autogluon.multimodal 1.2.1b20250303__py3-none-any.whl → 1.2.1b20250304__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (126) hide show
  1. autogluon/multimodal/__init__.py +4 -2
  2. autogluon/multimodal/configs/data/default.yaml +4 -2
  3. autogluon/multimodal/configs/{environment → env}/default.yaml +2 -3
  4. autogluon/multimodal/configs/model/default.yaml +58 -11
  5. autogluon/multimodal/configs/{optimization → optim}/default.yaml +21 -4
  6. autogluon/multimodal/constants.py +16 -5
  7. autogluon/multimodal/data/__init__.py +14 -2
  8. autogluon/multimodal/data/dataset.py +2 -2
  9. autogluon/multimodal/data/infer_types.py +16 -2
  10. autogluon/multimodal/data/label_encoder.py +3 -3
  11. autogluon/multimodal/{utils → data}/nlpaug.py +4 -4
  12. autogluon/multimodal/data/preprocess_dataframe.py +55 -38
  13. autogluon/multimodal/data/process_categorical.py +35 -6
  14. autogluon/multimodal/data/process_document.py +59 -33
  15. autogluon/multimodal/data/process_image.py +198 -163
  16. autogluon/multimodal/data/process_label.py +7 -3
  17. autogluon/multimodal/data/process_mmlab/process_mmdet.py +1 -8
  18. autogluon/multimodal/data/process_mmlab/process_mmlab_base.py +2 -9
  19. autogluon/multimodal/data/process_mmlab/process_mmocr.py +1 -9
  20. autogluon/multimodal/data/process_ner.py +192 -4
  21. autogluon/multimodal/data/process_numerical.py +32 -5
  22. autogluon/multimodal/data/process_semantic_seg_img.py +23 -28
  23. autogluon/multimodal/data/process_text.py +95 -58
  24. autogluon/multimodal/data/template_engine.py +7 -9
  25. autogluon/multimodal/data/templates.py +0 -2
  26. autogluon/multimodal/data/trivial_augmenter.py +2 -2
  27. autogluon/multimodal/data/utils.py +564 -338
  28. autogluon/multimodal/learners/__init__.py +2 -1
  29. autogluon/multimodal/learners/base.py +189 -189
  30. autogluon/multimodal/learners/ensemble.py +748 -0
  31. autogluon/multimodal/learners/few_shot_svm.py +6 -15
  32. autogluon/multimodal/learners/matching.py +59 -84
  33. autogluon/multimodal/learners/ner.py +23 -22
  34. autogluon/multimodal/learners/object_detection.py +26 -21
  35. autogluon/multimodal/learners/semantic_segmentation.py +16 -18
  36. autogluon/multimodal/models/__init__.py +12 -3
  37. autogluon/multimodal/models/augmenter.py +175 -0
  38. autogluon/multimodal/models/categorical_mlp.py +13 -8
  39. autogluon/multimodal/models/clip.py +92 -18
  40. autogluon/multimodal/models/custom_transformer.py +75 -75
  41. autogluon/multimodal/models/document_transformer.py +23 -9
  42. autogluon/multimodal/models/ft_transformer.py +40 -35
  43. autogluon/multimodal/models/fusion/base.py +2 -4
  44. autogluon/multimodal/models/fusion/fusion_mlp.py +82 -18
  45. autogluon/multimodal/models/fusion/fusion_ner.py +1 -1
  46. autogluon/multimodal/models/fusion/fusion_transformer.py +23 -23
  47. autogluon/multimodal/models/{huggingface_text.py → hf_text.py} +21 -2
  48. autogluon/multimodal/models/meta_transformer.py +336 -0
  49. autogluon/multimodal/models/mlp.py +6 -6
  50. autogluon/multimodal/models/mmocr_text_detection.py +1 -1
  51. autogluon/multimodal/models/mmocr_text_recognition.py +0 -1
  52. autogluon/multimodal/models/ner_text.py +1 -8
  53. autogluon/multimodal/models/numerical_mlp.py +14 -8
  54. autogluon/multimodal/models/sam.py +12 -2
  55. autogluon/multimodal/models/t_few.py +21 -5
  56. autogluon/multimodal/models/timm_image.py +74 -32
  57. autogluon/multimodal/models/utils.py +877 -16
  58. autogluon/multimodal/optim/__init__.py +17 -0
  59. autogluon/multimodal/{optimization → optim}/lit_distiller.py +2 -1
  60. autogluon/multimodal/{optimization → optim}/lit_matcher.py +4 -10
  61. autogluon/multimodal/{optimization → optim}/lit_mmdet.py +2 -10
  62. autogluon/multimodal/{optimization → optim}/lit_module.py +139 -14
  63. autogluon/multimodal/{optimization → optim}/lit_ner.py +3 -3
  64. autogluon/multimodal/{optimization → optim}/lit_semantic_seg.py +1 -1
  65. autogluon/multimodal/optim/losses/__init__.py +14 -0
  66. autogluon/multimodal/optim/losses/bce_loss.py +25 -0
  67. autogluon/multimodal/optim/losses/focal_loss.py +81 -0
  68. autogluon/multimodal/optim/losses/lemda_loss.py +39 -0
  69. autogluon/multimodal/optim/losses/rkd_loss.py +103 -0
  70. autogluon/multimodal/optim/losses/softmax_losses.py +177 -0
  71. autogluon/multimodal/optim/losses/structure_loss.py +26 -0
  72. autogluon/multimodal/optim/losses/utils.py +313 -0
  73. autogluon/multimodal/optim/lr/__init__.py +1 -0
  74. autogluon/multimodal/optim/lr/utils.py +332 -0
  75. autogluon/multimodal/optim/metrics/__init__.py +4 -0
