5
- autogluon/multimodal/utils/inference.py +37 -4
- autogluon/multimodal/utils/install.py +91 -0
- autogluon/multimodal/utils/load.py +52 -47
- autogluon/multimodal/utils/log.py +6 -41
- autogluon/multimodal/utils/matcher.py +3 -2
- autogluon/multimodal/utils/onnx.py +0 -4
- autogluon/multimodal/utils/path.py +10 -0
- autogluon/multimodal/utils/precision.py +130 -0
- autogluon/multimodal/{presets.py → utils/presets.py} +259 -66
- autogluon/multimodal/{problem_types.py → utils/problem_types.py} +30 -1
- autogluon/multimodal/utils/save.py +47 -29
- autogluon/multimodal/utils/strategy.py +24 -0
- autogluon/multimodal/version.py +1 -1
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/METADATA +5 -5
- autogluon.multimodal-1.2.1b20250304.dist-info/RECORD +163 -0
- autogluon/multimodal/optimization/__init__.py +0 -16
- autogluon/multimodal/optimization/losses.py +0 -394
- autogluon/multimodal/optimization/utils.py +0 -1054
- autogluon/multimodal/utils/cloud_io.py +0 -80
- autogluon/multimodal/utils/data.py +0 -701
- autogluon/multimodal/utils/environment.py +0 -395
- autogluon/multimodal/utils/metric.py +0 -500
- autogluon/multimodal/utils/model.py +0 -558
- autogluon.multimodal-1.2.1b20250303.dist-info/RECORD +0 -145
- /autogluon/multimodal/{optimization → optim}/deepspeed.py +0 -0
- /autogluon/multimodal/{optimization/lr_scheduler.py → optim/lr/lr_schedulers.py} +0 -0
- /autogluon/multimodal/{optimization → optim/metrics}/semantic_seg_metrics.py +0 -0
- /autogluon/multimodal/{registry.py → utils/registry.py} +0 -0
- /autogluon.multimodal-1.2.1b20250303-py3.9-nspkg.pth → /autogluon.multimodal-1.2.1b20250304-py3.9-nspkg.pth +0 -0
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/LICENSE +0 -0
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/NOTICE +0 -0
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/WHEEL +0 -0
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/namespace_packages.txt +0 -0
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/top_level.txt +0 -0
- {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/zip-safe +0 -0
@@ -1,42 +1,17 @@
|
|
1
1
|
import logging
|
2
2
|
import os
|
3
|
+
from datetime import datetime
|
3
4
|
from typing import Dict, List, Optional, Tuple, Union
|
4
5
|
|
6
|
+
import pytz
|
7
|
+
|
5
8
|
from autogluon.common.utils.utils import setup_outputdir
|
6
9
|
|
7
|
-
from ..constants import
|
8
|
-
from ..data import TextProcessor
|
10
|
+
from ..constants import LAST_CHECKPOINT
|
9
11
|
|
10
12
|
logger = logging.getLogger(__name__)
|
11
13
|
|
12
14
|
|
13
|
-
def save_text_tokenizers(
|
14
|
-
text_processors: List[TextProcessor],
|
15
|
-
path: str,
|
16
|
-
) -> List[TextProcessor]:
|
17
|
-
"""
|
18
|
-
Save all the text tokenizers and record their relative paths, which are
|
19
|
-
the corresponding model names, e.g, hf_text.
|
20
|
-
|
21
|
-
Parameters
|
22
|
-
----------
|
23
|
-
text_processors
|
24
|
-
A list of text processors with tokenizers.
|
25
|
-
path
|
26
|
-
The root path.
|
27
|
-
|
28
|
-
Returns
|
29
|
-
-------
|
30
|
-
A list of text processors with tokenizers replaced by their local relative paths.
|
31
|
-
"""
|
32
|
-
for per_text_processor in text_processors:
|
33
|
-
per_path = os.path.join(path, per_text_processor.prefix)
|
34
|
-
per_text_processor.tokenizer.save_pretrained(per_path)
|
35
|
-
per_text_processor.tokenizer = per_text_processor.prefix
|
36
|
-
|
37
|
-
return text_processors
|
38
|
-
|
39
|
-
|
40
15
|
def process_save_path(path, resume: Optional[bool] = False, raise_if_exist: Optional[bool] = True):
|
41
16
|
"""
|
42
17
|
Convert the provided path to an absolute path and check whether it is valid.
|
@@ -113,3 +88,46 @@ def setup_save_path(
|
|
113
88
|
logger.debug(f"save path: {save_path}")
|
114
89
|
|
115
90
|
return save_path
|
91
|
+
|
92
|
+
|
93
|
+
def make_exp_dir(
|
94
|
+
root_path: str,
|
95
|
+
job_name: Optional[str] = None,
|
96
|
+
create: Optional[bool] = True,
|
97
|
+
):
|
98
|
+
"""
|
99
|
+
Creates the exp dir of format e.g.,: root_path/2022_01_01/job_name_12_00_00/
|
100
|
+
This function is to better organize the training runs. It is recommended to call this
|
101
|
+
function and pass the returned "exp_dir" to "MultiModalPredictor.fit(save_path=exp_dir)".
