autogluon.multimodal 1.1.2b20240819__py3-none-any.whl → 1.1.2b20240821__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py +4 -1
- autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py +3 -1
- autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py +1 -1
- autogluon/multimodal/constants.py +1 -0
- autogluon/multimodal/data/infer_types.py +1 -3
- autogluon/multimodal/data/process_semantic_seg_img.py +3 -1
- autogluon/multimodal/data/trivial_augmenter.py +1 -1
- autogluon/multimodal/learners/base.py +2 -2
- autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py +1 -1
- autogluon/multimodal/optimization/lit_distiller.py +1 -1
- autogluon/multimodal/optimization/lit_module.py +1 -1
- autogluon/multimodal/optimization/lit_ner.py +1 -1
- autogluon/multimodal/optimization/lr_scheduler.py +1 -0
- autogluon/multimodal/optimization/utils.py +2 -2
- autogluon/multimodal/problem_types.py +2 -2
- autogluon/multimodal/registry.py +3 -2
- autogluon/multimodal/utils/checkpoint.py +1 -2
- autogluon/multimodal/utils/cloud_io.py +1 -0
- autogluon/multimodal/utils/colormap.py +1 -0
- autogluon/multimodal/utils/download.py +1 -3
- autogluon/multimodal/utils/hpo.py +3 -3
- autogluon/multimodal/utils/nlpaug.py +1 -0
- autogluon/multimodal/utils/visualizer.py +1 -3
- autogluon/multimodal/version.py +1 -1
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/METADATA +5 -6
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/RECORD +33 -33
- /autogluon.multimodal-1.1.2b20240819-py3.8-nspkg.pth → /autogluon.multimodal-1.1.2b20240821-py3.8-nspkg.pth +0 -0
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/LICENSE +0 -0
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/NOTICE +0 -0
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/WHEEL +0 -0
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/namespace_packages.txt +0 -0
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/top_level.txt +0 -0
- {autogluon.multimodal-1.1.2b20240819.dist-info → autogluon.multimodal-1.1.2b20240821.dist-info}/zip-safe +0 -0
@@ -49,7 +49,10 @@ model = dict(
|
|
49
49
|
post_norm_cfg=None,
|
50
50
|
),
|
51
51
|
positional_encoding=dict(
|
52
|
-
num_feats=128,
|
52
|
+
num_feats=128,
|
53
|
+
normalize=True,
|
54
|
+
offset=0.0,
|
55
|
+
temperature=20, # -0.5 for DeformDETR
|
53
56
|
), # 10000 for DeformDETR
|
54
57
|
bbox_head=dict(
|
55
58
|
type="DINOHead",
|
@@ -1,6 +1,8 @@
|
|
1
1
|
_base_ = "./dino-4scale_r50_8xb2-12e_coco.py"
|
2
2
|
|
3
|
-
pretrained =
|
3
|
+
pretrained = (
|
4
|
+
"https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth" # noqa
|
5
|
+
)
|
4
6
|
num_levels = 5
|
5
7
|
model = dict(
|
6
8
|
num_feature_levels=num_levels,
|
@@ -79,7 +79,7 @@ model = dict(
|
|
79
79
|
),
|
80
80
|
test_cfg=dict(
|
81
81
|
rpn=dict(nms_pre=1000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0),
|
82
|
-
rcnn=dict(score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100)
|
82
|
+
rcnn=dict(score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100),
|
83
83
|
# soft-nms is also supported for rcnn testing
|
84
84
|
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
|
85
85
|
),
|
@@ -828,9 +828,7 @@ def infer_ner_column_type(column_types: Dict):
|
|
828
828
|
if any([col_type.startswith(TEXT_NER) for col_type in column_types.values()]):
|
829
829
|
return column_types
|
830
830
|
|
831
|
-
for (
|
832
|
-
column
|
833
|
-
) in (
|
831
|
+
for column in (
|
834
832
|
column_types.keys()
|
835
833
|
): # column_types is an ordered dict, so column_types.keys() returns the keys in the order of insertions.
|
836
834
|
if column_types[column].startswith(TEXT):
|
@@ -235,7 +235,9 @@ class SemanticSegImageProcessor:
|
|
235
235
|
if self.num_classes == 1:
|
236
236
|
gt = gt.convert("L")
|
237
237
|
if self.num_classes > 1:
|
238
|
-
gt = np.array(
|
238
|
+
gt = np.array(
|
239
|
+
gt
|
240
|
+
).astype(
|
239
241
|
"float32"
|
240
242
|
) # There may be issues with 'transforms.ToTensor()' without this line because 'transforms.ToTensor()' converts 'unit8' to values between 0 and 1.