  76. autogluon/multimodal/optim/metrics/coverage_metrics.py +42 -0
  77. autogluon/multimodal/optim/metrics/hit_rate_metrics.py +78 -0
  78. autogluon/multimodal/optim/metrics/ranking_metrics.py +231 -0
  79. autogluon/multimodal/optim/metrics/utils.py +359 -0
  80. autogluon/multimodal/optim/utils.py +284 -0
  81. autogluon/multimodal/predictor.py +51 -12
  82. autogluon/multimodal/utils/__init__.py +19 -45
  83. autogluon/multimodal/utils/cache.py +23 -2
  84. autogluon/multimodal/utils/checkpoint.py +58 -5
  85. autogluon/multimodal/utils/config.py +127 -55
  86. autogluon/multimodal/utils/device.py +120 -0
  87. autogluon/multimodal/utils/distillation.py +8 -8
  88. autogluon/multimodal/utils/download.py +1 -1
  89. autogluon/multimodal/utils/env.py +22 -0
  90. autogluon/multimodal/utils/export.py +3 -3
  91. autogluon/multimodal/utils/hpo.py +5 -5
  92. autogluon/multimodal/utils/inference.py +37 -4
  93. autogluon/multimodal/utils/install.py +91 -0
  94. autogluon/multimodal/utils/load.py +52 -47
  95. autogluon/multimodal/utils/log.py +6 -41
  96. autogluon/multimodal/utils/matcher.py +3 -2
  97. autogluon/multimodal/utils/onnx.py +0 -4
  98. autogluon/multimodal/utils/path.py +10 -0
  99. autogluon/multimodal/utils/precision.py +130 -0
  100. autogluon/multimodal/{presets.py → utils/presets.py} +259 -66
  101. autogluon/multimodal/{problem_types.py → utils/problem_types.py} +30 -1
  102. autogluon/multimodal/utils/save.py +47 -29
  103. autogluon/multimodal/utils/strategy.py +24 -0
  104. autogluon/multimodal/version.py +1 -1
  105. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/METADATA +5 -5
  106. autogluon.multimodal-1.2.1b20250304.dist-info/RECORD +163 -0
  107. autogluon/multimodal/optimization/__init__.py +0 -16
  108. autogluon/multimodal/optimization/losses.py +0 -394
  109. autogluon/multimodal/optimization/utils.py +0 -1054
  110. autogluon/multimodal/utils/cloud_io.py +0 -80
  111. autogluon/multimodal/utils/data.py +0 -701
  112. autogluon/multimodal/utils/environment.py +0 -395
  113. autogluon/multimodal/utils/metric.py +0 -500
  114. autogluon/multimodal/utils/model.py +0 -558
  115. autogluon.multimodal-1.2.1b20250303.dist-info/RECORD +0 -145
  116. /autogluon/multimodal/{optimization → optim}/deepspeed.py +0 -0
  117. /autogluon/multimodal/{optimization/lr_scheduler.py → optim/lr/lr_schedulers.py} +0 -0
  118. /autogluon/multimodal/{optimization → optim/metrics}/semantic_seg_metrics.py +0 -0
  119. /autogluon/multimodal/{registry.py → utils/registry.py} +0 -0
  120. /autogluon.multimodal-1.2.1b20250303-py3.9-nspkg.pth → /autogluon.multimodal-1.2.1b20250304-py3.9-nspkg.pth +0 -0
  121. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/LICENSE +0 -0
  122. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/NOTICE +0 -0
  123. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/WHEEL +0 -0
  124. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/namespace_packages.txt +0 -0
  125. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/top_level.txt +0 -0
  126. {autogluon.multimodal-1.2.1b20250303.dist-info → autogluon.multimodal-1.2.1b20250304.dist-info}/zip-safe +0 -0
@@ -1,42 +1,17 @@
1
1
  import logging
2
2
  import os
3
+ from datetime import datetime
3
4
  from typing import Dict, List, Optional, Tuple, Union
4
5
 
6
+ import pytz
7
+
5
8
  from autogluon.common.utils.utils import setup_outputdir
6
9
 
7
- from ..constants import AUTOMM, HF_MODELS, LAST_CHECKPOINT
8
- from ..data import TextProcessor
10
+ from ..constants import LAST_CHECKPOINT
9
11
 
10
12
  logger = logging.getLogger(__name__)
11
13
 
12
14
 
13
- def save_text_tokenizers(
14
- text_processors: List[TextProcessor],
15
- path: str,
16
- ) -> List[TextProcessor]:
17
- """
18
- Save all the text tokenizers and record their relative paths, which are
19
- the corresponding model names, e.g, hf_text.
20
-
21
- Parameters
22
- ----------
23
- text_processors
24
- A list of text processors with tokenizers.
25
- path
26
- The root path.
27
-
28
- Returns
29
- -------
30
- A list of text processors with tokenizers replaced by their local relative paths.
31
- """
32
- for per_text_processor in text_processors:
33
- per_path = os.path.join(path, per_text_processor.prefix)
34
- per_text_processor.tokenizer.save_pretrained(per_path)
35
- per_text_processor.tokenizer = per_text_processor.prefix
36
-
37
- return text_processors
38
-
39
-
40
15
  def process_save_path(path, resume: Optional[bool] = False, raise_if_exist: Optional[bool] = True):
41
16
  """
42
17
  Convert the provided path to an absolute path and check whether it is valid.
