autogluon.multimodal 1.1.2b20241031__py3-none-any.whl → 1.1.2b20241107__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/multimodal/configs/model/default.yaml +1 -0
- autogluon/multimodal/learners/object_detection.py +31 -7
- autogluon/multimodal/models/ft_transformer.py +1 -1
- autogluon/multimodal/utils/object_detection.py +25 -18
- autogluon/multimodal/version.py +1 -1
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/METADATA +10 -10
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/RECORD +14 -14
- /autogluon.multimodal-1.1.2b20241031-py3.8-nspkg.pth → /autogluon.multimodal-1.1.2b20241107-py3.8-nspkg.pth +0 -0
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/LICENSE +0 -0
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/NOTICE +0 -0
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/WHEEL +0 -0
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/namespace_packages.txt +0 -0
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/top_level.txt +0 -0
- {autogluon.multimodal-1.1.2b20241031.dist-info → autogluon.multimodal-1.1.2b20241107.dist-info}/zip-safe +0 -0
@@ -115,6 +115,7 @@ model:
|
|
115
115
|
max_img_num_per_col: 1
|
116
116
|
output_bbox_format: "xyxy" # now support xyxy or xywh, for bbox format details see https://keras.io/api/keras_cv/bounding_box/formats/
|
117
117
|
frozen_layers: null
|
118
|
+
coco_root: null
|
118
119
|
|
119
120
|
mmocr_text_detection:
|
120
121
|
checkpoint_name: "TextSnake"
|
@@ -74,6 +74,8 @@ class ObjectDetectionLearner(BaseLearner):
|
|
74
74
|
)
|
75
75
|
check_if_packages_installed(problem_type=self._problem_type)
|
76
76
|
|
77
|
+
self._config = self.get_config_per_run(config=self._config, hyperparameters=hyperparameters)
|
78
|
+
|
77
79
|
self._output_shape = num_classes
|
78
80
|
self._classes = classes
|
79
81
|
self._sample_data_path = sample_data_path
|
@@ -102,10 +104,18 @@ class ObjectDetectionLearner(BaseLearner):
|
|
102
104
|
def setup_detection_train_tuning_data(self, max_num_tuning_data, seed, train_data, tuning_data):
|
103
105
|
if isinstance(train_data, str):
|
104
106
|
self._detection_anno_train = train_data
|
105
|
-
train_data = from_coco_or_voc(
|
107
|
+
train_data = from_coco_or_voc(
|
108
|
+
train_data,
|
109
|
+
"train",
|
110
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
111
|
+
) # TODO: Refactor to use convert_data_to_df
|
106
112
|
if tuning_data is not None:
|
107
113
|
self.detection_anno_train = tuning_data
|
108
|
-
tuning_data = from_coco_or_voc(
|
114
|
+
tuning_data = from_coco_or_voc(
|
115
|
+
tuning_data,
|
116
|
+
"val",
|
117
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
118
|
+
) # TODO: Refactor to use convert_data_to_df
|
109
119
|
if max_num_tuning_data is not None:
|
110
120
|
if len(tuning_data) > max_num_tuning_data:
|
111
121
|
tuning_data = tuning_data.sample(
|
@@ -114,10 +124,16 @@ class ObjectDetectionLearner(BaseLearner):
|
|
114
124
|
elif isinstance(train_data, pd.DataFrame):
|
115
125
|
self._detection_anno_train = None
|
116
126
|
# sanity check dataframe columns
|
117
|
-
train_data = object_detection_data_to_df(
|
127
|
+
train_data = object_detection_data_to_df(
|
128
|
+
train_data,
|
129
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
130
|
+
)
|
118
131
|
if tuning_data is not None:
|
119
132
|
self.detection_anno_train = tuning_data
|
120
|
-
tuning_data = object_detection_data_to_df(
|
133
|
+
tuning_data = object_detection_data_to_df(
|
134
|
+
tuning_data,
|
135
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
136
|
+
)
|
121
137
|
if max_num_tuning_data is not None:
|
122
138
|
if len(tuning_data) > max_num_tuning_data:
|
123
139
|
tuning_data = tuning_data.sample(
|
@@ -556,7 +572,9 @@ class ObjectDetectionLearner(BaseLearner):
|
|
556
572
|
if isinstance(anno_file_or_df, str):
|
557
573
|
anno_file = anno_file_or_df
|
558
574
|
data = from_coco_or_voc(
|
559
|
-
anno_file,
|
575
|
+
anno_file,
|
576
|
+
"test",
|
577
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
560
578
|
) # TODO: maybe remove default splits hardcoding (only used in VOC)
|
561
579
|
if os.path.isdir(anno_file):
|
562
580
|
eval_tool = "torchmetrics" # we can only use torchmetrics for VOC format evaluation.