|
102
|
+
|
103
|
+
Parameters
|
104
|
+
----------
|
105
|
+
root_path
|
106
|
+
The basic path where to create saving directories for training runs.
|
107
|
+
job_name
|
108
|
+
The job names to name training runs.
|
109
|
+
create
|
110
|
+
Whether to make the directory.
|
111
|
+
|
112
|
+
Returns
|
113
|
+
-------
|
114
|
+
The formatted directory path.
|
115
|
+
"""
|
116
|
+
tz = pytz.timezone("US/Pacific")
|
117
|
+
ct = datetime.now(tz=tz)
|
118
|
+
date_stamp = ct.strftime("%Y_%m_%d")
|
119
|
+
time_stamp = ct.strftime("%H_%M_%S")
|
120
|
+
|
121
|
+
# Group logs by day first
|
122
|
+
exp_dir = os.path.join(root_path, date_stamp)
|
123
|
+
|
124
|
+
# Then, group by run_name and hour + min + sec to avoid duplicates
|
125
|
+
if job_name:
|
126
|
+
exp_dir = os.path.join(exp_dir, "_".join([job_name, time_stamp]))
|
127
|
+
else:
|
128
|
+
exp_dir = os.path.join(exp_dir, time_stamp)
|
129
|
+
|
130
|
+
if create:
|
131
|
+
os.makedirs(exp_dir, mode=0o777, exist_ok=False)
|
132
|
+
|
133
|
+
return exp_dir
|
@@ -0,0 +1,24 @@
|
|
1
|
+
import logging
|
2
|
+
|
3
|
+
from ..constants import DDP_STRATEGIES
|
4
|
+
|
5
|
+
logger = logging.getLogger(__name__)
|
6
|
+
|
7
|
+
|
8
|
+
def is_interactive_strategy(strategy: str):
|
9
|
+
if isinstance(strategy, str) and strategy:
|
10
|
+
return strategy.startswith(("ddp_fork", "ddp_notebook"))
|
11
|
+
else:
|
12
|
+
return False
|
13
|
+
|
14
|
+
|
15
|
+
def run_ddp_only_once(num_gpus: int, strategy: str):
|
16
|
+
if strategy in DDP_STRATEGIES:
|
17
|
+
global FIRST_DDP_RUN # Use the global variable to make sure it is tracked per process
|
18
|
+
if "FIRST_DDP_RUN" in globals() and not FIRST_DDP_RUN:
|
19
|
+
# not the first time running DDP, set number of devices to 1 (use single GPU)
|
20
|
+
return min(1, num_gpus), "auto"
|
21
|
+
else:
|
22
|
+
if num_gpus > 1:
|
23
|
+
FIRST_DDP_RUN = False # run DDP for the first time, disable the following runs
|
24
|
+
return num_gpus, strategy
|
autogluon/multimodal/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.multimodal
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250304
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -57,9 +57,9 @@ Requires-Dist: scikit-image<0.25.0,>=0.19.1
|
|
57
57
|
Requires-Dist: text-unidecode<1.4,>=1.3
|
58
58
|
Requires-Dist: torchmetrics<1.6.2,>=1.2.0
|
59
59
|
Requires-Dist: omegaconf<2.3.0,>=2.1.1
|
60
|
-
Requires-Dist: autogluon.core[raytune]==1.2.
|
61
|
-
Requires-Dist: autogluon.features==1.2.
|
62
|
-
Requires-Dist: autogluon.common==1.2.
|
60
|
+
Requires-Dist: autogluon.core[raytune]==1.2.1b20250304
|
61
|
+
Requires-Dist: autogluon.features==1.2.1b20250304
|
62
|
+
Requires-Dist: autogluon.common==1.2.1b20250304
|
63
63
|
Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
|
64
64
|
Requires-Dist: nlpaug<1.2.0,>=1.1.10
|
65
65
|
Requires-Dist: nltk<3.9,>=3.4.5
|
@@ -72,7 +72,7 @@ Requires-Dist: nvidia-ml-py3==7.352.0
|
|
72
72
|
Requires-Dist: pdf2image<1.19,>=1.17.0
|
73
73
|
Provides-Extra: tests
|
74
74
|
Requires-Dist: ruff; extra == "tests"
|
75
|
-
Requires-Dist: datasets<2.