|
241
243
|
gt = Image.fromarray(gt)
|
@@ -1,5 +1,5 @@
|
|
1
1
|
"""
|
2
|
-
This file implements TrivialAugment.(https://arxiv.org/abs/2103.10158) We extend it for multi-modality setting.
|
2
|
+
This file implements TrivialAugment.(https://arxiv.org/abs/2103.10158) We extend it for multi-modality setting.
|
3
3
|
|
4
4
|
Code is partially adapted from its official implementation https://github.com/automl/trivialaugment
|
5
5
|
"""
|
@@ -1017,8 +1017,8 @@ class BaseLearner(ExportMixin, DistillationMixin, RealtimeMixin):
|
|
1017
1017
|
if (
|
1018
1018
|
config.env.strategy == DEEPSPEED_OFFLOADING and num_gpus == 1 and DEEPSPEED_MODULE not in sys.modules
|
1019
1019
|
): # Offloading currently only tested for single GPU
|
1020
|
-
assert
|
1021
|
-
DEEPSPEED_MIN_PL_VERSION
|
1020
|
+
assert (
|
1021
|
+
version.parse(pl.__version__) >= version.parse(DEEPSPEED_MIN_PL_VERSION)
|
1022
1022
|
), f"For DeepSpeed Offloading to work reliably you need at least lightning version {DEEPSPEED_MIN_PL_VERSION}, however, found {pl.__version__}. Please update your lightning version."
|
1023
1023
|
from ..optimization.deepspeed import CustomDeepSpeedStrategy
|
1024
1024
|
|
@@ -12,7 +12,7 @@
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
13
|
# See the License for the specific language governing permissions and
|
14
14
|
# limitations under the License.
|
15
|
-
"""
|
15
|
+
"""PyTorch SAM model."""
|
16
16
|
|
17
17
|
import collections
|
18
18
|
import math
|
@@ -416,7 +416,7 @@ class DistillerLitModule(pl.LightningModule):
|
|
416
416
|
custom_metric_func=self.custom_metric_func,
|
417
417
|
logits=student_output[self.student_model.prefix][LOGITS],
|
418
418
|
label=batch[self.student_model.label_key],
|
419
|
-
)
|
419
|
+
)
|
420
420
|
self.log(
|
421
421
|
self.validation_metric_name,
|
422
422
|
self.validation_metric,
|
@@ -296,7 +296,7 @@ class LitModule(pl.LightningModule):
|
|
296
296
|
custom_metric_func=self.custom_metric_func,
|
297
297
|
logits=output[self.model.prefix][LOGITS],
|
298
298
|
label=batch[self.model.label_key],
|
299
|
-
)
|
299
|
+
)
|
300
300
|
self.log(
|
301
301
|
self.validation_metric_name,
|
302
302
|
self.validation_metric,
|
@@ -852,8 +852,8 @@ def gather_column_features(
|
|
852
852
|
|
853
853
|
# two or more columns share one cls feature, and no other columns share it.
|
854
854
|
if len(columns_share_one_feature) > 0:
|
855
|
-
assert
|
856
|
-
feature_name
|
855
|
+
assert (
|
856
|
+
len("_".join(columns_share_one_feature)) == len(feature_name)
|
857
857
|
), f"model `{per_model_name}`'s cls feature name `{feature_name}` doesn't match `{columns_share_one_feature}`"
|
858
858
|
gathered_features.append(per_model_output[COLUMN_FEATURES][FEATURES][feature_name])
|
859
859
|
|
@@ -250,8 +250,8 @@ _ner_property = ProblemTypeProperty(
|
|
250
250
|
_supported_evaluation_metrics=[OVERALL_F1, NER_TOKEN_F1],
|
251
251
|
_fallback_validation_metric=NER_TOKEN_F1,
|
252
252
|
)
|
253
|
-
PROBLEM_TYPES_REG.register(NER, _ner_property)
|
254
|
-
PROBLEM_TYPES_REG.register(NAMED_ENTITY_RECOGNITION, _ner_property)
|
253
|
+
PROBLEM_TYPES_REG.register(NER, _ner_property)
|
254
|
+
PROBLEM_TYPES_REG.register(NAMED_ENTITY_RECOGNITION, _ner_property)
|
255
255
|
|
256
256
|
# Feature Extraction: text --> feature, image --> features
|
257
257
|
PROBLEM_TYPES_REG.register(
|
autogluon/multimodal/registry.py
CHANGED
@@ -110,6 +110,7 @@ class Registry:
|
|
110
110
|
return self.create(name, **args)
|
111
111
|
else:
|
112
112
|
raise NotImplementedError(
|
113
|
-
"The format of json string is not supported! We only support "
|
114
|
-
|
113
|
+
"The format of json string is not supported! We only support " 'list/dict. json_str="{}".'.format(
|
114
|
+
json_str
|
115
|
+
)
|
115
116
|
)
|
@@ -9,9 +9,8 @@ import torch
|
|
9
9
|
from lightning.pytorch.strategies import DeepSpeedStrategy
|
10
10
|
from lightning.pytorch.utilities.rank_zero import rank_zero_warn
|
11
11
|
|
12
|
-
from .cloud_io import _atomic_save
|
12
|
+
from .cloud_io import _atomic_save, get_filesystem
|
13
13
|
from .cloud_io import _load as pl_load
|
14
|
-
from .cloud_io import get_filesystem
|
15
14
|
|
16
15
|
logger = logging.getLogger(__name__)
|
17
16
|
|
@@ -12,6 +12,7 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
"""Utilities related to data saving/loading."""
