autogluon.multimodal 1.1.2b20240820__py3-none-any.whl → 1.1.2b20240822__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py +4 -1
  2. autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py +3 -1
  3. autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py +1 -1
  4. autogluon/multimodal/constants.py +1 -0
  5. autogluon/multimodal/data/infer_types.py +1 -3
  6. autogluon/multimodal/data/process_semantic_seg_img.py +3 -1
  7. autogluon/multimodal/data/trivial_augmenter.py +1 -1
  8. autogluon/multimodal/learners/base.py +2 -2
  9. autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py +1 -1
  10. autogluon/multimodal/optimization/lit_distiller.py +1 -1
  11. autogluon/multimodal/optimization/lit_module.py +1 -1
  12. autogluon/multimodal/optimization/lit_ner.py +1 -1
  13. autogluon/multimodal/optimization/lr_scheduler.py +1 -0
  14. autogluon/multimodal/optimization/utils.py +2 -2
  15. autogluon/multimodal/problem_types.py +2 -2
  16. autogluon/multimodal/registry.py +3 -2
  17. autogluon/multimodal/utils/checkpoint.py +1 -2
  18. autogluon/multimodal/utils/cloud_io.py +1 -0
  19. autogluon/multimodal/utils/colormap.py +1 -0
  20. autogluon/multimodal/utils/download.py +1 -3
  21. autogluon/multimodal/utils/hpo.py +3 -3
  22. autogluon/multimodal/utils/nlpaug.py +1 -0
  23. autogluon/multimodal/utils/visualizer.py +1 -3
  24. autogluon/multimodal/version.py +1 -1
  25. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/METADATA +5 -6
  26. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/RECORD +33 -33
  27. /autogluon.multimodal-1.1.2b20240820-py3.8-nspkg.pth → /autogluon.multimodal-1.1.2b20240822-py3.8-nspkg.pth +0 -0
  28. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/LICENSE +0 -0
  29. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/NOTICE +0 -0
  30. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/WHEEL +0 -0
  31. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/namespace_packages.txt +0 -0
  32. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/top_level.txt +0 -0
  33. {autogluon.multimodal-1.1.2b20240820.dist-info → autogluon.multimodal-1.1.2b20240822.dist-info}/zip-safe +0 -0
@@ -49,7 +49,10 @@ model = dict(
49
49
  post_norm_cfg=None,
50
50
  ),
51
51
  positional_encoding=dict(
52
- num_feats=128, normalize=True, offset=0.0, temperature=20 # -0.5 for DeformDETR
52
+ num_feats=128,
53
+ normalize=True,
54
+ offset=0.0,
55
+ temperature=20, # -0.5 for DeformDETR
53
56
  ), # 10000 for DeformDETR
54
57
  bbox_head=dict(
55
58
  type="DINOHead",
@@ -1,6 +1,8 @@
1
1
  _base_ = "./dino-4scale_r50_8xb2-12e_coco.py"
2
2
 
3
- pretrained = "https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth" # noqa
3
+ pretrained = (
4
+ "https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth" # noqa
5
+ )
4
6
  num_levels = 5
5
7
  model = dict(
6
8
  num_feature_levels=num_levels,
@@ -79,7 +79,7 @@ model = dict(
79
79
  ),
80
80
  test_cfg=dict(
81
81
  rpn=dict(nms_pre=1000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0),
82
- rcnn=dict(score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100)
82
+ rcnn=dict(score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100),
83
83
  # soft-nms is also supported for rcnn testing
84
84
  # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
85
85
  ),
@@ -1,4 +1,5 @@
1
1
  """Storing the constants"""
2
+
2
3
  from autogluon.core.metrics import METRICS
3
4
 
4
5
  # Column/Label Types
@@ -828,9 +828,7 @@ def infer_ner_column_type(column_types: Dict):
828
828
  if any([col_type.startswith(TEXT_NER) for col_type in column_types.values()]):
829
829
  return column_types
830
830
 
831
- for (
832
- column
833
- ) in (
831
+ for column in (
834
832
  column_types.keys()
835
833
  ): # column_types is an ordered dict, so column_types.keys() returns the keys in the order of insertions.
836
834
  if column_types[column].startswith(TEXT):
@@ -235,7 +235,9 @@ class SemanticSegImageProcessor:
235
235
  if self.num_classes == 1:
236
236
  gt = gt.convert("L")
237
237
  if self.num_classes > 1:
238
- gt = np.array(gt).astype(
238
+ gt = np.array(
239
+ gt
240
+ ).astype(
239
241
  "float32"
240
242
  ) # There may be issues with 'transforms.ToTensor()' without this line because 'transforms.ToTensor()' converts 'unit8' to values between 0 and 1.
241
243
  gt = Image.fromarray(gt)
@@ -1,5 +1,5 @@
1
1
  """
2
- This file implements TrivialAugment.(https://arxiv.org/abs/2103.10158) We extend it for multi-modality setting.
2
+ This file implements TrivialAugment.(https://arxiv.org/abs/2103.10158) We extend it for multi-modality setting.
3
3
 