@@ -113,3 +88,46 @@ def setup_save_path(
113
88
  logger.debug(f"save path: {save_path}")
114
89
 
115
90
  return save_path
91
+
92
+
93
+ def make_exp_dir(
94
+ root_path: str,
95
+ job_name: Optional[str] = None,
96
+ create: Optional[bool] = True,
97
+ ):
98
+ """
99
+ Creates the exp dir of format e.g.,: root_path/2022_01_01/job_name_12_00_00/
100
+ This function is to better organize the training runs. It is recommended to call this
101
+ function and pass the returned "exp_dir" to "MultiModalPredictor.fit(save_path=exp_dir)".
102
+
103
+ Parameters
104
+ ----------
105
+ root_path
106
+ The basic path where to create saving directories for training runs.
107
+ job_name
108
+ The job names to name training runs.
109
+ create
110
+ Whether to make the directory.
111
+
112
+ Returns
113
+ -------
114
+ The formatted directory path.
115
+ """
116
+ tz = pytz.timezone("US/Pacific")
117
+ ct = datetime.now(tz=tz)
118
+ date_stamp = ct.strftime("%Y_%m_%d")
119
+ time_stamp = ct.strftime("%H_%M_%S")
120
+
121
+ # Group logs by day first
122
+ exp_dir = os.path.join(root_path, date_stamp)
123
+
124
+ # Then, group by run_name and hour + min + sec to avoid duplicates
125
+ if job_name:
126
+ exp_dir = os.path.join(exp_dir, "_".join([job_name, time_stamp]))
127
+ else:
128
+ exp_dir = os.path.join(exp_dir, time_stamp)
129
+
130
+ if create:
131
+ os.makedirs(exp_dir, mode=0o777, exist_ok=False)
132
+
133
+ return exp_dir
@@ -0,0 +1,24 @@
1
+ import logging
2
+
3
+ from ..constants import DDP_STRATEGIES
4
+
5
+ logger = logging.getLogger(__name__)
6
+
7
+
8
+ def is_interactive_strategy(strategy: str):
9
+ if isinstance(strategy, str) and strategy:
10
+ return strategy.startswith(("ddp_fork", "ddp_notebook"))
11
+ else:
12
+ return False
13
+
14
+
15
+ def run_ddp_only_once(num_gpus: int, strategy: str):
16
+ if strategy in DDP_STRATEGIES:
17
+ global FIRST_DDP_RUN # Use the global variable to make sure it is tracked per process
18
+ if "FIRST_DDP_RUN" in globals() and not FIRST_DDP_RUN:
19
+ # not the first time running DDP, set number of devices to 1 (use single GPU)
20
+ return min(1, num_gpus), "auto"
21
+ else:
22
+ if num_gpus > 1:
23
+ FIRST_DDP_RUN = False # run DDP for the first time, disable the following runs
24
+ return num_gpus, strategy
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250303"
3
+ __version__ = "1.2.1b20250304"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.multimodal
3
- Version: 1.2.1b20250303
3
+ Version: 1.2.1b20250304
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -57,9 +57,9 @@ Requires-Dist: scikit-image<0.25.0,>=0.19.1
57
57
  Requires-Dist: text-unidecode<1.4,>=1.3
58
58
  Requires-Dist: torchmetrics<1.6.2,>=1.2.0
59
59
  Requires-Dist: omegaconf<2.3.0,>=2.1.1
60
- Requires-Dist: autogluon.core[raytune]==1.2.1b20250303
61
- Requires-Dist: autogluon.features==1.2.1b20250303
62
- Requires-Dist: autogluon.common==1.2.1b20250303
60
+ Requires-Dist: autogluon.core[raytune]==1.2.1b20250304
61
+ Requires-Dist: autogluon.features==1.2.1b20250304
62
+ Requires-Dist: autogluon.common==1.2.1b20250304
63
63
  Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
64
64
  Requires-Dist: nlpaug<1.2.0,>=1.1.10
65
65
  Requires-Dist: nltk<3.9,>=3.4.5
@@ -72,7 +72,7 @@ Requires-Dist: nvidia-ml-py3==7.352.0
72
72
  Requires-Dist: pdf2image<1.19,>=1.17.0
73
73
  Provides-Extra: tests
74
74
  Requires-Dist: ruff; extra == "tests"
75
- Requires-Dist: datasets<2.15.0,>=2.10.0; extra == "tests"
75
+ Requires-Dist: datasets<2.20.0,>=2.16.0; extra == "tests"
76
76