|
@@ -636,7 +654,10 @@ class ObjectDetectionLearner(BaseLearner):
|
|
636
654
|
eval_tool=eval_tool,
|
637
655
|
)
|
638
656
|
else:
|
639
|
-
data = object_detection_data_to_df(
|
657
|
+
data = object_detection_data_to_df(
|
658
|
+
data,
|
659
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
660
|
+
)
|
640
661
|
return self.evaluate_coco(
|
641
662
|
anno_file_or_df=data,
|
642
663
|
metrics=metrics,
|
@@ -676,7 +697,10 @@ class ObjectDetectionLearner(BaseLearner):
|
|
676
697
|
self.ensure_predict_ready()
|
677
698
|
ret_type = BBOX
|
678
699
|
if self._problem_type == OBJECT_DETECTION:
|
679
|
-
data = object_detection_data_to_df(
|
700
|
+
data = object_detection_data_to_df(
|
701
|
+
data,
|
702
|
+
coco_root=self._config.model.mmdet_image.coco_root,
|
703
|
+
)
|
680
704
|
if self._label_column not in data:
|
681
705
|
self._label_column = None
|
682
706
|
|
@@ -41,7 +41,7 @@ class CategoricalFeatureTokenizer(nn.Module):
|
|
41
41
|
References
|
42
42
|
----------
|
43
43
|
1. Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, Artem Babenko,
|
44
|
-
"Revisiting Deep Learning Models for Tabular Data", 2021
|
44
|
+
"Revisiting Deep Learning Models for Tabular Data", NeurIPS 2021
|
45
45
|
https://arxiv.org/pdf/2106.11959.pdf
|
46
46
|
2. Code: https://github.com/Yura52/tabular-dl-revisiting-models
|
47
47
|
"""
|
@@ -145,7 +145,9 @@ def object_detection_df_to_coco(data: pd.DataFrame, save_path: Optional[str] = N
|
|
145
145
|
return output_json_dict
|
146
146
|
|
147
147
|
|
148
|
-
def object_detection_data_to_df(
|
148
|
+
def object_detection_data_to_df(
|
149
|
+
data: Union[pd.DataFrame, dict, list, str], coco_root: Optional[str] = None
|
150
|
+
) -> pd.DataFrame:
|
149
151
|
"""
|
150
152
|
Construct a dataframe from a data dictionary, json file path (for COCO), folder path (for VOC),
|
151
153
|
image path (for single image), list of image paths (for multiple images)
|
@@ -163,7 +165,7 @@ def object_detection_data_to_df(data: Union[pd.DataFrame, dict, list, str]) -> p
|
|
163
165
|
return from_list(data)
|
164
166
|
if isinstance(data, str):
|
165
167
|
if os.path.isdir(data) or data.endswith(".json"):
|
166
|
-
return from_coco_or_voc(data)
|
168
|
+
return from_coco_or_voc(data, coco_root=coco_root)
|
167
169
|
return from_str(data)
|
168
170
|
if isinstance(data, pd.DataFrame):
|
169
171
|
sanity_check_dataframe(data)
|
@@ -700,7 +702,7 @@ def _check_load_coco_bbox(
|
|
700
702
|
|
701
703
|
def from_coco(
|
702
704
|
anno_file: Optional[str],
|
703
|
-
|
705
|
+
coco_root: Optional[str] = None,
|
704
706
|
min_object_area: Optional[Union[int, float]] = 0,
|
705
707
|
use_crowd: Optional[bool] = False,
|
706
708
|
):
|
@@ -718,7 +720,7 @@ def from_coco(
|
|
718
720
|
----------
|
719
721
|
anno_file
|
720
722
|
The path to the annotation file.