|
15
|
+
|
15
16
|
"""
|
16
17
|
Copied from
|
17
18
|
https://github.com/Lightning-AI/lightning/blob/master/src/lightning/fabric/utilities/cloud_io.py
|
@@ -50,9 +50,9 @@ def hpo_trial(sampled_hyperparameters, learner, checkpoint_dir=None, **_fit_args
|
|
50
50
|
resources = context.get_trial_resources().required_resources
|
51
51
|
num_cpus = int(resources.get("CPU"))
|
52
52
|
|
53
|
-
_fit_args[
|
54
|
-
|
55
|
-
|
53
|
+
_fit_args["hyperparameters"] = (
|
54
|
+
sampled_hyperparameters # The original hyperparameters is the search space, replace it with the hyperparameters sampled
|
55
|
+
)
|
56
56
|
_fit_args["save_path"] = context.get_trial_dir() # We want to save each trial to a separate directory
|
57
57
|
logger.debug(f"hpo trial save_path: {_fit_args['save_path']}")
|
58
58
|
if checkpoint_dir is not None:
|
@@ -578,9 +578,7 @@ class NERVisualizer:
|
|
578
578
|
"""
|
579
579
|
text = '<mark style="background-color:{}; color:white; border-radius: .6em .6em; padding: .1em;">{} \
|
580
580
|
<b style="background-color:white; color:black; font-size:x-small; border-radius: 0.5em .5em; padding: .0em;">{} </b> \
|
581
|
-
</mark>'.format(
|
582
|
-
color, self.escape_html(text), self.escape_html(label)
|
583
|
-
)
|
581
|
+
</mark>'.format(color, self.escape_html(text), self.escape_html(label))
|
584
582
|
return text
|
585
583
|
|
586
584
|
def _repr_html_(self):
|
autogluon/multimodal/version.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.multimodal
|
3
|
-
Version: 1.1.
|
3
|
+
Version: 1.1.2b20240821
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -56,9 +56,9 @@ Requires-Dist: text-unidecode<1.4,>=1.3
|
|
56
56
|
Requires-Dist: torchmetrics<1.3.0,>=1.2.0
|
57
57
|
Requires-Dist: nptyping<2.5.0,>=1.4.4
|
58
58
|
Requires-Dist: omegaconf<2.3.0,>=2.1.1
|
59
|
-
Requires-Dist: autogluon.core[raytune]==1.1.
|
60
|
-
Requires-Dist: autogluon.features==1.1.
|
61
|
-
Requires-Dist: autogluon.common==1.1.