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
77
77
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
78
78
  Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
@@ -0,0 +1,163 @@
1
+ autogluon.multimodal-1.2.1b20250304-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
+ autogluon/multimodal/__init__.py,sha256=6WuDt3sMP1QLJs9se-20mmHCsFR-q2ZttPc8s0k1QWA,204
3
+ autogluon/multimodal/constants.py,sha256=eLF3t-447nw3aNrYPh4Y8pycdECGu__wv6TC-amfXw8,9509
4
+ autogluon/multimodal/predictor.py,sha256=4lou5yGysY1O86A-PX8AgsJvjB5bq2eHJ9zB1DyZFew,42847
5
+ autogluon/multimodal/version.py,sha256=p0UlMkkxgxdnhofvyqKPl_WnTfvNk3krUjeDbJ0df5c,91
6
+ autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
+ autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
8
+ autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
9
+ autogluon/multimodal/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ autogluon/multimodal/configs/data/default.yaml,sha256=FZiO92xxLy9kv79wA8Ve5GvZCsbkxdJNRwf4VoiuNMA,3322
11
+ autogluon/multimodal/configs/distiller/default.yaml,sha256=DiCZYYJDEk5k03ZI-ewj9hWiKpMQbB8oqjWYavMK1wU,513
12
+ autogluon/multimodal/configs/env/default.yaml,sha256=LVACv_1RJAJIvXKqdU-kSlVxith_MrcCsRcJGROMNEE,1156
13
+ autogluon/multimodal/configs/matcher/default.yaml,sha256=K0ehM0uIFfKq1CeeaFcv14RBjo3khMgWKS2ymWI-V9I,218
14
+ autogluon/multimodal/configs/model/default.yaml,sha256=yKSFS6Uv0FsHjVs6bb7mygwwbDZphEbklhB5pWEIOGE,10001
15
+ autogluon/multimodal/configs/optim/default.yaml,sha256=pX8FyCJpzjl_EuGMXP2LV5WgMp5WE2HOEPKF5Rf-isg,2517
16
+ autogluon/multimodal/configs/pretrain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
+ autogluon/multimodal/configs/pretrain/detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
+ autogluon/multimodal/configs/pretrain/detection/coco_detection.py,sha256=UlSwkWAkST_96RTzPZMuPuqIfv72U03-JdqwPd-NjiQ,3171
19
+ autogluon/multimodal/configs/pretrain/detection/default_runtime.py,sha256=9hJmjxb6fIo-kbbejQlJy4ayopRFUyA_w95plhAUFDw,793
20
+ autogluon/multimodal/configs/pretrain/detection/schedule_1x.py,sha256=VhZ8HT-ryeGW-GzxiVsDEIYf9Bw6ImOdPucFVJaN0Os,298
21
+ autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py,sha256=r51gu03JBHrTjDXkT2CdNKTzEeWx2qxk8t-TEHgKwSQ,5919
22
+ autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py,sha256=VYvjELfzX2jYmsQLFvMYWeixx2LmB_LwbPmzgLAPUwo,1137
23
+ autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-36e_coco.py,sha256=OL4Za_hd5IhQU8iHEAVrsFu-MnSmOPu1_WRa39i3QYA,266
24
+ autogluon/multimodal/configs/pretrain/detection/dino/dino_swinl_tta.py,sha256=vi5rhbaT3mgycIm1W8jQ6l-KuFoL24OiiF-rdj2CTNg,68
25
+ autogluon/multimodal/configs/pretrain/detection/dino/dino_tta.py,sha256=pwNnOJxut95HwGyS4RDjxTF-hH9HLpTQAyE2Ni7dzAA,1467
26
+ autogluon/multimodal/configs/pretrain/detection/faster_rcnn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
+ autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py,sha256=ydjGKiEV5jK-wTT5yQj_RuDbJtO7jkuaM2SEZ8h7i_o,3292
28
+ autogluon/multimodal/configs/pretrain/detection/voc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
+ autogluon/multimodal/configs/pretrain/detection/voc/faster_rcnn_r50_fpn_1x_voc0712.py,sha256=0-8ouww1EBlrKvr6ZYYXbfuTLRrkoIgYdLWkwGce2Dk,465
30
+ autogluon/multimodal/configs/pretrain/detection/voc/voc0712.py,sha256=0QLZ5SNSZItyRPqycFqYWG_7WsHOk_BaO36BUCYSrdU,1949
31
+ autogluon/multimodal/configs/pretrain/detection/yolox/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_l_8xb8-300e_coco.py,sha256=diOkTur8K7IU3TpdDXOBQD21fnKoEgBVfp_RPppKlYA,266
33