|
721
|
-
|
723
|
+
coco_root
|
722
724
|
Root of the COCO folder. The default relative root folder (if set to `None`) is `anno_file/../`.
|
723
725
|
min_object_area
|
724
726
|
Minimum object area to consider.
|
@@ -740,16 +742,19 @@ def from_coco(
|
|
740
742
|
coco = COCO(anno_file)
|
741
743
|
|
742
744
|
# get data root
|
743
|
-
if isinstance(
|
744
|
-
|
745
|
-
elif isinstance(
|
746
|
-
|
747
|
-
elif
|
745
|
+
if isinstance(coco_root, Path):
|
746
|
+
coco_root = str(coco_root.expanduser().resolve())
|
747
|
+
elif isinstance(coco_root, str):
|
748
|
+
coco_root = os.path.abspath(os.path.expanduser(coco_root))
|
749
|
+
elif coco_root is None:
|
748
750
|
# try to use the default coco structure
|
749
|
-
|
750
|
-
logger.info(
|
751
|
+
coco_root = os.path.join(os.path.dirname(anno_file), "..")
|
752
|
+
logger.info(
|
753
|
+
f"Using default root folder: {coco_root}. "
|
754
|
+
"Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong."
|
755
|
+
)
|
751
756
|
else:
|
752
|
-
raise ValueError("Unable to parse
|
757
|
+
raise ValueError("Unable to parse coco_root: {}".format(coco_root))
|
753
758
|
|
754
759
|
# support prediction using data with no annotations
|
755
760
|
# note that data with annotation can be used for prediction without any changes
|
@@ -764,9 +769,9 @@ def from_coco(
|
|
764
769
|
for entry in coco.loadImgs(image_ids):
|
765
770
|
if "coco_url" in entry:
|
766
771
|
dirname, filename = entry["coco_url"].split("/")[-2:]
|
767
|
-
abs_path = os.path.join(
|
772
|
+
abs_path = os.path.join(coco_root, dirname, filename)
|
768
773
|
else:
|
769
|
-
abs_path = os.path.join(
|
774
|
+
abs_path = os.path.join(coco_root, entry["file_name"])
|
770
775
|
if not os.path.exists(abs_path):
|
771
776
|
logger.warning(f"File skipped since not exists: {abs_path}.")
|
772
777
|
continue
|
@@ -1146,7 +1151,7 @@ def process_voc_annotations(
|
|
1146
1151
|
f.writelines("\n".join(xml_file_names))
|
1147
1152
|
|
1148
1153
|
|
1149
|
-
def from_coco_or_voc(file_path: str, splits: Optional[Union[str]] = None):
|
1154
|
+
def from_coco_or_voc(file_path: str, splits: Optional[Union[str]] = None, coco_root: Optional[str] = None):
|
1150
1155
|
"""
|
1151
1156
|
Convert the data from coco or voc format to pandas Dataframe.