|
75
|
+
Requires-Dist: datasets<2.20.0,>=2.16.0; extra == "tests"
|
76
76
|
Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
|
77
77
|
Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
|
78
78
|
Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
|
@@ -0,0 +1,163 @@
|
|
1
|
+
autogluon.multimodal-1.2.1b20250304-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
|
+
autogluon/multimodal/__init__.py,sha256=6WuDt3sMP1QLJs9se-20mmHCsFR-q2ZttPc8s0k1QWA,204
|
3
|
+
autogluon/multimodal/constants.py,sha256=eLF3t-447nw3aNrYPh4Y8pycdECGu__wv6TC-amfXw8,9509
|
4
|
+
autogluon/multimodal/predictor.py,sha256=4lou5yGysY1O86A-PX8AgsJvjB5bq2eHJ9zB1DyZFew,42847
|
5
|
+
autogluon/multimodal/version.py,sha256=p0UlMkkxgxdnhofvyqKPl_WnTfvNk3krUjeDbJ0df5c,91
|
6
|
+
autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
|
+
autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
|
8
|
+
autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
|
9
|
+
autogluon/multimodal/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
|
+
autogluon/multimodal/configs/data/default.yaml,sha256=FZiO92xxLy9kv79wA8Ve5GvZCsbkxdJNRwf4VoiuNMA,3322
|
11
|
+
autogluon/multimodal/configs/distiller/default.yaml,sha256=DiCZYYJDEk5k03ZI-ewj9hWiKpMQbB8oqjWYavMK1wU,513
|
12
|
+
autogluon/multimodal/configs/env/default.yaml,sha256=LVACv_1RJAJIvXKqdU-kSlVxith_MrcCsRcJGROMNEE,1156
|
13
|
+
autogluon/multimodal/configs/matcher/default.yaml,sha256=K0ehM0uIFfKq1CeeaFcv14RBjo3khMgWKS2ymWI-V9I,218
|
14
|
+
autogluon/multimodal/configs/model/default.yaml,sha256=yKSFS6Uv0FsHjVs6bb7mygwwbDZphEbklhB5pWEIOGE,10001
|
15
|
+
autogluon/multimodal/configs/optim/default.yaml,sha256=pX8FyCJpzjl_EuGMXP2LV5WgMp5WE2HOEPKF5Rf-isg,2517
|
16
|
+
autogluon/multimodal/configs/pretrain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
17
|
+
autogluon/multimodal/configs/pretrain/detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
18
|
+
autogluon/multimodal/configs/pretrain/detection/coco_detection.py,sha256=UlSwkWAkST_96RTzPZMuPuqIfv72U03-JdqwPd-NjiQ,3171
|
19
|
+
autogluon/multimodal/configs/pretrain/detection/default_runtime.py,sha256=9hJmjxb6fIo-kbbejQlJy4ayopRFUyA_w95plhAUFDw,793
|
20
|
+
autogluon/multimodal/configs/pretrain/detection/schedule_1x.py,sha256=VhZ8HT-ryeGW-GzxiVsDEIYf9Bw6ImOdPucFVJaN0Os,298
|
21
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py,sha256=r51gu03JBHrTjDXkT2CdNKTzEeWx2qxk8t-TEHgKwSQ,5919
|
22
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py,sha256=VYvjELfzX2jYmsQLFvMYWeixx2LmB_LwbPmzgLAPUwo,1137
|
23
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-36e_coco.py,sha256=OL4Za_hd5IhQU8iHEAVrsFu-MnSmOPu1_WRa39i3QYA,266
|
24
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino_swinl_tta.py,sha256=vi5rhbaT3mgycIm1W8jQ6l-KuFoL24OiiF-rdj2CTNg,68
|
25
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino_tta.py,sha256=pwNnOJxut95HwGyS4RDjxTF-hH9HLpTQAyE2Ni7dzAA,1467
|
26
|
+
autogluon/multimodal/configs/pretrain/detection/faster_rcnn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
27
|
+
autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py,sha256=ydjGKiEV5jK-wTT5yQj_RuDbJtO7jkuaM2SEZ8h7i_o,3292
|
28
|
+
autogluon/multimodal/configs/pretrain/detection/voc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
29
|
+
autogluon/multimodal/configs/pretrain/detection/voc/faster_rcnn_r50_fpn_1x_voc0712.py,sha256=0-8ouww1EBlrKvr6ZYYXbfuTLRrkoIgYdLWkwGce2Dk,465
|
30
|
+
autogluon/multimodal/configs/pretrain/detection/voc/voc0712.py,sha256=0QLZ5SNSZItyRPqycFqYWG_7WsHOk_BaO36BUCYSrdU,1949
|
31
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
32
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_l_8xb8-300e_coco.py,sha256=diOkTur8K7IU3TpdDXOBQD21fnKoEgBVfp_RPppKlYA,266
|
33
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_m_8xb8-300e_coco.py,sha256=BV3E49u9eW4DcGS0i7dh8voKklRiRnQkpKccsy7P4gI,267
|
34
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_nano_8xb8-300e_coco.py,sha256=zgbpeDVVZpeXkOK124HEn7DOvFtUaBOmE933IhKhiMw,326
|
35
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_s_8xb8-300e_coco.py,sha256=xIwGrokP9She_0-btI-i5RxfG2rINfCZfturVQavLxk,3826
|
36
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_tiny_8xb8-300e_coco.py,sha256=K43L2pWR4GIon1W_Ucq59g0aLTCvyi8fJ2lHKP5JzOY,800
|
37
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_tta.py,sha256=4mJ1rW20wjxYkjebpPOOwl9VkxssloFRNEsUGeRCF6Y,1313
|
38
|
+
autogluon/multimodal/configs/pretrain/detection/yolox/yolox_x_8xb8-300e_coco.py,sha256=Qy1eb8pND6c4yv3SLiLDi3Hs5YSY5KUd9xIhFi3e2uQ,268
|
39
|
+
autogluon/multimodal/data/__init__.py,sha256=lu4q4wrTRbhnRLv68mEIjdQj8uqcZ8Pw-KNIuCLEtHg,1296
|
40
|
+
autogluon/multimodal/data/collator.py,sha256=UkfIpXgcwQVNXrzSv7vdWcWyQkKMyIPe1JPZTEYMAtU,9729
|
41
|
+
autogluon/multimodal/data/datamodule.py,sha256=xTYg2kZ5i9NbGglnsPVURIJxDqvL8lusNMALuQxE5Wc,8826
|
42
|
+
autogluon/multimodal/data/dataset.py,sha256=jrv7R_981BISR1PhyAYjQ4K5wVwpHlwGwCM7LNgw9Wg,4296
|
43
|
+
autogluon/multimodal/data/infer_types.py,sha256=g3Xh5EWWdVjaIsJU0WtvGM1Xxnw64nrkhj8PMIYFSgQ,27615
|
44
|
+
autogluon/multimodal/data/label_encoder.py,sha256=vtylosG8lEuefc0I0zy-CUj0IXnANLs2VBaAuXfDiUY,10583
|
45
|
+
autogluon/multimodal/data/mixup.py,sha256=zYj3tgKxE25868bbBuQEiAZnch-yHR5bqJWk9cI9kFc,7388
|
46
|
+
autogluon/multimodal/data/nlpaug.py,sha256=2Dh_Q_CL3DQtMUW_4YyHKdyIoOnPgIFMq5xA3ZMrYfY,2549
|
47
|
+
autogluon/multimodal/data/preprocess_dataframe.py,sha256=CgdlqqkBRy0tRQj-ZHYFhE-oExJ7_wYHFuqXGTcIh7o,35801
|
48
|
+
autogluon/multimodal/data/process_categorical.py,sha256=B4OXfMdi7cJwsR9gi0QF9s6Bm3OtmfAcokMrJyqyhME,4819
|
49
|
+
autogluon/multimodal/data/process_document.py,sha256=OGjKCXKoOBKMJnigFo5R61n8XjJoJfv9emETrTbX1do,14825
|
50
|
+
autogluon/multimodal/data/process_image.py,sha256=LN_xiN8B6NiGlra3LGMGveZURyfgqVbwuEhcF3Ljz0U,15150
|
51
|
+
autogluon/multimodal/data/process_label.py,sha256=WnRTD4gFtlcD3LW9BL3ML3OSYHH388_4b0LOl1YYDOk,2858
|
52
|
+
autogluon/multimodal/data/process_ner.py,sha256=AalZsFRr5fHB4s2duW3hqaSH_kxz12CgEiMV0bcT79M,13656
|
53
|
+
autogluon/multimodal/data/process_numerical.py,sha256=9ttKKCxk0EybZNQTuKlRwdHbbIvR4o944oUnU6o6M6Y,4883
