autogluon.core 1.2.1b20250215__py3-none-any.whl → 1.2.1b20250217__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
autogluon/core/version.py CHANGED
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250215"
3
+ __version__ = "1.2.1b20250217"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.core
3
- Version: 1.2.1b20250215
3
+ Version: 1.2.1b20250217
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -45,12 +45,12 @@ Requires-Dist: tqdm<5,>=4.38
45
45
  Requires-Dist: requests
46
46
  Requires-Dist: matplotlib<3.11,>=3.7.0
47
47
  Requires-Dist: boto3<2,>=1.10
48
- Requires-Dist: autogluon.common==1.2.1b20250215
48
+ Requires-Dist: autogluon.common==1.2.1b20250217
49
49
  Provides-Extra: all
50
- Requires-Dist: ray[default]<2.41,>=2.10.0; extra == "all"
51
50
  Requires-Dist: ray[default,tune]<2.41,>=2.10.0; extra == "all"
52
51
  Requires-Dist: pyarrow>=15.0.0; extra == "all"
53
52
  Requires-Dist: hyperopt<0.2.8,>=0.2.7; extra == "all"
53
+ Requires-Dist: ray[default]<2.41,>=2.10.0; extra == "all"
54
54
  Provides-Extra: ray
55
55
  Requires-Dist: ray[default]<2.41,>=2.10.0; extra == "ray"
56
56
  Provides-Extra: raytune
@@ -60,9 +60,9 @@ Requires-Dist: hyperopt<0.2.8,>=0.2.7; extra == "raytune"
60
60
  Provides-Extra: tests
61
61
  Requires-Dist: flake8; extra == "tests"
62
62
  Requires-Dist: pytest; extra == "tests"
63
+ Requires-Dist: types-requests; extra == "tests"
63
64
  Requires-Dist: types-setuptools; extra == "tests"
64
65
  Requires-Dist: pytest-mypy; extra == "tests"
65
- Requires-Dist: types-requests; extra == "tests"
66
66
 
67
67
 
68
68
 
@@ -83,9 +83,11 @@ Requires-Dist: types-requests; extra == "tests"
83
83
 
84
84
  [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
85
85
 
86
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
87
86
  </div>
88
87
 
88
+ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
89
+
90
+
89
91
  ## 💾 Installation
90
92
 
91
93
  AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
@@ -125,8 +127,8 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
125
127
  | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
126
128
  | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
127
129
  | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
128
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
129
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
130
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
131
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
130
132
  | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
131
133
 
132
134
  ### Scientific Publications
@@ -1,9 +1,9 @@
1
- autogluon.core-1.2.1b20250215-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.core-1.2.1b20250217-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/core/__init__.py,sha256=8KfvvHzXX3a4q6z43Dw1yE7VtbAoiSMaglVpKDy6Xeg,245
3
3
  autogluon/core/_setup_utils.py,sha256=ikxn4zc3PNyjJJT5SsgL0dvP-6Rbq6_dItGMiZNINv4,6958
4
4
  autogluon/core/constants.py,sha256=nEVLdSFJ-5O-tz3jUD3qPX65RMp7g8qOR38XlurbP4Y,3403
5
5
  autogluon/core/problem_type.py,sha256=XJmMgeNBgS7u43pDK-spTivatPyh_INOXveEXwQt-Rw,2993
6
- autogluon/core/version.py,sha256=YOAXby5XakHYhhbbZPSgk1PBG4bkMu4R85_vR00D_DA,91
6
+ autogluon/core/version.py,sha256=KtJNzyEXgs-zqexx_OthJT01Df0QPzQ_fCAJ0rRSse0,91
7
7
  autogluon/core/augmentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  autogluon/core/augmentation/distill_utils.py,sha256=JBlp2WOMNKoJv8aKVwJVRQSalSk8jx36HM7-k_VvkhY,9404
9
9
  autogluon/core/calibrate/__init__.py,sha256=eU6qLj7DKUhaz2HHNHDrfroRaLM-mhuSncK_v1UP4F8,62
@@ -89,11 +89,11 @@ autogluon/core/utils/utils.py,sha256=FMa9kIUAxA3IIBbATmBnNEVObSAivehZ2_zCy3PRR-c
89
89
  autogluon/core/utils/version_utils.py,sha256=5-r8hLRKTaZbj5qo2uzE_2E4casH49Ye3WyeHlgHuz4,3252
90
90
  autogluon/core/utils/loaders/__init__.py,sha256=W5FAdQvpDcn_uisqJrlSAObWVta-YjJLKGN3NCbEgIo,109
91
91
  autogluon/core/utils/savers/__init__.py,sha256=bGWciSxAkj6u06vOC4pTvr22f_1ey0glgvmjCMEOm78,89
92
- autogluon.core-1.2.1b20250215.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
93
- autogluon.core-1.2.1b20250215.dist-info/METADATA,sha256=-eZbMurlekwHAB17na_Pfjm6RvHVB_bjYf5i4u1Zjqw,12377
94
- autogluon.core-1.2.1b20250215.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
95
- autogluon.core-1.2.1b20250215.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
96
- autogluon.core-1.2.1b20250215.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
97
- autogluon.core-1.2.1b20250215.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
98
- autogluon.core-1.2.1b20250215.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
99
- autogluon.core-1.2.1b20250215.dist-info/RECORD,,
92
+ autogluon.core-1.2.1b20250217.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
93
+ autogluon.core-1.2.1b20250217.dist-info/METADATA,sha256=R_CAx0GLskErrB573Hz1OBIv0aDA7eEDf2o-k9BE3uQ,12399
94
+ autogluon.core-1.2.1b20250217.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
95
+ autogluon.core-1.2.1b20250217.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
96
+ autogluon.core-1.2.1b20250217.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
97
+ autogluon.core-1.2.1b20250217.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
98
+ autogluon.core-1.2.1b20250217.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
99
+ autogluon.core-1.2.1b20250217.dist-info/RECORD,,