autogluon.multimodal 1.1.2b20241112__py3-none-any.whl → 1.1.2b20241114__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -8,7 +8,7 @@ import evaluate
8
8
  import numpy as np
9
9
  from sklearn.metrics import f1_score
10
10
 
11
- from autogluon.core.metrics import Scorer, get_metric
11
+ from autogluon.core.metrics import Scorer, compute_metric, get_metric
12
12
 
13
13
  from ..constants import (
14
14
  ACCURACY,
@@ -231,15 +231,22 @@ def compute_score(
231
231
  return metric.compute(references=metric_data[Y_TRUE], predictions=metric_data[Y_PRED])
232
232
 
233
233
  metric = get_metric(metric)
234
- if metric.name in [ROC_AUC, AVERAGE_PRECISION]:
235
- return metric._sign * metric(metric_data[Y_TRUE], metric_data[Y_PRED_PROB][:, pos_label])
236
- elif metric.name in [F1]: # only for binary classification
237
- return f1_score(metric_data[Y_TRUE], metric_data[Y_PRED], pos_label=pos_label)
234
+
235
+ y = metric_data[Y_TRUE]
236
+ if metric.needs_proba or metric.needs_threshold:
237
+ return metric.convert_score_to_original(
238
+ compute_metric(y=y, y_pred_proba=metric_data[Y_PRED_PROB][:, pos_label], metric=metric, weights=None)
239
+ )
238
240
  else:
239
- try:
240
- return metric._sign * metric(metric_data[Y_TRUE], metric_data[Y_PRED], y_prob=metric_data[Y_PRED_PROB])
241
- except:
242
- return metric._sign * metric(metric_data[Y_TRUE], metric_data[Y_PRED])
241
+ y_pred = metric_data[Y_PRED]
242
+
243
+ # TODO: This is a hack. Doesn't support `f1_macro`, `f1_micro`, `f1_weighted`, or custom `f1` metrics with different names.
244
+ # TODO: Longterm the solution should be to have the input data to this function use the internal representation without the original class names. This way `pos_label` would not need to be specified.
245
+ if metric.name == F1: # only for binary classification
246
+ y = (metric_data[Y_TRUE] == pos_label).astype(int)
247
+ y_pred = (metric_data[Y_PRED] == pos_label).astype(int)
248
+
249
+ return metric.convert_score_to_original(compute_metric(y=y, y_pred=y_pred, metric=metric, weights=None))
243
250
 