4
4
  Code is partially adapted from its official implementation https://github.com/automl/trivialaugment
5
5
  """
@@ -1017,8 +1017,8 @@ class BaseLearner(ExportMixin, DistillationMixin, RealtimeMixin):
1017
1017
  if (
1018
1018
  config.env.strategy == DEEPSPEED_OFFLOADING and num_gpus == 1 and DEEPSPEED_MODULE not in sys.modules
1019
1019
  ): # Offloading currently only tested for single GPU
1020
- assert version.parse(pl.__version__) >= version.parse(
1021
- DEEPSPEED_MIN_PL_VERSION
1020
+ assert (
1021
+ version.parse(pl.__version__) >= version.parse(DEEPSPEED_MIN_PL_VERSION)
1022
1022
  ), f"For DeepSpeed Offloading to work reliably you need at least lightning version {DEEPSPEED_MIN_PL_VERSION}, however, found {pl.__version__}. Please update your lightning version."
1023
1023
  from ..optimization.deepspeed import CustomDeepSpeedStrategy
1024
1024
 
@@ -12,7 +12,7 @@
12
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
- """ PyTorch SAM model."""
15
+ """PyTorch SAM model."""
16
16
 
17
17
  import collections
18
18
  import math
@@ -416,7 +416,7 @@ class DistillerLitModule(pl.LightningModule):
416
416
  custom_metric_func=self.custom_metric_func,
417
417
  logits=student_output[self.student_model.prefix][LOGITS],
418
418
  label=batch[self.student_model.label_key],
419
- ),
419
+ )
420
420
  self.log(
421
421
  self.validation_metric_name,
422
422
  self.validation_metric,
@@ -296,7 +296,7 @@ class LitModule(pl.LightningModule):
296
296
  custom_metric_func=self.custom_metric_func,
297
297
  logits=output[self.model.prefix][LOGITS],
298
298
  label=batch[self.model.label_key],
299
- ),
299
+ )
300
300
  self.log(
301
301
  self.validation_metric_name,
302
302
  self.validation_metric,
@@ -189,7 +189,7 @@ class NerLitModule(LitModule):
189
189
  custom_metric_func=self.custom_metric_func,
190
190
  logits=active_logits,
191
191
  label=active_labels,
192
- ),
192
+ )
193
193
  self.log(
194
194
  self.validation_metric_name,
195
195
  self.validation_metric,
@@ -2,6 +2,7 @@
2
2
  This file is largely borrowed from `transformers/optimization.py`.
3
3
  This is to make lr schedulers pickle-able so that we can use the training strategy "ddp_spawn" in Pytorch Lightning.
4
4
  """
5
+
5
6
  import functools
6
7
  import math
7
8
 
@@ -852,8 +852,8 @@ def gather_column_features(
852
852
 
853
853
  # two or more columns share one cls feature, and no other columns share it.
854
854
  if len(columns_share_one_feature) > 0:
855
- assert len("_".join(columns_share_one_feature)) == len(
856
- feature_name
855
+ assert (
856
+ len("_".join(columns_share_one_feature)) == len(feature_name)
857
857
  ), f"model `{per_model_name}`'s cls feature name `{feature_name}` doesn't match `{columns_share_one_feature}`"
858
858
  gathered_features.append(per_model_output[COLUMN_FEATURES][FEATURES][feature_name])
859
859
 
@@ -250,8 +250,8 @@ _ner_property = ProblemTypeProperty(
250
250
  _supported_evaluation_metrics=[OVERALL_F1, NER_TOKEN_F1],
251
251
  _fallback_validation_metric=NER_TOKEN_F1,
252
252
  )
253
- PROBLEM_TYPES_REG.register(NER, _ner_property),
254
- PROBLEM_TYPES_REG.register(NAMED_ENTITY_RECOGNITION, _ner_property),
253
+ PROBLEM_TYPES_REG.register(NER, _ner_property)
254
+ PROBLEM_TYPES_REG.register(NAMED_ENTITY_RECOGNITION, _ner_property)
255
255
 