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_m_8xb8-300e_coco.py,sha256=BV3E49u9eW4DcGS0i7dh8voKklRiRnQkpKccsy7P4gI,267
34
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_nano_8xb8-300e_coco.py,sha256=zgbpeDVVZpeXkOK124HEn7DOvFtUaBOmE933IhKhiMw,326
35
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_s_8xb8-300e_coco.py,sha256=xIwGrokP9She_0-btI-i5RxfG2rINfCZfturVQavLxk,3826
36
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_tiny_8xb8-300e_coco.py,sha256=K43L2pWR4GIon1W_Ucq59g0aLTCvyi8fJ2lHKP5JzOY,800
37
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_tta.py,sha256=4mJ1rW20wjxYkjebpPOOwl9VkxssloFRNEsUGeRCF6Y,1313
38
+ autogluon/multimodal/configs/pretrain/detection/yolox/yolox_x_8xb8-300e_coco.py,sha256=Qy1eb8pND6c4yv3SLiLDi3Hs5YSY5KUd9xIhFi3e2uQ,268
39
+ autogluon/multimodal/data/__init__.py,sha256=lu4q4wrTRbhnRLv68mEIjdQj8uqcZ8Pw-KNIuCLEtHg,1296
40
+ autogluon/multimodal/data/collator.py,sha256=UkfIpXgcwQVNXrzSv7vdWcWyQkKMyIPe1JPZTEYMAtU,9729
41
+ autogluon/multimodal/data/datamodule.py,sha256=xTYg2kZ5i9NbGglnsPVURIJxDqvL8lusNMALuQxE5Wc,8826
42
+ autogluon/multimodal/data/dataset.py,sha256=jrv7R_981BISR1PhyAYjQ4K5wVwpHlwGwCM7LNgw9Wg,4296
43
+ autogluon/multimodal/data/infer_types.py,sha256=g3Xh5EWWdVjaIsJU0WtvGM1Xxnw64nrkhj8PMIYFSgQ,27615
44
+ autogluon/multimodal/data/label_encoder.py,sha256=vtylosG8lEuefc0I0zy-CUj0IXnANLs2VBaAuXfDiUY,10583
45
+ autogluon/multimodal/data/mixup.py,sha256=zYj3tgKxE25868bbBuQEiAZnch-yHR5bqJWk9cI9kFc,7388
46
+ autogluon/multimodal/data/nlpaug.py,sha256=2Dh_Q_CL3DQtMUW_4YyHKdyIoOnPgIFMq5xA3ZMrYfY,2549
47
+ autogluon/multimodal/data/preprocess_dataframe.py,sha256=CgdlqqkBRy0tRQj-ZHYFhE-oExJ7_wYHFuqXGTcIh7o,35801
48
+ autogluon/multimodal/data/process_categorical.py,sha256=B4OXfMdi7cJwsR9gi0QF9s6Bm3OtmfAcokMrJyqyhME,4819
49
+ autogluon/multimodal/data/process_document.py,sha256=OGjKCXKoOBKMJnigFo5R61n8XjJoJfv9emETrTbX1do,14825
50
+ autogluon/multimodal/data/process_image.py,sha256=LN_xiN8B6NiGlra3LGMGveZURyfgqVbwuEhcF3Ljz0U,15150
51
+ autogluon/multimodal/data/process_label.py,sha256=WnRTD4gFtlcD3LW9BL3ML3OSYHH388_4b0LOl1YYDOk,2858
52
+ autogluon/multimodal/data/process_ner.py,sha256=AalZsFRr5fHB4s2duW3hqaSH_kxz12CgEiMV0bcT79M,13656
53
+ autogluon/multimodal/data/process_numerical.py,sha256=9ttKKCxk0EybZNQTuKlRwdHbbIvR4o944oUnU6o6M6Y,4883
54
+ autogluon/multimodal/data/process_semantic_seg_img.py,sha256=0MEoSGwDIpnX6JvzrV8ygi8vwtmc_aOINyaBVgeNJzI,11793
55
+ autogluon/multimodal/data/process_text.py,sha256=akQqiufnWmWZbnZRqCRISWpV3pQMDH1lZbnFdIADJOs,20118
56
+ autogluon/multimodal/data/randaug.py,sha256=iidjz4CtqWnhxtJKafr7yNoJOpmwdlYyMWHrpVoejY0,7005
57
+ autogluon/multimodal/data/template_engine.py,sha256=r57P_eLSSkjgI5B8czow7CNxlPsqqaDdPlaMTqVlHUw,3433
58
+ autogluon/multimodal/data/templates.py,sha256=UwElnQvBE2qZtnv3-1E8nQhOmcVzcFfonRnQKwpov2M,25346
59
+ autogluon/multimodal/data/trivial_augmenter.py,sha256=ZTAjrkvbgCinksU_qKRNl0ZuHj1wISaTkh0Q4gdgeoY,8388
60
+ autogluon/multimodal/data/utils.py,sha256=kFK_pLyaAzw6mbed_PlY-fF6pyw6Gw6Y2mTuC8hcJbk,28900
61
+ autogluon/multimodal/data/dataset_mmlab/__init__.py,sha256=MXibqfVtAX2jjveMUtdHmSH6SabXEDrAOfZzTs3pK3Y,119
62
+ autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=2rABeHdUo8S9Amv7wQqft80AASrfEtCDD5ixfs85jDc,32960
63
+ autogluon/multimodal/data/process_mmlab/__init__.py,sha256=EWrLTx1ZcBdWDDPVirBW5VXonpKqY4jSPPmqYSwJbvY,84
64
+ autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=wWcoeLoostH4y9oilSuJJmOT0so7hUVBR3mDo4XFIzY,6884
65
+ autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=7RorcwDoMRfLgtFEmH26uEg0csKvxyD21gdPh-9N4YM,6540