|
59
|
+
Requires-Dist: autogluon.core[raytune]==1.1.2b20240821
|
60
|
+
Requires-Dist: autogluon.features==1.1.2b20240821
|
61
|
+
Requires-Dist: autogluon.common==1.1.2b20240821
|
62
62
|
Requires-Dist: pytorch-metric-learning<2.4,>=1.3.0
|
63
63
|
Requires-Dist: nlpaug<1.2.0,>=1.1.10
|
64
64
|
Requires-Dist: nltk<4.0.0,>=3.4.5
|
@@ -70,8 +70,7 @@ Requires-Dist: pytesseract<0.3.11,>=0.3.9
|
|
70
70
|
Requires-Dist: nvidia-ml-py3==7.352.0
|
71
71
|
Requires-Dist: pdf2image<1.19,>=1.17.0
|
72
72
|
Provides-Extra: tests
|
73
|
-
Requires-Dist:
|
74
|
-
Requires-Dist: isort>=5.10; extra == "tests"
|
73
|
+
Requires-Dist: ruff; extra == "tests"
|
75
74
|
Requires-Dist: datasets<2.15.0,>=2.10.0; extra == "tests"
|
76
75
|
Requires-Dist: onnx<1.14.0,>=1.13.0; extra == "tests"
|
77
76
|
Requires-Dist: onnxruntime-gpu<1.16.0,>=1.15.0; platform_system != "Darwin" and extra == "tests"
|
@@ -1,11 +1,11 @@
|
|
1
|
-
autogluon.multimodal-1.1.
|
1
|
+
autogluon.multimodal-1.1.2b20240821-py3.8-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/multimodal/__init__.py,sha256=EuWb-QmtFBKePJw4_4Kpp9dKrabv121haYw_Oiu2jfI,238
|
3
|
-
autogluon/multimodal/constants.py,sha256=
|
3
|
+
autogluon/multimodal/constants.py,sha256=lFA03ZQeZlp8mwuXLuMOgeByljV5wPYBjN_hi6Xc8zg,8498
|
4
4
|
autogluon/multimodal/predictor.py,sha256=VTJGcKH4Kktdm4Qq2x9oRThpfp6w_kFSjJOmQPsmB5g,40654
|
5
5
|
autogluon/multimodal/presets.py,sha256=VR_arn7X4eiQcGcvJVmwxDopPJGvYP1W1cBZ2AOcdJM,25882
|
6
|
-
autogluon/multimodal/problem_types.py,sha256=
|
7
|
-
autogluon/multimodal/registry.py,sha256=
|
8
|
-
autogluon/multimodal/version.py,sha256=
|
6
|
+
autogluon/multimodal/problem_types.py,sha256=JPSoV3Fg-NGQansRlyT2bPZG3iIkgWo7eB8oDoAfg90,9201
|
7
|
+
autogluon/multimodal/registry.py,sha256=vqvONWweZP44aBo1jCvlqLdL0Agn2kyTK8uXUwagZhs,3670
|
8
|
+
autogluon/multimodal/version.py,sha256=V8HdNM_mMsqnydkkX8jz5kpP8JGyOdE6DrSC4X-a31E,90
|
9
9
|
autogluon/multimodal/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
10
|
autogluon/multimodal/cli/prepare_detection_dataset.py,sha256=9NCYmCUMPRWbxxbN_C7YQjMYlrAm8gbwJ3Qd-79JWH4,5218
|
11
11
|
autogluon/multimodal/cli/voc2coco.py,sha256=LXVu9RIfOZs_1URrzO-_3Nrvb9uGEgPxCY4-B6m1coc,9605
|
@@ -21,13 +21,13 @@ autogluon/multimodal/configs/pretrain/detection/__init__.py,sha256=47DEQpj8HBSa-
|
|
21
21
|
autogluon/multimodal/configs/pretrain/detection/coco_detection.py,sha256=UlSwkWAkST_96RTzPZMuPuqIfv72U03-JdqwPd-NjiQ,3171
|
22
22
|
autogluon/multimodal/configs/pretrain/detection/default_runtime.py,sha256=9hJmjxb6fIo-kbbejQlJy4ayopRFUyA_w95plhAUFDw,793
|
23
23
|
autogluon/multimodal/configs/pretrain/detection/schedule_1x.py,sha256=VhZ8HT-ryeGW-GzxiVsDEIYf9Bw6ImOdPucFVJaN0Os,298
|
24
|
-
autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py,sha256=
|
25
|
-
autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py,sha256=
|
24