256
256
  # Feature Extraction: text --> feature, image --> features
257
257
  PROBLEM_TYPES_REG.register(
@@ -110,6 +110,7 @@ class Registry:
110
110
  return self.create(name, **args)
111
111
  else:
112
112
  raise NotImplementedError(
113
- "The format of json string is not supported! We only support "
114
- 'list/dict. json_str="{}".'.format(json_str)
113
+ "The format of json string is not supported! We only support " 'list/dict. json_str="{}".'.format(
114
+ json_str
115
+ )
115
116
  )
@@ -9,9 +9,8 @@ import torch
9
9
  from lightning.pytorch.strategies import DeepSpeedStrategy
10
10
  from lightning.pytorch.utilities.rank_zero import rank_zero_warn
11
11
 
12
- from .cloud_io import _atomic_save
12
+ from .cloud_io import _atomic_save, get_filesystem
13
13
  from .cloud_io import _load as pl_load
14
- from .cloud_io import get_filesystem
15
14
 
16
15
  logger = logging.getLogger(__name__)
17
16
 
@@ -12,6 +12,7 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  """Utilities related to data saving/loading."""
15
+
15
16
  """
16
17
  Copied from
17
18
  https://github.com/Lightning-AI/lightning/blob/master/src/lightning/fabric/utilities/cloud_io.py
@@ -6,6 +6,7 @@
6
6
  An awesome colormap for really neat visualizations.
7
7
  Copied from Detectron, and removed gray colors.
8
8
  """
9
+
9
10
  import random
10
11
 
11
12
  import numpy as np
@@ -98,9 +98,7 @@ def download(
98
98
  finally:
99
99
  raise OSError(
100
100
  "Moving downloaded temp file - {}, to {} failed. \
101
- Please retry the download.".format(
102
- src, dst
103
- )
101
+ Please retry the download.".format(src, dst)
104
102
  )
105
103
 
106
104
  else:
@@ -50,9 +50,9 @@ def hpo_trial(sampled_hyperparameters, learner, checkpoint_dir=None, **_fit_args
50
50
  resources = context.get_trial_resources().required_resources
51
51
  num_cpus = int(resources.get("CPU"))
52
52
 
53
- _fit_args[
54
- "hyperparameters"
55
- ] = sampled_hyperparameters # The original hyperparameters is the search space, replace it with the hyperparameters sampled
53
+ _fit_args["hyperparameters"] = (
54
+ sampled_hyperparameters # The original hyperparameters is the search space, replace it with the hyperparameters sampled
55
+ )
56
56
  _fit_args["save_path"] = context.get_trial_dir() # We want to save each trial to a separate directory
57
57
  logger.debug(f"hpo trial save_path: {_fit_args['save_path']}")
58
58
  if checkpoint_dir is not None:
@@ -1,6 +1,7 @@
1
1
  """Utilities built on top of nlpaug. This file is meant to be lazy-imported because importing nlpaug can take time.
2
2
  See the discussion in https://github.com/autogluon/autogluon/issues/2706
3
3
  """
4
+
4
5
  import random
5
6
 
6
7
  from nlpaug import Augmenter
@@ -578,9 +578,7 @@ class NERVisualizer:
578
578
  """
579
579
  text = '<mark style="background-color:{}; color:white; border-radius: .6em .6em; padding: .1em;">{} \
580
580
  <b style="background-color:white; color:black; font-size:x-small; border-radius: 0.5em .5em; padding: .0em;">{} </b> \
581
- </mark>'.format(
582
- color, self.escape_html(text), self.escape_html(label)
583
- )
581
+ </mark>'.format(color, self.escape_html(text), self.escape_html(label))
584
582
  return text
585
583
 