|
1152
1157
|
|
@@ -1167,7 +1172,7 @@ def from_coco_or_voc(file_path: str, splits: Optional[Union[str]] = None):
|
|
1167
1172
|
# VOC use dir as input
|
1168
1173
|
return from_voc(root=file_path, splits=splits)
|
1169
1174
|
else:
|
1170
|
-
return from_coco(file_path)
|
1175
|
+
return from_coco(file_path, coco_root=coco_root)
|
1171
1176
|
|
1172
1177
|
|
1173
1178
|
def get_coco_format_classes(sample_data_path: str):
|
@@ -1539,11 +1544,13 @@ def save_result_df(
|
|
1539
1544
|
return result_df
|
1540
1545
|
|
1541
1546
|
|
1542
|
-
def save_result_coco_format(detection_data_path, pred, result_path):
|
1547
|
+
def save_result_coco_format(detection_data_path, pred, result_path, coco_root: Optional[str] = None):
|
1543
1548
|
coco_dataset = COCODataset(detection_data_path)
|
1544
1549
|
result_name, _ = os.path.splitext(result_path)
|
1545
1550
|
result_path = result_name + ".json"
|
1546
|
-
coco_dataset.save_result(
|
1551
|
+
coco_dataset.save_result(
|
1552
|
+
pred, from_coco_or_voc(detection_data_path, "test", coco_root=coco_root), save_path=result_path
|
1553
|
+
)
|
1547
1554
|
logger.info(25, f"Saved detection result to {result_path}")
|
1548
1555
|
|
1549
1556
|
|
autogluon/multimodal/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.multimodal
|
3
|
-
Version: 1.1.
|
3
|
+
Version: 1.1.2b20241107
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -41,27 +41,27 @@ Requires-Dist: scikit-learn<1.5.3,>=1.4.0
|
|
41
41
|
Requires-Dist: Pillow<12,>=10.0.1
|
42
42
|
Requires-Dist: tqdm<5,>=4.38
|
43
43
|
Requires-Dist: boto3<2,>=1.10
|
44
|
-
Requires-Dist: torch<2.
|
45
|
-
Requires-Dist: lightning<2.
|
46
|
-
Requires-Dist: transformers[sentencepiece]<
|
47
|
-
Requires-Dist: accelerate<
|
44
|
+
Requires-Dist: torch<2.6,>=2.2
|
45
|
+
Requires-Dist: lightning<2.6,>=2.2
|
46
|
+
Requires-Dist: transformers[sentencepiece]<5,>=4.38.0
|
47
|
+
Requires-Dist: accelerate<1.0,>=0.32.0
|
48
48
|
Requires-Dist: requests<3,>=2.30
|
49
49
|
Requires-Dist: jsonschema<4.22,>=4.18
|
50
50
|
Requires-Dist: seqeval<1.3.0,>=1.2.2
|
51
51
|
Requires-Dist: evaluate<0.5.0,>=0.4.0
|
52
|
-
Requires-Dist: timm<0.
|
52
|
+
Requires-Dist: timm<1.0.7,>=0.9.5
|
53
53
|
Requires-Dist: torchvision<0.21.0,>=0.16.0
|
54
54
|
Requires-Dist: scikit-image<0.25.0,>=0.19.1
|
55
55
|
Requires-Dist: text-unidecode<1.4,>=1.3
|
56
56
|
Requires-Dist: torchmetrics<1.3.0,>=1.2.0
|
57
57
|
Requires-Dist: nptyping<2.5.0,>=1.4.4
|
58
58
|
Requires-Dist: omegaconf<2.3.0,>=2.1.1
|
59
|
-
Requires-Dist: autogluon.core[raytune]==1.1.
|
60
|
-
Requires-Dist: autogluon.features==1.1.
|
61
|
-
Requires-Dist: autogluon.common==1.1.
|
59
|
+
Requires-Dist: autogluon.core[raytune]==1.1.2b20241107
|
60
|
+
Requires-Dist: autogluon.features==1.1.2b20241107
|
61
|
+
Requires-Dist: autogluon.common==1.1.2b20241107
|
62
62
|
Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
|
63
63
|
Requires-Dist: nlpaug<1.2.0,>=1.1.10
|
64
|
-
Requires-Dist: nltk<
|
64
|
+
Requires-Dist: nltk<3.9,>=3.4.5
|
65
65
|
Requires-Dist: openmim<0.4.0,>=0.3.7
|
66
66
|
Requires-Dist: defusedxml<0.7.2,>=0.7.1
|
67
67
|
Requires-Dist: jinja2<3.2,>=3.0.3
|
@@ -1,11 +1,11 @@
|
|
1
|
-
autogluon.multimodal-1.1.