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino-4scale_r50_8xb2-12e_coco.py,sha256=Zm41N-VNY13cj6U485wtrDqB7k49Sdj4MdNLYjTE62E,5910
|
25
|
+
autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-12e_coco.py,sha256=VYvjELfzX2jYmsQLFvMYWeixx2LmB_LwbPmzgLAPUwo,1137
|
26
26
|
autogluon/multimodal/configs/pretrain/detection/dino/dino-5scale_swin-l_8xb2-36e_coco.py,sha256=OL4Za_hd5IhQU8iHEAVrsFu-MnSmOPu1_WRa39i3QYA,266
|
27
27
|
autogluon/multimodal/configs/pretrain/detection/dino/dino_swinl_tta.py,sha256=vi5rhbaT3mgycIm1W8jQ6l-KuFoL24OiiF-rdj2CTNg,68
|
28
28
|
autogluon/multimodal/configs/pretrain/detection/dino/dino_tta.py,sha256=pwNnOJxut95HwGyS4RDjxTF-hH9HLpTQAyE2Ni7dzAA,1467
|
29
29
|
autogluon/multimodal/configs/pretrain/detection/faster_rcnn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
30
|
-
autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py,sha256=
|
30
|
+
autogluon/multimodal/configs/pretrain/detection/faster_rcnn/faster_rcnn_r50_fpn.py,sha256=ydjGKiEV5jK-wTT5yQj_RuDbJtO7jkuaM2SEZ8h7i_o,3292
|
31
31
|
autogluon/multimodal/configs/pretrain/detection/voc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
32
32
|
autogluon/multimodal/configs/pretrain/detection/voc/faster_rcnn_r50_fpn_1x_voc0712.py,sha256=0-8ouww1EBlrKvr6ZYYXbfuTLRrkoIgYdLWkwGce2Dk,465
|
33
33
|
autogluon/multimodal/configs/pretrain/detection/voc/voc0712.py,sha256=0QLZ5SNSZItyRPqycFqYWG_7WsHOk_BaO36BUCYSrdU,1949
|
@@ -43,7 +43,7 @@ autogluon/multimodal/data/__init__.py,sha256=ZU23FGNWakbfVQJs6YKBfZ1A66MAG82ZgZl
|
|
43
43
|
autogluon/multimodal/data/collator.py,sha256=UkfIpXgcwQVNXrzSv7vdWcWyQkKMyIPe1JPZTEYMAtU,9729
|
44
44
|
autogluon/multimodal/data/datamodule.py,sha256=xTYg2kZ5i9NbGglnsPVURIJxDqvL8lusNMALuQxE5Wc,8826
|
45
45
|
autogluon/multimodal/data/dataset.py,sha256=1RRQmbIkKW6DB8Zno6QRnE-EL3sL5yfwQNBK43TWNDw,4312
|
46
|
-
autogluon/multimodal/data/infer_types.py,sha256=
|
46
|
+
autogluon/multimodal/data/infer_types.py,sha256=dRG7FQIfza0jtBHvqOq_P3FNnMFkfZK9IoKaGU2vMc4,27306
|
47
47
|
autogluon/multimodal/data/label_encoder.py,sha256=lLlBWYJTQJ42nMRSvrRHMdSOsK9E46s6ynbxzR2TMJo,10599
|
48
48
|
autogluon/multimodal/data/mixup.py,sha256=zYj3tgKxE25868bbBuQEiAZnch-yHR5bqJWk9cI9kFc,7388
|
49
49
|
autogluon/multimodal/data/preprocess_dataframe.py,sha256=sENmZe6ql9AYEMjcR86jJmAHIZtPvq9V9buU7LY34Fo,34197
|
@@ -53,12 +53,12 @@ autogluon/multimodal/data/process_image.py,sha256=DLC8PKlBl83LTUN3uj99n3JteSydsu
|
|
53
53
|
autogluon/multimodal/data/process_label.py,sha256=eLg-lRp-nrZjzxcCpWWS2wqJT7HpFgX6mgLnbxzRdSo,2758
|
54
54
|
autogluon/multimodal/data/process_ner.py,sha256=o9uGPxEmcc8wOyP0MorJL6Urv9rUKz9mzd_6lrUCsdE,6072
|
55
55
|
autogluon/multimodal/data/process_numerical.py,sha256=gFsMtHPfXrx-Fn3g7HCVVya1OFwMGalI46pxZm2zFJk,3839
|
56
|
-
autogluon/multimodal/data/process_semantic_seg_img.py,sha256=
|
56
|
+
autogluon/multimodal/data/process_semantic_seg_img.py,sha256=mENJ_h8chDad5KXtrek1CwK9JsnITwD9DtDHvMDE78w,11981