586
584
  def _repr_html_(self):
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.2b20240820'
2
+ __version__ = '1.1.2b20240822'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.multimodal
3
- Version: 1.1.2b20240820
3
+ Version: 1.1.2b20240822
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -56,9 +56,9 @@ Requires-Dist: text-unidecode<1.4,>=1.3
56
56
  Requires-Dist: torchmetrics<1.3.0,>=1.2.0
57
57
  Requires-Dist: nptyping<2.5.0,>=1.4.4
58
58
  Requires-Dist: omegaconf<2.3.0,>=2.1.1
59
- Requires-Dist: autogluon.core[raytune]==1.1.2b20240820
60
- Requires-Dist: autogluon.features==1.1.2b20240820
61
- Requires-Dist: autogluon.common==1.1.2b20240820
59
+ Requires-Dist: autogluon.core[raytune]==1.1.2b20240822
60
+ Requires-Dist: autogluon.features==1.1.2b20240822
61
+ Requires-Dist: autogluon.common==1.1.2b20240822
62
62
  Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
63
63
  Requires-Dist: nlpaug<1.2.0,>=1.1.10
64
64
  Requires-Dist: nltk<4.0.0,>=3.4.5
@@ -70,8 +70,7 @@ Requires-Dist: pytesseract<0.3.11,>=0.3.9
70
70
  Requires-Dist: nvidia-ml-py3==7.352.0
71
71
  Requires-Dist: pdf2image<1.19,>=1.17.0
72
72
  Provides-Extra: tests
73
- Requires-Dist: black~=23.0; extra == "tests"
74
- Requires-Dist: isort>=5.10; extra == "tests"
73
+ Requires-Dist: ruff; extra == "tests"
75
74
  Requires-Dist: datasets<2.15.0,>=2.10.0; extra == "tests"
76
75
  Requires-Dist: onnx<1.14.0,>=1.13.0; extra == "tests"
77
76
  Requires-Dist: onnxruntime-gpu<1.16.0,>=1.15.0; platform_system != "Darwin" and extra == "tests"
@@ -1,11 +1,11 @@
1
- autogluon.multimodal-1.1.2b20240820-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.multimodal-1.1.2b20240822-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/multimodal/__init__.py,sha256=EuWb-QmtFBKePJw4_4Kpp9dKrabv121haYw_Oiu2jfI,238
3
- autogluon/multimodal/constants.py,sha256=C9zNWmm8lMMe5O2n4v8cIV_ERHIXioQyle3NtvhzP80,8497
3
+ autogluon/multimodal/constants.py,sha256=lFA03ZQeZlp8mwuXLuMOgeByljV5wPYBjN_hi6Xc8zg,8498
4
4
  autogluon/multimodal/predictor.py,sha256=VTJGcKH4Kktdm4Qq2x9oRThpfp6w_kFSjJOmQPsmB5g,40654
5
5
  autogluon/multimodal/presets.py,sha256=VR_arn7X4eiQcGcvJVmwxDopPJGvYP1W1cBZ2AOcdJM,25882
6
- autogluon/multimodal/problem_types.py,sha256=Jxrz9DY6t7yhhMpISmB_71EDK2WjaQYDMuNIr3NbQhY,9203
7
- autogluon/multimodal/registry.py,sha256=8-_o0JitFfNzDif1GMg1H_wPGNOyiadul1SkzXQMWeY,3648
8
- autogluon/multimodal/version.py,sha256=6uGWU7Ekhlz8f0HczuOvxX_zFi6HIXNWWyEJ1CbNr-c,90
6
+ autogluon/multimodal/problem_types.py,sha256=JPSoV3Fg-NGQansRlyT2bPZG3iIkgWo7eB8oDoAfg90,9201
7
+ autogluon/multimodal/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
8
+ autogluon/multimodal/version.py,sha256=BYpLMVfini1sOLcIFVouHk_KyzdVLydKEJDE_dlxKxw,90
9
9
  autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
11
11
  autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
@@ -21,13 +21,13 @@ autogluon/multimodal/configs/pretrain/detection/__init__.py,sha256=47DEQpj8HBSa-
21
21
  autogluon/multimodal/configs/pretrain/detection/coco_detection.py,sha256=UlSwkWAkST_96RTzPZMuPuqIfv72U03-JdqwPd-NjiQ,3171
22
22
  autogluon/multimodal/configs/pretrain/detection/default_runtime.py,sha256=9hJmjxb6fIo-kbbejQlJy4ayopRFUyA_w95plhAUFDw,793
23
23