66
+ autogluon/multimodal/data/process_mmlab/process_mmocr.py,sha256=dwhPDq1A84eqwZHnQMZFyg9GcnFTEkMCLBhJfhUeqQk,2913
67
+ autogluon/multimodal/learners/__init__.py,sha256=BnOY7nwfXJ6rjPawF1mebSxB5Jx-OdiGwc_P53kNXOc,294
68
+ autogluon/multimodal/learners/base.py,sha256=CkEq1RispBsW99vpDLuBIVU3_KwIc3yuHiEneF4BKww,99600
69
+ autogluon/multimodal/learners/ensemble.py,sha256=yJOyGdgeqKeriSCdiv809pn8AEdx6uGIKG5O5RGp_wY,30525
70
+ autogluon/multimodal/learners/few_shot_svm.py,sha256=XWD7uufpyemGSM9z8rIXksbHvU3YRlgQ0Vq_Wm0Sxe0,23919
71
+ autogluon/multimodal/learners/matching.py,sha256=l0gXRAECBlO7G9_pYSaytl3RDERngMNLm7pzxUcPYwg,88428
72
+ autogluon/multimodal/learners/ner.py,sha256=guxVA3Oc9JMQXALir0mINdcU1UcbIcSqGoywbsQkibw,18820
73
+ autogluon/multimodal/learners/object_detection.py,sha256=HszfWyYbxKZqHgXngFkR6EbVHGjFR1BSZ4PxxVx5c6o,30911
74
+ autogluon/multimodal/learners/semantic_segmentation.py,sha256=sO-Jl85IQlT3hrE7RAXzaYttJY65N-8D0UhMTJw6Acw,19900
75
+ autogluon/multimodal/models/__init__.py,sha256=PWplL_fQEIKoKv3f7CSMXqZOMXQYNVUvsyt5s8MpRpk,1045
76
+ autogluon/multimodal/models/adaptation_layers.py,sha256=NuzwU_ghk8D2axmDuD8UEZ_HamoMSCcKMV9DB1AYWAg,38425
77
+ autogluon/multimodal/models/augmenter.py,sha256=47FXh1TNpTOgugqMUa9wrGU1jlj7Ue2yMFOSklJRTWs,5817
78
+ autogluon/multimodal/models/categorical_mlp.py,sha256=Rqniwoci_AZeX5s-dLjdei_VNK6EWey8sfdmiXJaYuI,4873
79
+ autogluon/multimodal/models/clip.py,sha256=fxafnSqkH1eJ3L-OYqkmGFrdfWG5Ok_HD03VKCzUNN0,12179
80
+ autogluon/multimodal/models/custom_transformer.py,sha256=k47qayL4ar4GQ1xLueG8PxNi6SoeXVzAlrWzL2hVEWU,27808
81
+ autogluon/multimodal/models/document_transformer.py,sha256=L4iBbjBXmllgWaCXyNfly6PjfgGoxfOQNDMm3NfQSnc,7990
82
+ autogluon/multimodal/models/ft_transformer.py,sha256=G9xxx5Mzc9P46i8F4uuz85kNIphz-xoUiwTzso5aqPE,26660
83
+ autogluon/multimodal/models/hf_text.py,sha256=I890lYC2w89vIHE2KHagEKxG8wT0K-AmzSYaM724xkk,12641
84
+ autogluon/multimodal/models/meta_transformer.py,sha256=KtHUrJsk_pMj5p7oKv0bT2ha3VBWYHBaXw-yXlQqfPw,12851
85
+ autogluon/multimodal/models/mlp.py,sha256=6IsVYVSoyAXqPlrstF-DBJhaLLpw6vKJ9qQfqQ5emT4,4421
86
+ autogluon/multimodal/models/mmdet_image.py,sha256=gdgoyBXVyiXMDhnKwFPafpgxv4PhFXFt4PZ_TLsW22I,27112
87
+ autogluon/multimodal/models/mmocr_text_detection.py,sha256=4XdRvaujXh3amzzC6w-2kK9gBs6yrAYFvI75g4iizDU,3676
88
+ autogluon/multimodal/models/mmocr_text_recognition.py,sha256=DVpR3hf9kGSJC4aWis_hZcZOx2omjnn4BXX43yjAvko,3982
89
+ autogluon/multimodal/models/ner_text.py,sha256=KzfzweWplUdVrD75AVuScKJSlcGFkZt9DjG0ZJy_bb0,10075
90
+ autogluon/multimodal/models/numerical_mlp.py,sha256=OaMyShEqqeEo9rWc_dyvOPkC4z6Y4IyGSgcKhnE1e_g,4341
91
+ autogluon/multimodal/models/sam.py,sha256=uGCj2k5VuToHb8_obOerC5DmwjsT2xrP_2ujMa9fpAg,18854
92
+ autogluon/multimodal/models/t_few.py,sha256=KQ6QPwWjmbv9sBVTK-qqb-KIxNPmxsk0eeaEfyQRhJc,13905
93
+ autogluon/multimodal/models/timm_image.py,sha256=6WSYoMwpRLuorxOWV40ZL4eLuvHzME1aoUJz9yrdL1o,13947
94
+ autogluon/multimodal/models/utils.py,sha256=2xiEDMmiHUe-aqjxyUFYS6O0mgYmv6Q0Gcj67q7-0RU,63377
95
+ autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py,sha256=zsdXyzF29x_os6L-Kjflmwn50fo5l7dQYirAA46Ts7A,66856
96
+ autogluon/multimodal/models/fusion/__init__.py,sha256=Fy7eEsOddtGy5L0sav0pWHDRqgukKdCPJPXzmBEM-uk,196
97
+ autogluon/multimodal/models/fusion/base.py,sha256=fy1_1p3LAqYOBd9uG-S-sYxcRQcRBb_V_00Ha7L_WHo,2525
98
+ autogluon/multimodal/models/fusion/fusion_mlp.py,sha256=Ierm6vzQrV8cJA7oiQqVSfB8xdcDD2SUZhse99ZJZOw,9846
99