|
54
|
+
autogluon/multimodal/data/process_semantic_seg_img.py,sha256=0MEoSGwDIpnX6JvzrV8ygi8vwtmc_aOINyaBVgeNJzI,11793
|
55
|
+
autogluon/multimodal/data/process_text.py,sha256=akQqiufnWmWZbnZRqCRISWpV3pQMDH1lZbnFdIADJOs,20118
|
56
|
+
autogluon/multimodal/data/randaug.py,sha256=iidjz4CtqWnhxtJKafr7yNoJOpmwdlYyMWHrpVoejY0,7005
|
57
|
+
autogluon/multimodal/data/template_engine.py,sha256=r57P_eLSSkjgI5B8czow7CNxlPsqqaDdPlaMTqVlHUw,3433
|
58
|
+
autogluon/multimodal/data/templates.py,sha256=UwElnQvBE2qZtnv3-1E8nQhOmcVzcFfonRnQKwpov2M,25346
|
59
|
+
autogluon/multimodal/data/trivial_augmenter.py,sha256=ZTAjrkvbgCinksU_qKRNl0ZuHj1wISaTkh0Q4gdgeoY,8388
|
60
|
+
autogluon/multimodal/data/utils.py,sha256=kFK_pLyaAzw6mbed_PlY-fF6pyw6Gw6Y2mTuC8hcJbk,28900
|
61
|
+
autogluon/multimodal/data/dataset_mmlab/__init__.py,sha256=MXibqfVtAX2jjveMUtdHmSH6SabXEDrAOfZzTs3pK3Y,119
|
62
|
+
autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=2rABeHdUo8S9Amv7wQqft80AASrfEtCDD5ixfs85jDc,32960
|
63
|
+
autogluon/multimodal/data/process_mmlab/__init__.py,sha256=EWrLTx1ZcBdWDDPVirBW5VXonpKqY4jSPPmqYSwJbvY,84
|
64
|
+
autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=wWcoeLoostH4y9oilSuJJmOT0so7hUVBR3mDo4XFIzY,6884
|
65
|
+
autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=7RorcwDoMRfLgtFEmH26uEg0csKvxyD21gdPh-9N4YM,6540
|
66
|
+
autogluon/multimodal/data/process_mmlab/process_mmocr.py,sha256=dwhPDq1A84eqwZHnQMZFyg9GcnFTEkMCLBhJfhUeqQk,2913
|
67
|
+
autogluon/multimodal/learners/__init__.py,sha256=BnOY7nwfXJ6rjPawF1mebSxB5Jx-OdiGwc_P53kNXOc,294
|
68
|
+
autogluon/multimodal/learners/base.py,sha256=CkEq1RispBsW99vpDLuBIVU3_KwIc3yuHiEneF4BKww,99600
|
69
|
+
autogluon/multimodal/learners/ensemble.py,sha256=yJOyGdgeqKeriSCdiv809pn8AEdx6uGIKG5O5RGp_wY,30525
|
70
|
+
autogluon/multimodal/learners/few_shot_svm.py,sha256=XWD7uufpyemGSM9z8rIXksbHvU3YRlgQ0Vq_Wm0Sxe0,23919
|
71
|
+
autogluon/multimodal/learners/matching.py,sha256=l0gXRAECBlO7G9_pYSaytl3RDERngMNLm7pzxUcPYwg,88428
|
72
|
+
autogluon/multimodal/learners/ner.py,sha256=guxVA3Oc9JMQXALir0mINdcU1UcbIcSqGoywbsQkibw,18820
|
73
|
+
autogluon/multimodal/learners/object_detection.py,sha256=HszfWyYbxKZqHgXngFkR6EbVHGjFR1BSZ4PxxVx5c6o,30911
|
74
|
+
autogluon/multimodal/learners/semantic_segmentation.py,sha256=sO-Jl85IQlT3hrE7RAXzaYttJY65N-8D0UhMTJw6Acw,19900
|
75
|
+
autogluon/multimodal/models/__init__.py,sha256=PWplL_fQEIKoKv3f7CSMXqZOMXQYNVUvsyt5s8MpRpk,1045
|
76
|
+
autogluon/multimodal/models/adaptation_layers.py,sha256=NuzwU_ghk8D2axmDuD8UEZ_HamoMSCcKMV9DB1AYWAg,38425
|
77
|
+
autogluon/multimodal/models/augmenter.py,sha256=47FXh1TNpTOgugqMUa9wrGU1jlj7Ue2yMFOSklJRTWs,5817
|
78
|
+
autogluon/multimodal/models/categorical_mlp.py,sha256=Rqniwoci_AZeX5s-dLjdei_VNK6EWey8sfdmiXJaYuI,4873
|
79
|
+
autogluon/multimodal/models/clip.py,sha256=fxafnSqkH1eJ3L-OYqkmGFrdfWG5Ok_HD03VKCzUNN0,12179
|
80
|
+
autogluon/multimodal/models/custom_transformer.py,sha256=k47qayL4ar4GQ1xLueG8PxNi6SoeXVzAlrWzL2hVEWU,27808
|
81
|
+