|
1
|
+
autogluon.multimodal-1.1.2b20241107-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/multimodal/__init__.py,sha256=EuWb-QmtFBKePJw4_4Kpp9dKrabv121haYw_Oiu2jfI,238
|
3
3
|
autogluon/multimodal/constants.py,sha256=lFA03ZQeZlp8mwuXLuMOgeByljV5wPYBjN_hi6Xc8zg,8498
|
4
4
|
autogluon/multimodal/predictor.py,sha256=VTJGcKH4Kktdm4Qq2x9oRThpfp6w_kFSjJOmQPsmB5g,40654
|
5
5
|
autogluon/multimodal/presets.py,sha256=VR_arn7X4eiQcGcvJVmwxDopPJGvYP1W1cBZ2AOcdJM,25882
|
6
6
|
autogluon/multimodal/problem_types.py,sha256=JPSoV3Fg-NGQansRlyT2bPZG3iIkgWo7eB8oDoAfg90,9201
|
7
7
|
autogluon/multimodal/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
|
8
|
-
autogluon/multimodal/version.py,sha256=
|
8
|
+
autogluon/multimodal/version.py,sha256=H_a15z27R7xk2LlVEqVCWjJ8Z2gZ7G-G5jZGl1qOVXM,90
|
9
9
|
autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
|
11
11
|
autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
|
@@ -14,7 +14,7 @@ autogluon/multimodal/configs/data/default.yaml,sha256=gsadTDJ3ZbppQ5rpA0sPhqd9Mw
|
|
14
14
|
autogluon/multimodal/configs/distiller/default.yaml,sha256=DiCZYYJDEk5k03ZI-ewj9hWiKpMQbB8oqjWYavMK1wU,513
|
15
15
|
autogluon/multimodal/configs/environment/default.yaml,sha256=Di1EohFWUoGi0bLuJfOr3bDD4ceD_ZrfDc_GJO55mpk,1235
|
16
16
|
autogluon/multimodal/configs/matcher/default.yaml,sha256=K0ehM0uIFfKq1CeeaFcv14RBjo3khMgWKS2ymWI-V9I,218
|
17
|
-
autogluon/multimodal/configs/model/default.yaml,sha256=
|
17
|
+
autogluon/multimodal/configs/model/default.yaml,sha256=NgCPV01hfcG21hvmtLaiTbahTYkRi3ZmHONzsRdwjOE,8751
|
18
18
|
autogluon/multimodal/configs/optimization/default.yaml,sha256=w4xlVS1gUK8tDXyhfDtIKabTqr_gBWSduq1y8T9CBI8,2182
|
19
19
|
autogluon/multimodal/configs/pretrain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
20
20
|
autogluon/multimodal/configs/pretrain/detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -71,7 +71,7 @@ autogluon/multimodal/learners/base.py,sha256=IUHRBzwrKqAwo9nDsqzg0rBQaFiVxfyeMnd
|
|
71
71
|
autogluon/multimodal/learners/few_shot_svm.py,sha256=TXauhXr_2hWqaEwO8XhFxWRRPXDYxLpmmKYaCrxFWPM,23934
|
72
72
|
autogluon/multimodal/learners/matching.py,sha256=gueWrqy0g9gVbyBvQOAj03JgBwbJsBXeLLtKsiTzrnU,89891
|
73
73
|
autogluon/multimodal/learners/ner.py,sha256=0VZl_Z1O98A5mOSw8Ee8F9foaCT684DT0j1ALx-8RU4,19035
|
74
|
-
autogluon/multimodal/learners/object_detection.py,sha256=
|
74
|
+
autogluon/multimodal/learners/object_detection.py,sha256=tSRKdWEnFwqOCzHoqRAPvllY0T_vwXSdInGVX70-ZD4,29856
|
75
75
|
autogluon/multimodal/learners/semantic_segmentation.py,sha256=cy2ALYTtqeSnPo75htgr5STZ_utgkzeGxp5j4J1mScc,20183
|
76
76
|
autogluon/multimodal/models/__init__.py,sha256=wynO5U5zY_vElZPGL10Oqb7OVkj2iovqzml22MRL3iE,842
|
77
77