|
57
57
|
autogluon/multimodal/data/process_text.py,sha256=xmzS5IrKGJczGuttQ0eQWjjfaszGf8Xaty2d33owMOk,19076
|
58
58
|
autogluon/multimodal/data/randaug.py,sha256=iidjz4CtqWnhxtJKafr7yNoJOpmwdlYyMWHrpVoejY0,7005
|
59
59
|
autogluon/multimodal/data/template_engine.py,sha256=HdyggdoKtXnlzyHcYep810aNKOvDVB5MFASi9tUGtDo,3610
|
60
60
|
autogluon/multimodal/data/templates.py,sha256=UbK5wuQTt7mtWDUReFJoylYI483FJJ9Ox7iK4QkJvPE,25378
|
61
|
-
autogluon/multimodal/data/trivial_augmenter.py,sha256=
|
61
|
+
autogluon/multimodal/data/trivial_augmenter.py,sha256=tNOM-hFzsM_7tOgsDGOK875zuOf2Dtr2RKEh37DxUb4,8403
|
62
62
|
autogluon/multimodal/data/utils.py,sha256=SCOG3puRKxoMNsucbMkym1gaceRT1UOZFYvPNJXUUwg,21536
|
63
63
|
autogluon/multimodal/data/dataset_mmlab/__init__.py,sha256=MXibqfVtAX2jjveMUtdHmSH6SabXEDrAOfZzTs3pK3Y,119
|
64
64
|
autogluon/multimodal/data/dataset_mmlab/multi_image_mix_dataset.py,sha256=2rABeHdUo8S9Amv7wQqft80AASrfEtCDD5ixfs85jDc,32960
|
@@ -67,7 +67,7 @@ autogluon/multimodal/data/process_mmlab/process_mmdet.py,sha256=K0d3o3j3cK37ocKk
|
|
67
67
|
autogluon/multimodal/data/process_mmlab/process_mmlab_base.py,sha256=961gctp4XcW_qsl0b1dg7JUxf93mINGY49HsIIYQR9Y,6698
|
68
68
|
autogluon/multimodal/data/process_mmlab/process_mmocr.py,sha256=ZdwmU65YmRgeSGFowDUTJvUZUWI0CLsUe87EcPG_gEs,3095
|
69
69
|
autogluon/multimodal/learners/__init__.py,sha256=fCei0O1w79sNdirFgNrtWhFIJ-XUOQ2r9D8lQaIunt8,258
|
70
|
-
autogluon/multimodal/learners/base.py,sha256=
|
70
|
+
autogluon/multimodal/learners/base.py,sha256=F9q3lSuE2TEEKsea33tojngmQKMxJRlCoCSlmOWC6o8,100566
|
71
71
|
autogluon/multimodal/learners/few_shot_svm.py,sha256=TXauhXr_2hWqaEwO8XhFxWRRPXDYxLpmmKYaCrxFWPM,23934
|
72
72
|
autogluon/multimodal/learners/matching.py,sha256=vxKqRqe0_LYliEYepkL06CZUkzmCs7TnDTcxxp5TDCU,89849
|
73
73
|
autogluon/multimodal/learners/ner.py,sha256=0VZl_Z1O98A5mOSw8Ee8F9foaCT684DT0j1ALx-8RU4,19035
|
@@ -91,7 +91,7 @@ autogluon/multimodal/models/sam.py,sha256=iXrSOMpG5ISOXALxfaVDZR8zzS2r4pdAd8RH-0
|
|
91
91
|
autogluon/multimodal/models/t_few.py,sha256=Hcrkip44jfGvLVW4BSQuUimtWv92yaPEnf-S5SPT1SY,13374
|
92
92
|
autogluon/multimodal/models/timm_image.py,sha256=z6gFUza_NrR_DJ16LynWqoYYg031aYhH3tdgLTA2Qew,11772
|
93
93
|
autogluon/multimodal/models/utils.py,sha256=5Mh7Wp1ojlCC49EayH--Tz7bIbmVz6N31CpSTW12nxU,31697
|
94
|
-
autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py,sha256=
|
94
|
+
autogluon/multimodal/models/custom_hf_models/modeling_sam_for_conv_lora.py,sha256=zsdXyzF29x_os6L-Kjflmwn50fo5l7dQYirAA46Ts7A,66856
|
95
95
|
autogluon/multimodal/models/fusion/__init__.py,sha256=Fy7eEsOddtGy5L0sav0pWHDRqgukKdCPJPXzmBEM-uk,196
|
96
96
|
autogluon/multimodal/models/fusion/base.py,sha256=dT7Bz-DkjREL-hPhnpZ24NSyp5tiDVg4Djaq8W7oZ64,2553
|
97
97
|
autogluon/multimodal/models/fusion/fusion_mlp.py,sha256=ACRrzPkpCo2RbeWGbRGj_AOrBXkuYzhT0LVSTtOhqvw,7331