  autogluon/multimodal/configs/pretrain/detection/schedule_1x.py,sha256=VhZ8HT-ryeGW-GzxiVsDEIYf9Bw6ImOdPucFVJaN0Os,298
24
- autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py,sha256=npc03VjsELqNExQZULHpjSoDMpsz2W-7vRzV0JeNB3c,5885
25
- autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py,sha256=h9mQDtlFiYt-vizeLxrKwyeTD7uYjhFZmzJE3L99m1I,1129
24
+ autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py,sha256=Zm41N-VNY13cj6U485wtrDqB7k49Sdj4MdNLYjTE62E,5910
25
+ autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py,sha256=VYvjELfzX2jYmsQLFvMYWeixx2LmB_LwbPmzgLAPUwo,1137
26
26
  autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-36e_coco.py,sha256=OL4Za_hd5IhQU8iHEAVrsFu-MnSmOPu1_WRa39i3QYA,266
27
27
  autogluon/multimodal/configs/pretrain/detection/dino/dino_swinl_tta.py,sha256=vi5rhbaT3mgycIm1W8jQ6l-KuFoL24OiiF-rdj2CTNg,68
28
28
  autogluon/multimodal/configs/pretrain/detection/dino/dino_tta.py,sha256=pwNnOJxut95HwGyS4RDjxTF-hH9HLpTQAyE2Ni7dzAA,1467
29
29
  autogluon/multimodal/configs/pretrain/detection/faster_rcnn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
- autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py,sha256=Jse3WolFgmBkB7kHfgBtHHcSWIkmB-ik-pbsaJnfwpE,3291
30
+ autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py,sha256=ydjGKiEV5jK-wTT5yQj_RuDbJtO7jkuaM2SEZ8h7i_o,3292
31
31
  autogluon/multimodal/configs/pretrain/detection/voc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
32
  autogluon/multimodal/configs/pretrain/detection/voc/faster_rcnn_r50_fpn_1x_voc0712.py,sha256=0-8ouww1EBlrKvr6ZYYXbfuTLRrkoIgYdLWkwGce2Dk,465
33
33
  autogluon/multimodal/configs/pretrain/detection/voc/voc0712.py,sha256=0QLZ5SNSZItyRPqycFqYWG_7WsHOk_BaO36BUCYSrdU,1949
@@ -43,7 +43,7 @@ autogluon/multimodal/data/__init__.py,sha256=ZU23FGNWakbfVQJs6YKBfZ1A66MAG82ZgZl
43
43
  autogluon/multimodal/data/collator.py,sha256=UkfIpXgcwQVNXrzSv7vdWcWyQkKMyIPe1JPZTEYMAtU,9729
44
44
  autogluon/multimodal/data/datamodule.py,sha256=xTYg2kZ5i9NbGglnsPVURIJxDqvL8lusNMALuQxE5Wc,8826
45
45
  autogluon/multimodal/data/dataset.py,sha256=1RRQmbIkKW6DB8Zno6QRnE-EL3sL5yfwQNBK43TWNDw,4312
46
- autogluon/multimodal/data/infer_types.py,sha256=iAtBEwBjJT1phd0k3l7wDA5Q9n_3AywH7b3617jJmqY,27322
46
+ autogluon/multimodal/data/infer_types.py,sha256=dRG7FQIfza0jtBHvqOq_P3FNnMFkfZK9IoKaGU2vMc4,27306
47
47
  autogluon/multimodal/data/label_encoder.py,sha256=lLlBWYJTQJ42nMRSvrRHMdSOsK9E46s6ynbxzR2TMJo,10599
48
48
  autogluon/multimodal/data/mixup.py,sha256=zYj3tgKxE25868bbBuQEiAZnch-yHR5bqJWk9cI9kFc,7388
49
49
  autogluon/multimodal/data/preprocess_dataframe.py,sha256=sENmZe6ql9AYEMjcR86jJmAHIZtPvq9V9buU7LY34Fo,34197
@@ -53,12 +53,12 @@ autogluon/multimodal/data/process_image.py,sha256=DLC8PKlBl83LTUN3uj99n3JteSydsu
53
53
  autogluon/multimodal/data/process_label.py,sha256=eLg-lRp-nrZjzxcCpWWS2wqJT7HpFgX6mgLnbxzRdSo,2758
54
54
  autogluon/multimodal/data/process_ner.py,sha256=o9uGPxEmcc8wOyP0MorJL6Urv9rUKz9mzd_6lrUCsdE,6072
55
55
  autogluon/multimodal/data/process_numerical.py,sha256=gFsMtHPfXrx-Fn3g7HCVVya1OFwMGalI46pxZm2zFJk,3839
56
- autogluon/multimodal/data/process_semantic_seg_img.py,sha256=8NvEOnrdgIX2DlIe8aJelNrK_prYG7KewWKVhy7y4Jk,11935
56