+ autogluon/multimodal/models/fusion/fusion_ner.py,sha256=nEu3W_BOsiDopY9XzAmGbvVyB5U1-0uyajl3uAzBV3o,6370
100
+ autogluon/multimodal/models/fusion/fusion_transformer.py,sha256=oIDeEmXI0RHuJOEDr6-XeNxc_SxVg-IQIS6p7uSZyBQ,9078
101
+ autogluon/multimodal/optim/__init__.py,sha256=yygVzD0Q5aRf3or_aMu2jaf5tz_cGLX7-GA8pLFEf48,601
102
+ autogluon/multimodal/optim/deepspeed.py,sha256=KXIfU7Df5Vm3lCoJ-gT58E93Xdw4kznvHau9eIdzI84,14966
103
+ autogluon/multimodal/optim/lit_distiller.py,sha256=Nf1gfqPgzxSAETj-hp0bOzpYqQJLK6qM7eOzNjcX0YQ,21533
104
+ autogluon/multimodal/optim/lit_matcher.py,sha256=7OC2PvF_BnV-fTh2mqZdirrlkZULpx8LhSJCB7HrZR8,17664
105
+ autogluon/multimodal/optim/lit_mmdet.py,sha256=rWxmgwRdg9gKnPI3hYTgvkH7nyCoSwg0HANcd3YCqd4,9731
106
+ autogluon/multimodal/optim/lit_module.py,sha256=LJqS2S6mVLc0G9fasB-uTJ-Dqf4WsB5OfsSJF3MSIzw,22624
107
+ autogluon/multimodal/optim/lit_ner.py,sha256=SCmhGRUGz1ELrAG2Tlw1UwxJ3XUcvjvWxJserw-KpTk,8579
108
+ autogluon/multimodal/optim/lit_semantic_seg.py,sha256=9HXNZbLEPriZkJvw23V-MRnapodHnlSFpm9AF3CjWkc,4803
109
+ autogluon/multimodal/optim/utils.py,sha256=h9EHuqJWdjFa40TKHk7PItwt7vujBrGXeK8gvwhkEJU,8871
110
+ autogluon/multimodal/optim/losses/__init__.py,sha256=TY5J_fhIVD-B9R2rZrnkzPY8cJus78WhyhXY60tCSkQ,454
111
+ autogluon/multimodal/optim/losses/bce_loss.py,sha256=08wxIjIcosPLhk3sB4Zuqs6tpUvcVMSgqKLXgUR5cGo,748
112
+ autogluon/multimodal/optim/losses/focal_loss.py,sha256=2KzjgiJpoY9EihZ2mxtBmon5g2VpBfozcTnWdg2nhlg,2585
113
+ autogluon/multimodal/optim/losses/lemda_loss.py,sha256=-W1qGmW-B8aW3dMEruAi6UaM41ByLjo-umpgrygZaK8,1666
114
+ autogluon/multimodal/optim/losses/rkd_loss.py,sha256=alysIlQ_sZmJIOJGb6xSSCDUObjuAowSX2VTN4wlqAE,3537
115
+ autogluon/multimodal/optim/losses/softmax_losses.py,sha256=XjQ7Vhp4tT9B3G-R5XFbsOkypY9sT9AWvmKFBG8FOQo,7088
116
+ autogluon/multimodal/optim/losses/structure_loss.py,sha256=ak6V1xs7Qhgg2mRQ1lV0vWotpWxWJyZquW8t27QRk-Q,1041
117
+ autogluon/multimodal/optim/losses/utils.py,sha256=rHYbCY6vEae4_IIQxFxQLakyTb5SSvXwONhGXTDItzg,9827
118
+ autogluon/multimodal/optim/lr/__init__.py,sha256=XEsnh91Hl0BJL-sCgY9NQ2NnWiHgnMHOYMv-9xL8pHs,100
119
+ autogluon/multimodal/optim/lr/lr_schedulers.py,sha256=i3GG7T8ZyPXyS7feUVe7W3o6eSLIh_Ei7XujJL50uxw,5829
120
+ autogluon/multimodal/optim/lr/utils.py,sha256=rfVAyUpA7ALZZ6c0eiCb6MiKVnGASVdDXwerEcyztkQ,10812
121
+ autogluon/multimodal/optim/metrics/__init__.py,sha256=LgE3vZ3j4pR3IJvz4fUwofj1YUBD_g4y4-BNHDaqJPA,240
122
+ autogluon/multimodal/optim/metrics/coverage_metrics.py,sha256=WYdnT05AbZDrGdZcqK4KpQ0vkC5Qqc04VMaHi2kjKZQ,1591
123
+ autogluon/multimodal/optim/metrics/hit_rate_metrics.py,sha256=7cWjPhkJcRONKSdMu3aevt98m2mSmCxuiqkqQd2eGbM,2611
124
+ autogluon/multimodal/optim/metrics/ranking_metrics.py,sha256=lCuFPnLNhWQisPLrYoRbnE_yg8jYFD20B3MBCK_yA90,7583
125
+ autogluon/multimodal/optim/metrics/semantic_seg_metrics.py,sha256=tIbSk3iyBRRx7HnZdqIxltRBtDiBt-GX_zBxkMOFxQg,32894
126
+ autogluon/multimodal/optim/metrics/utils.py,sha256=VU7MJbJplgl89aYqyKrs2WbX-BkU5_0vYGWpPnTjJDQ,12738
127
+ autogluon/multimodal/utils/__init__.py,sha256=WBfesTQWIpeH1EDxPWgPqr_mUk_X9g-WW-rgwmtqvOE,2543
128
+ autogluon/multimodal/utils/cache.py,sha256=USg-uBtrhrxKlf0OMz-xbM67A8olfSBRAWU4VYuT4Vg,8180
129
+ autogluon/multimodal/utils/checkpoint.py,sha256=aF65wkLzMS6ng4YE_1LZuCbbjaNudn0Cfi0insm8I6Q,9745
130
+ autogluon/multimodal/utils/colormap.py,sha256=DOSPCgeQXk87B2ae3iM7T0RGjrIVozvwp7RHEXzyb-4,3882
131
+ autogluon/multimodal/utils/config.py,sha256=b-vNiCzmVezygBSkGTtGRyFmVXdznxQIm6P6O_tKi-w,32518
132
+ autogluon/multimodal/utils/device.py,sha256=60g5-tKCVnn_LAvxG_dnS5cZEzgzLTwU-A4gd-uvIfg,3523