|
@@ -99,28 +99,28 @@ autogluon/multimodal/models/fusion/fusion_ner.py,sha256=iffJsTo35BPYi-3H5ndlwpDJ
|
|
99
99
|
autogluon/multimodal/models/fusion/fusion_transformer.py,sha256=nEpFv4N9pmABUBjT1RbaccGfs7ey3z9avfzwzvi9i78,8999
|
100
100
|
autogluon/multimodal/optimization/__init__.py,sha256=rDSeZ6mAXgtBwZMWqZBplgC-wdUtKDWhGse8K6BxjkA,506
|
101
101
|
autogluon/multimodal/optimization/deepspeed.py,sha256=KXIfU7Df5Vm3lCoJ-gT58E93Xdw4kznvHau9eIdzI84,14966
|
102
|
-
autogluon/multimodal/optimization/lit_distiller.py,sha256=
|
102
|
+
autogluon/multimodal/optimization/lit_distiller.py,sha256=03B2HhJxh7hljz41A-8hLwCYcFyP7hP3ILTpRX7_YBo,21518
|
103
103
|
autogluon/multimodal/optimization/lit_matcher.py,sha256=LBBt3hj7xJadCi0cmdyJVLEJgXhS3cAZtGVt-Vz2GY4,17662
|
104
104
|
autogluon/multimodal/optimization/lit_mmdet.py,sha256=Mx4UxXld8Z0W2VC1OLWSqHj4NFBGbFTdJVISvbLcfEo,9798
|
105
|
-
autogluon/multimodal/optimization/lit_module.py,sha256=
|
106
|
-
autogluon/multimodal/optimization/lit_ner.py,sha256=
|
105
|
+
autogluon/multimodal/optimization/lit_module.py,sha256=tKIipmg9CPL266dJgIaFfz4vLJl14S_JLHfNo-8sXAo,17362
|
106
|
+
autogluon/multimodal/optimization/lit_ner.py,sha256=hUK-BpGp4yXGygyZZi4FtecTnhf7EnybIf25DK22zNs,8635
|
107
107
|
autogluon/multimodal/optimization/lit_semantic_seg.py,sha256=Xyiz7Ahn9onpfuYPYekvbwfkHAYU2_GuWRWaJMd7Q44,4795
|
108
108
|
autogluon/multimodal/optimization/losses.py,sha256=n1nXpXgGmYfLv0b-51yDFp99szy3jkcbqPli5GMgHJs,14452
|
109
|
-
autogluon/multimodal/optimization/lr_scheduler.py,sha256=
|
109
|
+
autogluon/multimodal/optimization/lr_scheduler.py,sha256=i3GG7T8ZyPXyS7feUVe7W3o6eSLIh_Ei7XujJL50uxw,5829
|
110
110
|
autogluon/multimodal/optimization/semantic_seg_metrics.py,sha256=tIbSk3iyBRRx7HnZdqIxltRBtDiBt-GX_zBxkMOFxQg,32894
|
111
|
-
autogluon/multimodal/optimization/utils.py,sha256=
|
111
|
+
autogluon/multimodal/optimization/utils.py,sha256=X6UknHcN2XID9WO2N2Of3-7MbWUfZO7ydNOktwwtbiU,34415
|
112
112
|
autogluon/multimodal/utils/__init__.py,sha256=SaUQE-TwodG9NVOchXGp-Fx1CKKZe9iUKhFD_cTiI0c,2883
|
113
113
|
autogluon/multimodal/utils/cache.py,sha256=yqIcIQMShypBbmIMCp_qfMjb-q1791BsDv83jeP4n0g,7710
|
114
|
-
autogluon/multimodal/utils/checkpoint.py,sha256=
|
115
|
-
autogluon/multimodal/utils/cloud_io.py,sha256=
|
116
|
-
autogluon/multimodal/utils/colormap.py,sha256=
|
114
|
+
autogluon/multimodal/utils/checkpoint.py,sha256=fVgrZbdVOv9yYVVCZO8BV0dQ0slzmLPFEDnG1FtY_hs,7657
|
115
|
+
autogluon/multimodal/utils/cloud_io.py,sha256=8yA8WNtpsLbYJTRBLaOFQAawrRSd2FTMpZO8qpOX5wA,2989
|
116
|
+
autogluon/multimodal/utils/colormap.py,sha256=DOSPCgeQXk87B2ae3iM7T0RGjrIVozvwp7RHEXzyb-4,3882
|
117
117
|
autogluon/multimodal/utils/config.py,sha256=MpzKrzFHoaIMtxuXSOzPK_krc8n0XzQk5KD5wrrAEAs,28778
|
118
118
|
autogluon/multimodal/utils/data.py,sha256=kNTrWyD1N3M-skWHcH2T-Wfz-MmDnbOi92UOklds6KA,23979