|
autogluon/multimodal/models/adaptation_layers.py,sha256=NuzwU_ghk8D2axmDuD8UEZ_HamoMSCcKMV9DB1AYWAg,38425
|
@@ -79,7 +79,7 @@ autogluon/multimodal/models/categorical_mlp.py,sha256=R4qNo2eJ2B4FKIpTE5HXJezT0Q
|
|
79
79
|
autogluon/multimodal/models/clip.py,sha256=hbIV1jsomCZXg6RF6R5jDpxESlBq46hInQ2S5Y4gJBM,8875
|
80
80
|
autogluon/multimodal/models/custom_transformer.py,sha256=jOqe6dSMsvhqagUc5abB2Nu5VUwODn_frtFVTIA5WgY,27581
|
81
81
|
autogluon/multimodal/models/document_transformer.py,sha256=_-hcnR0qRyzTgEmCRmnzLSChq3l7dIiXT60uDSXXT_M,7114
|
82
|
-
autogluon/multimodal/models/ft_transformer.py,sha256=
|
82
|
+
autogluon/multimodal/models/ft_transformer.py,sha256=xjv4v5Rr8Iq4wJGoIMR4hmuWkN5BTRB5mU1ElC8mtQ0,26382
|
83
83
|
autogluon/multimodal/models/huggingface_text.py,sha256=QPkxuU6d5V1XtjrSmPPPt89CW4_19QAMZHZC_lfAlQM,11871
|
84
84
|
autogluon/multimodal/models/mlp.py,sha256=KZt10QjP_C9e6L0HUtGef8AqWFR2kxAXsZAH7_iK20Y,4456
|
85
85
|
autogluon/multimodal/models/mmdet_image.py,sha256=gdgoyBXVyiXMDhnKwFPafpgxv4PhFXFt4PZ_TLsW22I,27112
|
@@ -131,15 +131,15 @@ autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3b
|
|
131
131
|
autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
|
132
132
|
autogluon/multimodal/utils/model.py,sha256=Z_9bev8nRk92cUZjPggVAM3R3CHFlecU-YzjkMGPUsE,21963
|
133
133
|
autogluon/multimodal/utils/nlpaug.py,sha256=rWztiOZDbtEGBdyjkXZ0DoSEpXGKX9akpDpFnz4xIMw,2557
|
134
|
-
autogluon/multimodal/utils/object_detection.py,sha256=
|
134
|
+
autogluon/multimodal/utils/object_detection.py,sha256=br3QSa3h17ZMG9MjC0iWn9n42EGD28KvtGzoDQOUaGw,50382
|
135
135
|
autogluon/multimodal/utils/onnx.py,sha256=rblWnphKTsfbosbieJu8PsH6SMDw4on9BS8bR1plL2U,5607
|
136
136
|
autogluon/multimodal/utils/save.py,sha256=zYIO3mYMGBvHfZcmCUaLpsQa14nVq1LPv2F76uaz89w,3951
|
137
137
|
autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
|
138
|
-
autogluon.multimodal-1.1.
|
139
|
-
autogluon.multimodal-1.1.
|
140
|
-
autogluon.multimodal-1.1.
|
141
|
-
autogluon.multimodal-1.1.
|
142
|
-
autogluon.multimodal-1.1.
|
143
|
-
autogluon.multimodal-1.1.
|
144
|
-
autogluon.multimodal-1.1.
|
145
|
-
autogluon.multimodal-1.1.
|
138
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
139
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/METADATA,sha256=UqJlg5KlO9dvhr6lf7SfaNUdBv2MCAaSv-5vcuDISps,12880
|
140
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
141
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
142
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
143
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
144
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
145
|
+
autogluon.multimodal-1.1.2b20241107.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|