+ autogluon/multimodal/data/process_semantic_seg_img.py,sha256=mENJ_h8chDad5KXtrek1CwK9JsnITwD9DtDHvMDE78w,11981
57
57
  autogluon/multimodal/data/process_text.py,sha256=xmzS5IrKGJczGuttQ0eQWjjfaszGf8Xaty2d33owMOk,19076
58
58
  autogluon/multimodal/data/randaug.py,sha256=iidjz4CtqWnhxtJKafr7yNoJOpmwdlYyMWHrpVoejY0,7005
59
59
  autogluon/multimodal/data/template_engine.py,sha256=HdyggdoKtXnlzyHcYep810aNKOvDVB5MFASi9tUGtDo,3610
60
60
  autogluon/multimodal/data/templates.py,sha256=UbK5wuQTt7mtWDUReFJoylYI483FJJ9Ox7iK4QkJvPE,25378
61
- autogluon/multimodal/data/trivial_augmenter.py,sha256=My9v_IpUNAD4PqzXAiiFszryleXuVcriedrrlzPiqSg,8404
61
+ autogluon/multimodal/data/trivial_augmenter.py,sha256=tNOM-hFzsM_7tOgsDGOK875zuOf2Dtr2RKEh37DxUb4,8403
62
62
  autogluon/multimodal/data/utils.py,sha256=SCOG3puRKxoMNsucbMkym1gaceRT1UOZFYvPNJXUUwg,21536
63
63
  autogluon/multimodal/data/dataset_mmlab/__init__.py,sha256=MXibqfVtAX2jjveMUtdHmSH6SabXEDrAOfZzTs3pK3Y,119
64
64
  autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=2rABeHdUo8S9Amv7wQqft80AASrfEtCDD5ixfs85jDc,32960
@@ -67,7 +67,7 @@ autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=K0d3o3j3cK37ocKk
67
67
  autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=961gctp4XcW_qsl0b1dg7JUxf93mINGY49HsIIYQR9Y,6698
68
68
  autogluon/multimodal/data/process_mmlab/process_mmocr.py,sha256=ZdwmU65YmRgeSGFowDUTJvUZUWI0CLsUe87EcPG_gEs,3095
69
69
  autogluon/multimodal/learners/__init__.py,sha256=fCei0O1w79sNdirFgNrtWhFIJ-XUOQ2r9D8lQaIunt8,258
70
- autogluon/multimodal/learners/base.py,sha256=YfcZp2MetvNXTzrtT_HvPadCtjlvGN8zlvUXNFQW5P8,100564
70
+ autogluon/multimodal/learners/base.py,sha256=F9q3lSuE2TEEKsea33tojngmQKMxJRlCoCSlmOWC6o8,100566
71
71
  autogluon/multimodal/learners/few_shot_svm.py,sha256=TXauhXr_2hWqaEwO8XhFxWRRPXDYxLpmmKYaCrxFWPM,23934
72
72
  autogluon/multimodal/learners/matching.py,sha256=vxKqRqe0_LYliEYepkL06CZUkzmCs7TnDTcxxp5TDCU,89849
73
73
  autogluon/multimodal/learners/ner.py,sha256=0VZl_Z1O98A5mOSw8Ee8F9foaCT684DT0j1ALx-8RU4,19035
@@ -91,7 +91,7 @@ autogluon/multimodal/models/sam.py,sha256=iXrSOMpG5ISOXALxfaVDZR8zzS2r4pdAd8RH-0
91
91
  autogluon/multimodal/models/t_few.py,sha256=Hcrkip44jfGvLVW4BSQuUimtWv92yaPEnf-S5SPT1SY,13374
92
92
  autogluon/multimodal/models/timm_image.py,sha256=z6gFUza_NrR_DJ16LynWqoYYg031aYhH3tdgLTA2Qew,11772
93
93
  autogluon/multimodal/models/utils.py,sha256=5Mh7Wp1ojlCC49EayH--Tz7bIbmVz6N31CpSTW12nxU,31697
94
- autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py,sha256=Dyzs2QGuX1-3WUiwUTkKX3lVHP1Ww3q9dcUYRCIUbes,66857
94
+ autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py,sha256=zsdXyzF29x_os6L-Kjflmwn50fo5l7dQYirAA46Ts7A,66856
95
95
  autogluon/multimodal/models/fusion/__init__.py,sha256=Fy7eEsOddtGy5L0sav0pWHDRqgukKdCPJPXzmBEM-uk,196
96
96
  autogluon/multimodal/models/fusion/base.py,sha256=dT7Bz-DkjREL-hPhnpZ24NSyp5tiDVg4Djaq8W7oZ64,2553
97
97
  autogluon/multimodal/models/fusion/fusion_mlp.py,sha256=ACRrzPkpCo2RbeWGbRGj_AOrBXkuYzhT0LVSTtOhqvw,7331
@@ -99,28 +99,28 @@ autogluon/multimodal/models/fusion/fusion_ner.py,sha256=iffJsTo35BPYi-3H5ndlwpDJ
99
99
  autogluon/multimodal/models/fusion/fusion_transformer.py,sha256=nEpFv4N9pmABUBjT1RbaccGfs7ey3z9avfzwzvi9i78,8999
100
100