133
+ autogluon/multimodal/utils/distillation.py,sha256=bm1sB1OFXu0KvGM7D8lPNUpU1C3a1v2jXa5qR4asA8E,5747
134
+ autogluon/multimodal/utils/download.py,sha256=8F24Ue4alkeKTNfELBdjLaysn6Jde7HH2CdsXNRPP-A,10356
135
+ autogluon/multimodal/utils/env.py,sha256=3G1JrS6RQrKo2gRX_DIqid6efevFTzWgp5tyX0OQ1MA,559
136
+ autogluon/multimodal/utils/export.py,sha256=JOTHxbs2l7Wthi5VMCHC89oZ_MTF2H7zi187zDJ4_TI,11944
137
+ autogluon/multimodal/utils/hpo.py,sha256=V2BZaYTxJXhodwu6Xnv4CMJoczuSkdhrHaqoHT0x5jU,8788
138
+ autogluon/multimodal/utils/inference.py,sha256=nKvi_kxcsEtU58eby1zHz_iX6vOxWwNHnzv-_TStoxw,13226
139
+ autogluon/multimodal/utils/install.py,sha256=4b9VW7c7q-yNJHA94mK3HT_hqa5m8AYtzx5hRBL9Szc,3739
140
+ autogluon/multimodal/utils/label_studio.py,sha256=7lFl75zztIy6VCuCbyZkN-BLbtr0j1S4F42zJteGVYY,13437
141
+ autogluon/multimodal/utils/load.py,sha256=FNW9_TsOsXpe8zk5-5esvoE8yFv-Wy_ROO7WsbRD5nk,4877
142
+ autogluon/multimodal/utils/log.py,sha256=4cJ0XN3ziz16tJ2ylxzM4bzVn5ONAeFPC9-gArQmZMQ,4925
143
+ autogluon/multimodal/utils/matcher.py,sha256=FSLPXoaBAw3sRioHLPABls8RBtzbGJY0m46fLF4U6Ok,18300
144
+ autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3bCQp2A,4772
145
+ autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
146
+ autogluon/multimodal/utils/object_detection.py,sha256=fHZxon5LoYRmNu_7jm_pDjesVxTa72nzZwgwP-5Fft8,53535
147
+ autogluon/multimodal/utils/onnx.py,sha256=nyj0Zy5SzK0tRw4tO-BfsHwUh48UPHxp7mVQX0JiF-c,5517
148
+ autogluon/multimodal/utils/path.py,sha256=snyfAMZTqa_v0pJTEBX-v56zcSuX6VoqXHrqbSGriso,219
149
+ autogluon/multimodal/utils/precision.py,sha256=vcJDPIIn9mgTmba_m4sFqGYC0AmiIXiVSTusGr4RDFo,3757
150
+ autogluon/multimodal/utils/presets.py,sha256=GAk79BV6NKibpeEtwpFVH52Et2XpQ7ToN6WM7ELcgYc,35210
151
+ autogluon/multimodal/utils/problem_types.py,sha256=LXCHGaSarhTmpDskI5UEbtLZ7ApdPHrH1xMoDKKCRnc,9691
152
+ autogluon/multimodal/utils/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
153
+ autogluon/multimodal/utils/save.py,sha256=aXZa_iue34dAEfTz7nCaRowktG1emEi5uVXe_tDmHBA,4408
154
+ autogluon/multimodal/utils/strategy.py,sha256=tT9PWh_ZLwNdGFgPsXgZsgKRhpnfBQDjh1mB1_y8G18,833
155
+ autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
156
+ autogluon.multimodal-1.2.1b20250304.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
157
+ autogluon.multimodal-1.2.1b20250304.dist-info/METADATA,sha256=PXWRilda4h4zcCnNEhDeEWKZXFd2I2tmAY2U0itOGww,13218
158
+ autogluon.multimodal-1.2.1b20250304.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
159
+ autogluon.multimodal-1.2.1b20250304.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
160
+ autogluon.multimodal-1.2.1b20250304.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
161
+ autogluon.multimodal-1.2.1b20250304.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
162
+ autogluon.multimodal-1.2.1b20250304.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
163
+ autogluon.multimodal-1.2.1b20250304.dist-info/RECORD,,
@@ -1,16 +0,0 @@
1
- # from . import lit_module, utils
2
- from .lit_distiller import DistillerLitModule
3
- from .lit_matcher import MatcherLitModule
4
- from .lit_mmdet import MMDetLitModule
5
- from .lit_module import LitModule
6
- from .lit_ner import NerLitModule
7
- from .lit_semantic_seg import SemanticSegmentationLitModule
8
- from .losses import RKDLoss
9
- from .utils import (
10
- get_loss_func,
11
- get_matcher_loss_func,
12
- get_matcher_miner_func,
13
- get_metric,
14
- get_norm_layer_param_names,
15
- get_trainable_params_efficient_finetune,
16
- )