|
119
119
|
autogluon/multimodal/utils/distillation.py,sha256=VYSY_excOESa84Q0w6IbV4wL_ER27Wy7V7cD74NX6rk,5937
|
120
|
-
autogluon/multimodal/utils/download.py,sha256=
|
120
|
+
autogluon/multimodal/utils/download.py,sha256=eOCw4b_EHBvHB9EcGesyzTm1f2AUrzz8KcZQ6j_D7-Y,10364
|
121
121
|
autogluon/multimodal/utils/environment.py,sha256=J1YYBcIL-YzAnoN5GC1DMF_Rpt0DxSpJp3NZxJZ_q6g,12814
|
122
122
|
autogluon/multimodal/utils/export.py,sha256=h7PizWsMaxMnlY7ssRNJxbExgt7B4XFkKY8hf7M-j4Y,11964
|
123
|
-
autogluon/multimodal/utils/hpo.py,sha256=
|
123
|
+
autogluon/multimodal/utils/hpo.py,sha256=auaeeksOsDFCFWVnb0uFapNt4pZjGv8RC3fEO-r5MuU,8717
|
124
124
|
autogluon/multimodal/utils/inference.py,sha256=VQAda55sf6rbuuxUS3MGJXyCAgb_xugLv1glCV2NlZk,12349
|
125
125
|
autogluon/multimodal/utils/label_studio.py,sha256=7lFl75zztIy6VCuCbyZkN-BLbtr0j1S4F42zJteGVYY,13437
|
126
126
|
autogluon/multimodal/utils/load.py,sha256=rzfADn6obbZL20QZc034IPhIiza7SA8f5MPpd9hPsAE,5106
|
@@ -130,16 +130,16 @@ autogluon/multimodal/utils/metric.py,sha256=cnK-NkHmljEvDy5TU4pkHjo32rADlOL7VLA8
|
|
130
130
|
autogluon/multimodal/utils/misc.py,sha256=WaDWN-6xCCL4tCkxMr4VMb5oiNmmBLrWo5FC3bCQp2A,4772
|
131
131
|
autogluon/multimodal/utils/mmcv.py,sha256=Jjg5PiPqiRNJk6yWkQQlNiqT7qhStN94QjqQsZO3uVw,922
|
132
132
|
autogluon/multimodal/utils/model.py,sha256=Z_9bev8nRk92cUZjPggVAM3R3CHFlecU-YzjkMGPUsE,21963
|
133
|
-
autogluon/multimodal/utils/nlpaug.py,sha256=
|
133
|
+
autogluon/multimodal/utils/nlpaug.py,sha256=rWztiOZDbtEGBdyjkXZ0DoSEpXGKX9akpDpFnz4xIMw,2557
|
134
134
|
autogluon/multimodal/utils/object_detection.py,sha256=EjLPzmq8Ge_HAtibiY5FNOChL_qAIls4PJF3PFd8kYA,50047
|
135
135
|
autogluon/multimodal/utils/onnx.py,sha256=rblWnphKTsfbosbieJu8PsH6SMDw4on9BS8bR1plL2U,5607
|
136
136
|
autogluon/multimodal/utils/save.py,sha256=zYIO3mYMGBvHfZcmCUaLpsQa14nVq1LPv2F76uaz89w,3951
|
137
|
-
autogluon/multimodal/utils/visualizer.py,sha256=
|
138
|
-
autogluon.multimodal-1.1.
|
139
|
-
autogluon.multimodal-1.1.
|
140
|
-
autogluon.multimodal-1.1.
|
141
|
-
autogluon.multimodal-1.1.
|
142
|
-
autogluon.multimodal-1.1.
|
143
|
-
autogluon.multimodal-1.1.
|
144
|
-
autogluon.multimodal-1.1.
|
145
|
-
autogluon.multimodal-1.1.
|
137
|
+
autogluon/multimodal/utils/visualizer.py,sha256=qAc4_36r3MBDPq1R1jBeb_gcfzIrsylL1S31sRf3wuw,22562
|
138
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
139
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/METADATA,sha256=N0u1vksXzHgFlgDjTq5OqCQRfhnN4piYzcwD6KGpSes,12802
|
140
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
141
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
142
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
143
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
144
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
145
|
+
autogluon.multimodal-1.1.2b20240821.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|