  autogluon/multimodal/optimization/__init__.py,sha256=rDSeZ6mAXgtBwZMWqZBplgC-wdUtKDWhGse8K6BxjkA,506
101
101
  autogluon/multimodal/optimization/deepspeed.py,sha256=KXIfU7Df5Vm3lCoJ-gT58E93Xdw4kznvHau9eIdzI84,14966
102
- autogluon/multimodal/optimization/lit_distiller.py,sha256=hwmALciXXOINf6DnxdT9M8ADwlbzjb4TQ3oep9Wi-fU,21519
102
+ autogluon/multimodal/optimization/lit_distiller.py,sha256=03B2HhJxh7hljz41A-8hLwCYcFyP7hP3ILTpRX7_YBo,21518
103
103
  autogluon/multimodal/optimization/lit_matcher.py,sha256=LBBt3hj7xJadCi0cmdyJVLEJgXhS3cAZtGVt-Vz2GY4,17662
104
104
  autogluon/multimodal/optimization/lit_mmdet.py,sha256=Mx4UxXld8Z0W2VC1OLWSqHj4NFBGbFTdJVISvbLcfEo,9798
105
- autogluon/multimodal/optimization/lit_module.py,sha256=O6SzEhqNDpjoXhgHTO25z_NSDCCoGn9a4omfUfLmlM0,17363
106
- autogluon/multimodal/optimization/lit_ner.py,sha256=q98xFog3tGvIDsb2Mj67oPWbonHf-GZq0wtdTpccIHc,8636
105
+ autogluon/multimodal/optimization/lit_module.py,sha256=tKIipmg9CPL266dJgIaFfz4vLJl14S_JLHfNo-8sXAo,17362
106
+ autogluon/multimodal/optimization/lit_ner.py,sha256=hUK-BpGp4yXGygyZZi4FtecTnhf7EnybIf25DK22zNs,8635
107
107
  autogluon/multimodal/optimization/lit_semantic_seg.py,sha256=Xyiz7Ahn9onpfuYPYekvbwfkHAYU2_GuWRWaJMd7Q44,4795
108
108
  autogluon/multimodal/optimization/losses.py,sha256=n1nXpXgGmYfLv0b-51yDFp99szy3jkcbqPli5GMgHJs,14452
109
- autogluon/multimodal/optimization/lr_scheduler.py,sha256=tDFGecGGxW4PckXh9Q7BP_GmH8h6vXa53Bw1H6_C7L4,5828
109
+ autogluon/multimodal/optimization/lr_scheduler.py,sha256=i3GG7T8ZyPXyS7feUVe7W3o6eSLIh_Ei7XujJL50uxw,5829
110
110
  autogluon/multimodal/optimization/semantic_seg_metrics.py,sha256=tIbSk3iyBRRx7HnZdqIxltRBtDiBt-GX_zBxkMOFxQg,32894
111
- autogluon/multimodal/optimization/utils.py,sha256=_p7h9DzfwnLMqIMatSjPodIOi6VMTbco_z3Dxq30dZo,34413
111
+ autogluon/multimodal/optimization/utils.py,sha256=X6UknHcN2XID9WO2N2Of3-7MbWUfZO7ydNOktwwtbiU,34415
112
112
  autogluon/multimodal/utils/__init__.py,sha256=SaUQE-TwodG9NVOchXGp-Fx1CKKZe9iUKhFD_cTiI0c,2883
113
113
  autogluon/multimodal/utils/cache.py,sha256=yqIcIQMShypBbmIMCp_qfMjb-q1791BsDv83jeP4n0g,7710
114
- autogluon/multimodal/utils/checkpoint.py,sha256=WiiAC3Aw-p0060HjmuY44TBx-mN8RHCJapPJx37lXWc,7678
115
- autogluon/multimodal/utils/cloud_io.py,sha256=yjxlHbNXuZqcQhk_wG8tHu0hTl8uM1oIHq2fsc2es2Q,2988
116
- autogluon/multimodal/utils/colormap.py,sha256=q-mXQgKRAD3-Qi-ekornGRhUPu74Vfco6HB0oym3VWg,3881
114
+ autogluon/multimodal/utils/checkpoint.py,sha256=fVgrZbdVOv9yYVVCZO8BV0dQ0slzmLPFEDnG1FtY_hs,7657
115
+ autogluon/multimodal/utils/cloud_io.py,sha256=8yA8WNtpsLbYJTRBLaOFQAawrRSd2FTMpZO8qpOX5wA,2989
116
+ autogluon/multimodal/utils/colormap.py,sha256=DOSPCgeQXk87B2ae3iM7T0RGjrIVozvwp7RHEXzyb-4,3882
117
117
  autogluon/multimodal/utils/config.py,sha256=MpzKrzFHoaIMtxuXSOzPK_krc8n0XzQk5KD5wrrAEAs,28778
118
118
  autogluon/multimodal/utils/data.py,sha256=kNTrWyD1N3M-skWHcH2T-Wfz-MmDnbOi92UOklds6KA,23979
119
119
  autogluon/multimodal/utils/distillation.py,sha256=VYSY_excOESa84Q0w6IbV4wL_ER27Wy7V7cD74NX6rk,5937
120
- autogluon/multimodal/utils/download.py,sha256=Cj_1oXp7-zyIClDTLhgLjfeaXxBAiJlpeeq90_dblfQ,10418
120
+ autogluon/multimodal/utils/download.py,sha256=eOCw4b_EHBvHB9EcGesyzTm1f2AUrzz8KcZQ6j_D7-Y,10364
121
121