autogluon/multimodal/models/document_transformer.py,sha256=L4iBbjBXmllgWaCXyNfly6PjfgGoxfOQNDMm3NfQSnc,7990
|
82
|
+
autogluon/multimodal/models/ft_transformer.py,sha256=G9xxx5Mzc9P46i8F4uuz85kNIphz-xoUiwTzso5aqPE,26660
|
83
|
+
autogluon/multimodal/models/hf_text.py,sha256=I890lYC2w89vIHE2KHagEKxG8wT0K-AmzSYaM724xkk,12641
|
84
|
+
autogluon/multimodal/models/meta_transformer.py,sha256=KtHUrJsk_pMj5p7oKv0bT2ha3VBWYHBaXw-yXlQqfPw,12851
|
85
|
+
autogluon/multimodal/models/mlp.py,sha256=6IsVYVSoyAXqPlrstF-DBJhaLLpw6vKJ9qQfqQ5emT4,4421
|
86
|
+
autogluon/multimodal/models/mmdet_image.py,sha256=gdgoyBXVyiXMDhnKwFPafpgxv4PhFXFt4PZ_TLsW22I,27112
|
87
|
+
autogluon/multimodal/models/mmocr_text_detection.py,sha256=4XdRvaujXh3amzzC6w-2kK9gBs6yrAYFvI75g4iizDU,3676
|
88
|
+
autogluon/multimodal/models/mmocr_text_recognition.py,sha256=DVpR3hf9kGSJC4aWis_hZcZOx2omjnn4BXX43yjAvko,3982
|
89
|
+
autogluon/multimodal/models/ner_text.py,sha256=KzfzweWplUdVrD75AVuScKJSlcGFkZt9DjG0ZJy_bb0,10075
|
90
|
+
autogluon/multimodal/models/numerical_mlp.py,sha256=OaMyShEqqeEo9rWc_dyvOPkC4z6Y4IyGSgcKhnE1e_g,4341
|
91
|
+
autogluon/multimodal/models/sam.py,sha256=uGCj2k5VuToHb8_obOerC5DmwjsT2xrP_2ujMa9fpAg,18854
|
92
|
+
autogluon/multimodal/models/t_few.py,sha256=KQ6QPwWjmbv9sBVTK-qqb-KIxNPmxsk0eeaEfyQRhJc,13905
|
93
|
+
autogluon/multimodal/models/timm_image.py,sha256=6WSYoMwpRLuorxOWV40ZL4eLuvHzME1aoUJz9yrdL1o,13947
|
94
|
+
autogluon/multimodal/models/utils.py,sha256=2xiEDMmiHUe-aqjxyUFYS6O0mgYmv6Q0Gcj67q7-0RU,63377
|
95
|
+
autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py,sha256=zsdXyzF29x_os6L-Kjflmwn50fo5l7dQYirAA46Ts7A,66856
|
96
|
+
autogluon/multimodal/models/fusion/__init__.py,sha256=Fy7eEsOddtGy5L0sav0pWHDRqgukKdCPJPXzmBEM-uk,196
|
97
|
+
autogluon/multimodal/models/fusion/base.py,sha256=fy1_1p3LAqYOBd9uG-S-sYxcRQcRBb_V_00Ha7L_WHo,2525
|
98
|
+
autogluon/multimodal/models/fusion/fusion_mlp.py,sha256=Ierm6vzQrV8cJA7oiQqVSfB8xdcDD2SUZhse99ZJZOw,9846
|
99
|
+
autogluon/multimodal/models/fusion/fusion_ner.py,sha256=nEu3W_BOsiDopY9XzAmGbvVyB5U1-0uyajl3uAzBV3o,6370
|
100
|
+
autogluon/multimodal/models/fusion/fusion_transformer.py,sha256=oIDeEmXI0RHuJOEDr6-XeNxc_SxVg-IQIS6p7uSZyBQ,9078
|
101
|
+
autogluon/multimodal/optim/__init__.py,sha256=yygVzD0Q5aRf3or_aMu2jaf5tz_cGLX7-GA8pLFEf48,601
|
102
|
+
autogluon/multimodal/optim/deepspeed.py,sha256=KXIfU7Df5Vm3lCoJ-gT58E93Xdw4kznvHau9eIdzI84,14966
|
103
|
+
autogluon/multimodal/optim/lit_distiller.py,sha256=Nf1gfqPgzxSAETj-hp0bOzpYqQJLK6qM7eOzNjcX0YQ,21533
|
104
|
+
autogluon/multimodal/optim/lit_matcher.py,sha256=7OC2PvF_BnV-fTh2mqZdirrlkZULpx8LhSJCB7HrZR8,17664
|
105
|
+
autogluon/multimodal/optim/lit_mmdet.py,sha256=rWxmgwRdg9gKnPI3hYTgvkH7nyCoSwg0HANcd3YCqd4,9731
|
106
|
+
autogluon/multimodal/optim/lit_module.py,sha256=LJqS2S6mVLc0G9fasB-uTJ-Dqf4WsB5OfsSJF3MSIzw,22624
|
107
|
+
autogluon/multimodal/optim/lit_ner.py,sha256=SCmhGRUGz1ELrAG2Tlw1UwxJ3XUcvjvWxJserw-KpTk,8579
|
108
|
+
autogluon/multimodal/optim/lit_semantic_seg.py,sha256=9HXNZbLEPriZkJvw23V-MRnapodHnlSFpm9AF3CjWkc,4803
|
109
|
+