244
251
 
245
252
  class RankingMetrics:
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20241112'
2
+ __version__ = '1.1.2b20241114'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.multimodal
3
- Version: 1.1.2b20241112
3
+ Version: 1.1.2b20241114
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -56,9 +56,9 @@ Requires-Dist: text-unidecode<1.4,>=1.3
56
56
  Requires-Dist: torchmetrics<1.3.0,>=1.2.0
57
57
  Requires-Dist: nptyping<2.5.0,>=1.4.4
58
58
  Requires-Dist: omegaconf<2.3.0,>=2.1.1
59
- Requires-Dist: autogluon.core[raytune]==1.1.2b20241112
60
- Requires-Dist: autogluon.features==1.1.2b20241112
61
- Requires-Dist: autogluon.common==1.1.2b20241112
59
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20241114
60
+ Requires-Dist: autogluon.features==1.1.2b20241114
61
+ Requires-Dist: autogluon.common==1.1.2b20241114
62
62
  Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
63
63
  Requires-Dist: nlpaug<1.2.0,>=1.1.10
64
64
  Requires-Dist: nltk<3.9,>=3.4.5
@@ -1,11 +1,11 @@
1
- autogluon.multimodal-1.1.2b20241112-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.multimodal-1.1.2b20241114-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/multimodal/__init__.py,sha256=EuWb-QmtFBKePJw4_4Kpp9dKrabv121haYw_Oiu2jfI,238
3
3
  autogluon/multimodal/constants.py,sha256=8IDFqC45Sz3fD0VO2wpzj5Ino387yMAvmKMt-QRhzK0,9122
4
4
  autogluon/multimodal/predictor.py,sha256=beV2gOcTnviYtU8UWTWdqWYTbuk5sC6Sba-pAEaFQyg,40936
5
5
  autogluon/multimodal/presets.py,sha256=VR_arn7X4eiQcGcvJVmwxDopPJGvYP1W1cBZ2AOcdJM,25882
6
6
  autogluon/multimodal/problem_types.py,sha256=H0q2V--d_KH7YL_AxMrs77SHR5SBVLDsdie9F2Uu1kM,8627
7
7
  autogluon/multimodal/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
8
- autogluon/multimodal/version.py,sha256=lXKlufs6aLjs5PeI3KNuQ6bVkvRKxHvpSZbuJ-wwTeo,90
8
+ autogluon/multimodal/version.py,sha256=7qblMPXv5s3LDf5MpJkedB-LmO4B1uCyGUKo5eStHEc,90
9
9
  autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
11
11
  autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
@@ -126,7 +126,7 @@ autogluon/multimodal/utils/label_studio.py,sha256=7lFl75zztIy6VCuCbyZkN-BLbtr0j1
126
126
  autogluon/multimodal/utils/load.py,sha256=rzfADn6obbZL20QZc034IPhIiza7SA8f5MPpd9hPsAE,5106
127
127
  autogluon/multimodal/utils/log.py,sha256=KbVrP5GmQya0e-1YlgdD5EnsUJDGhC7Q3L8eup62KDs,5908
128
128
  autogluon/multimodal/utils/matcher.py,sha256=PRtm5LCIXK_L6Qy0WAgMURUYL7M-DTpn9fCFYsCd2OA,18198
129
- autogluon/multimodal/utils/metric.py,sha256=cnK-NkHmljEvDy5TU4pkHjo32rADlOL7VLA88QSypM4,16286
129
+ autogluon/multimodal/utils/metric.py,sha256=EGlpCwUe5KF9gQ9CPcwDVE5bCgR_oW2r1n4sXdLYXAA,16714
130
130
  autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3bCQp2A,4772
131
131
  autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
132
132
  autogluon/multimodal/utils/model.py,sha256=Z_9bev8nRk92cUZjPggVAM3R3CHFlecU-YzjkMGPUsE,21963
@@ -135,11 +135,11 @@ autogluon/multimodal/utils/object_detection.py,sha256=fHZxon5LoYRmNu_7jm_pDjesVx
135
135
  autogluon/multimodal/utils/onnx.py,sha256=rblWnphKTsfbosbieJu8PsH6SMDw4on9BS8bR1plL2U,5607
136
136
  autogluon/multimodal/utils/save.py,sha256=zYIO3mYMGBvHfZcmCUaLpsQa14nVq1LPv2F76uaz89w,3951
137
137
  autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
138
- autogluon.multimodal-1.1.2b20241112.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
139
- autogluon.multimodal-1.1.2b20241112.dist-info/METADATA,sha256=l1SUWJHXWlbLOmr_ws5l39EvsIveTkp2bBCeDGGIK4A,12880
140
- autogluon.multimodal-1.1.2b20241112.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
141
- autogluon.multimodal-1.1.2b20241112.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
142
- autogluon.multimodal-1.1.2b20241112.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
143
- autogluon.multimodal-1.1.2b20241112.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
144
- autogluon.multimodal-1.1.2b20241112.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
145
- autogluon.multimodal-1.1.2b20241112.dist-info/RECORD,,
138
+ autogluon.multimodal-1.1.2b20241114.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
139
+ autogluon.multimodal-1.1.2b20241114.dist-info/METADATA,sha256=pDs1SUMLouxMaZ4bo8ighJds9IjZxZSQmaL0OQwI1DM,12880
140
+ autogluon.multimodal-1.1.2b20241114.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
141
+ autogluon.multimodal-1.1.2b20241114.dist-info/WHEEL,sha256=bFJAMchF8aTQGUgMZzHJyDDMPTO3ToJ7x23SLJa1SVo,92
142
+ autogluon.multimodal-1.1.2b20241114.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
143
+ autogluon.multimodal-1.1.2b20241114.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
144
+ autogluon.multimodal-1.1.2b20241114.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
145
+ autogluon.multimodal-1.1.2b20241114.dist-info/RECORD,,