  autogluon/multimodal/utils/environment.py,sha256=J1YYBcIL-YzAnoN5GC1DMF_Rpt0DxSpJp3NZxJZ_q6g,12814
122
122
  autogluon/multimodal/utils/export.py,sha256=h7PizWsMaxMnlY7ssRNJxbExgt7B4XFkKY8hf7M-j4Y,11964
123
- autogluon/multimodal/utils/hpo.py,sha256=_jggKnarvuBGVP87cQ-CKrFgYkCsgbnFX3e4Oyb157Q,8715
123
+ autogluon/multimodal/utils/hpo.py,sha256=auaeeksOsDFCFWVnb0uFapNt4pZjGv8RC3fEO-r5MuU,8717
124
124
  autogluon/multimodal/utils/inference.py,sha256=VQAda55sf6rbuuxUS3MGJXyCAgb_xugLv1glCV2NlZk,12349
125
125
  autogluon/multimodal/utils/label_studio.py,sha256=7lFl75zztIy6VCuCbyZkN-BLbtr0j1S4F42zJteGVYY,13437
126
126
  autogluon/multimodal/utils/load.py,sha256=rzfADn6obbZL20QZc034IPhIiza7SA8f5MPpd9hPsAE,5106
@@ -130,16 +130,16 @@ autogluon/multimodal/utils/metric.py,sha256=cnK-NkHmljEvDy5TU4pkHjo32rADlOL7VLA8
130
130
  autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3bCQp2A,4772
131
131
  autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
132
132
  autogluon/multimodal/utils/model.py,sha256=Z_9bev8nRk92cUZjPggVAM3R3CHFlecU-YzjkMGPUsE,21963
133
- autogluon/multimodal/utils/nlpaug.py,sha256=GYnKkoGn-5EgU-1pN_iqzvcqA9X0_fBCSUtYgypXzOU,2556
133
+ autogluon/multimodal/utils/nlpaug.py,sha256=rWztiOZDbtEGBdyjkXZ0DoSEpXGKX9akpDpFnz4xIMw,2557
134
134
  autogluon/multimodal/utils/object_detection.py,sha256=EjLPzmq8Ge_HAtibiY5FNOChL_qAIls4PJF3PFd8kYA,50047
135
135
  autogluon/multimodal/utils/onnx.py,sha256=rblWnphKTsfbosbieJu8PsH6SMDw4on9BS8bR1plL2U,5607
136
136
  autogluon/multimodal/utils/save.py,sha256=zYIO3mYMGBvHfZcmCUaLpsQa14nVq1LPv2F76uaz89w,3951
137
- autogluon/multimodal/utils/visualizer.py,sha256=snTQw6OZpwsF_RcZHd9MxA9niGYU-UI8DpmcpvqlRu4,22584
138
- autogluon.multimodal-1.1.2b20240820.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
139
- autogluon.multimodal-1.1.2b20240820.dist-info/METADATA,sha256=HMAbytCP9xix17GvtugUzAKVtA3snjTKQmklcnRI4Vw,12854
140
- autogluon.multimodal-1.1.2b20240820.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
141
- autogluon.multimodal-1.1.2b20240820.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
142
- autogluon.multimodal-1.1.2b20240820.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
143
- autogluon.multimodal-1.1.2b20240820.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
144
- autogluon.multimodal-1.1.2b20240820.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
145
- autogluon.multimodal-1.1.2b20240820.dist-info/RECORD,,
137
+ autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
138
+ autogluon.multimodal-1.1.2b20240822.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
139
+ autogluon.multimodal-1.1.2b20240822.dist-info/METADATA,sha256=Rtj8mGSgNW056v4CKOFQi1vgySTh22dOg9sUf7iZINQ,12802
140
+ autogluon.multimodal-1.1.2b20240822.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
141
+ autogluon.multimodal-1.1.2b20240822.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
142
+ autogluon.multimodal-1.1.2b20240822.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
143
+ autogluon.multimodal-1.1.2b20240822.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
144
+ autogluon.multimodal-1.1.2b20240822.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
145
+ autogluon.multimodal-1.1.2b20240822.dist-info/RECORD,,