autogluon/multimodal/optim/utils.py,sha256=h9EHuqJWdjFa40TKHk7PItwt7vujBrGXeK8gvwhkEJU,8871
|
110
|
+
autogluon/multimodal/optim/losses/__init__.py,sha256=TY5J_fhIVD-B9R2rZrnkzPY8cJus78WhyhXY60tCSkQ,454
|
111
|
+
autogluon/multimodal/optim/losses/bce_loss.py,sha256=08wxIjIcosPLhk3sB4Zuqs6tpUvcVMSgqKLXgUR5cGo,748
|
112
|
+
autogluon/multimodal/optim/losses/focal_loss.py,sha256=2KzjgiJpoY9EihZ2mxtBmon5g2VpBfozcTnWdg2nhlg,2585
|
113
|
+
autogluon/multimodal/optim/losses/lemda_loss.py,sha256=-W1qGmW-B8aW3dMEruAi6UaM41ByLjo-umpgrygZaK8,1666
|
114
|
+
autogluon/multimodal/optim/losses/rkd_loss.py,sha256=alysIlQ_sZmJIOJGb6xSSCDUObjuAowSX2VTN4wlqAE,3537
|
115
|
+
autogluon/multimodal/optim/losses/softmax_losses.py,sha256=XjQ7Vhp4tT9B3G-R5XFbsOkypY9sT9AWvmKFBG8FOQo,7088
|
116
|
+
autogluon/multimodal/optim/losses/structure_loss.py,sha256=ak6V1xs7Qhgg2mRQ1lV0vWotpWxWJyZquW8t27QRk-Q,1041
|
117
|
+
autogluon/multimodal/optim/losses/utils.py,sha256=rHYbCY6vEae4_IIQxFxQLakyTb5SSvXwONhGXTDItzg,9827
|
118
|
+
autogluon/multimodal/optim/lr/__init__.py,sha256=XEsnh91Hl0BJL-sCgY9NQ2NnWiHgnMHOYMv-9xL8pHs,100
|
119
|
+
autogluon/multimodal/optim/lr/lr_schedulers.py,sha256=i3GG7T8ZyPXyS7feUVe7W3o6eSLIh_Ei7XujJL50uxw,5829
|
120
|
+
autogluon/multimodal/optim/lr/utils.py,sha256=rfVAyUpA7ALZZ6c0eiCb6MiKVnGASVdDXwerEcyztkQ,10812
|
121
|
+
autogluon/multimodal/optim/metrics/__init__.py,sha256=LgE3vZ3j4pR3IJvz4fUwofj1YUBD_g4y4-BNHDaqJPA,240
|
122
|
+
autogluon/multimodal/optim/metrics/coverage_metrics.py,sha256=WYdnT05AbZDrGdZcqK4KpQ0vkC5Qqc04VMaHi2kjKZQ,1591
|
123
|
+
autogluon/multimodal/optim/metrics/hit_rate_metrics.py,sha256=7cWjPhkJcRONKSdMu3aevt98m2mSmCxuiqkqQd2eGbM,2611
|
124
|
+
autogluon/multimodal/optim/metrics/ranking_metrics.py,sha256=lCuFPnLNhWQisPLrYoRbnE_yg8jYFD20B3MBCK_yA90,7583
|
125
|
+
autogluon/multimodal/optim/metrics/semantic_seg_metrics.py,sha256=tIbSk3iyBRRx7HnZdqIxltRBtDiBt-GX_zBxkMOFxQg,32894
|
126
|
+
autogluon/multimodal/optim/metrics/utils.py,sha256=VU7MJbJplgl89aYqyKrs2WbX-BkU5_0vYGWpPnTjJDQ,12738
|
127
|
+
autogluon/multimodal/utils/__init__.py,sha256=WBfesTQWIpeH1EDxPWgPqr_mUk_X9g-WW-rgwmtqvOE,2543
|
128
|
+
autogluon/multimodal/utils/cache.py,sha256=USg-uBtrhrxKlf0OMz-xbM67A8olfSBRAWU4VYuT4Vg,8180
|
129
|
+
autogluon/multimodal/utils/checkpoint.py,sha256=aF65wkLzMS6ng4YE_1LZuCbbjaNudn0Cfi0insm8I6Q,9745
|
130
|
+
autogluon/multimodal/utils/colormap.py,sha256=DOSPCgeQXk87B2ae3iM7T0RGjrIVozvwp7RHEXzyb-4,3882
|
131
|
+
autogluon/multimodal/utils/config.py,sha256=b-vNiCzmVezygBSkGTtGRyFmVXdznxQIm6P6O_tKi-w,32518
|
132
|
+
autogluon/multimodal/utils/device.py,sha256=60g5-tKCVnn_LAvxG_dnS5cZEzgzLTwU-A4gd-uvIfg,3523
|
133
|
+
autogluon/multimodal/utils/distillation.py,sha256=bm1sB1OFXu0KvGM7D8lPNUpU1C3a1v2jXa5qR4asA8E,5747
|
134
|
+
autogluon/multimodal/utils/download.py,sha256=8F24Ue4alkeKTNfELBdjLaysn6Jde7HH2CdsXNRPP-A,10356
|
135
|
+
autogluon/multimodal/utils/env.py,sha256=3G1JrS6RQrKo2gRX_DIqid6efevFTzWgp5tyX0OQ1MA,559
|
136
|
+
autogluon/multimodal/utils/export.py,sha256=JOTHxbs2l7Wthi5VMCHC89oZ_MTF2H7zi187zDJ4_TI,11944
|
137
|
+
autogluon/multimodal/utils/hpo.py,sha256=V2BZaYTxJXhodwu6Xnv4CMJoczuSkdhrHaqoHT0x5jU,8788
|
138
|
+
autogluon/multimodal/utils/inference.py,sha256=nKvi_kxcsEtU58eby1zHz_iX6vOxWwNHnzv-_TStoxw,13226
|
139
|
+
autogluon/multimodal/utils/install.py,sha256=4b9VW7c7q-yNJHA94mK3HT_hqa5m8AYtzx5hRBL9Szc,3739
|
140
|
+
autogluon/multimodal/utils/label_studio.py,sha256=7lFl75zztIy6VCuCbyZkN-BLbtr0j1S4F42zJteGVYY,13437
|
141
|
+
autogluon/multimodal/utils/load.py,sha256=FNW9_TsOsXpe8zk5-5esvoE8yFv-Wy_ROO7WsbRD5nk,4877
|
142
|
+
autogluon/multimodal/utils/log.py,sha256=4cJ0XN3ziz16tJ2ylxzM4bzVn5ONAeFPC9-gArQmZMQ,4925
|
143
|
+
autogluon/multimodal/utils/matcher.py,sha256=FSLPXoaBAw3sRioHLPABls8RBtzbGJY0m46fLF4U6Ok,18300
|
144
|
+
autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3bCQp2A,4772
|
145
|
+
autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
|
146
|
+
autogluon/multimodal/utils/object_detection.py,sha256=fHZxon5LoYRmNu_7jm_pDjesVxTa72nzZwgwP-5Fft8,53535
|
147
|
+
autogluon/multimodal/utils/onnx.py,sha256=nyj0Zy5SzK0tRw4tO-BfsHwUh48UPHxp7mVQX0JiF-c,5517
|
148
|
+
autogluon/multimodal/utils/path.py,sha256=snyfAMZTqa_v0pJTEBX-v56zcSuX6VoqXHrqbSGriso,219
|
149
|
+
autogluon/multimodal/utils/precision.py,sha256=vcJDPIIn9mgTmba_m4sFqGYC0AmiIXiVSTusGr4RDFo,3757
|
150
|
+
autogluon/multimodal/utils/presets.py,sha256=GAk79BV6NKibpeEtwpFVH52Et2XpQ7ToN6WM7ELcgYc,35210
|
151
|
+
autogluon/multimodal/utils/problem_types.py,sha256=LXCHGaSarhTmpDskI5UEbtLZ7ApdPHrH1xMoDKKCRnc,9691
|
152
|
+
autogluon/multimodal/utils/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
|
153
|
+
autogluon/multimodal/utils/save.py,sha256=aXZa_iue34dAEfTz7nCaRowktG1emEi5uVXe_tDmHBA,4408
|
154
|
+
autogluon/multimodal/utils/strategy.py,sha256=tT9PWh_ZLwNdGFgPsXgZsgKRhpnfBQDjh1mB1_y8G18,833
|
155
|
+
autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
|
156
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
157
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/METADATA,sha256=PXWRilda4h4zcCnNEhDeEWKZXFd2I2tmAY2U0itOGww,13218
|
158
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
159
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
160
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
161
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
162
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
163
|
+
autogluon.multimodal-1.2.1b20250304.dist-info/RECORD,,
|
@@ -1,16 +0,0 @@
|
|
1
|
-
# from . import lit_module, utils
|
2
|
-
from .lit_distiller import DistillerLitModule
|
3
|
-
from .lit_matcher import MatcherLitModule
|
4
|
-
from .lit_mmdet import MMDetLitModule
|
5
|
-
from .lit_module import LitModule
|
6
|
-
from .lit_ner import NerLitModule
|
7
|
-
from .lit_semantic_seg import SemanticSegmentationLitModule
|
8
|
-
from .losses import RKDLoss
|
9
|
-
from .utils import (
|
10
|
-
get_loss_func,
|
11
|
-
get_matcher_loss_func,
|
12
|
-
get_matcher_miner_func,
|
13
|
-
get_metric,
|
14
|
-
get_norm_layer_param_names,
|
15
|
-
get_trainable_params_efficient_finetune,
|
16
|
-
)
|