autogluon.core 1.2.1b20250211__py3-none-any.whl → 1.2.1b20250213__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/core/models/abstract/abstract_model.py +2 -2
- autogluon/core/models/ensemble/bagged_ensemble_model.py +63 -1
- autogluon/core/version.py +1 -1
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/METADATA +4 -4
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/RECORD +12 -12
- /autogluon.core-1.2.1b20250211-py3.9-nspkg.pth → /autogluon.core-1.2.1b20250213-py3.9-nspkg.pth +0 -0
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/LICENSE +0 -0
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/NOTICE +0 -0
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/WHEEL +0 -0
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/namespace_packages.txt +0 -0
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/top_level.txt +0 -0
- {autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/zip-safe +0 -0
@@ -823,8 +823,8 @@ class AbstractModel:
|
|
823
823
|
self._fit_metadata = self._compute_fit_metadata(**kwargs)
|
824
824
|
self._is_fit_metadata_registered = True
|
825
825
|
|
826
|
-
def _compute_fit_metadata(self, X_val: pd.DataFrame = None, X_unlabeled: pd.DataFrame = None, num_cpus: int = None, num_gpus: int = None, **kwargs) -> dict:
|
827
|
-
fit_metadata = dict(val_in_fit=X_val is not None, unlabeled_in_fit=X_unlabeled is not None, num_cpus=num_cpus, num_gpus=num_gpus)
|
826
|
+
def _compute_fit_metadata(self, X: pd.DataFrame = None, X_val: pd.DataFrame = None, X_unlabeled: pd.DataFrame = None, num_cpus: int = None, num_gpus: int = None, **kwargs) -> dict:
|
827
|
+
fit_metadata = dict(num_samples=len(X) if X is not None else None, val_in_fit=X_val is not None, unlabeled_in_fit=X_unlabeled is not None, num_cpus=num_cpus, num_gpus=num_gpus)
|
828
828
|
return fit_metadata
|
829
829
|
|
830
830
|
def get_fit_metadata(self) -> dict:
|
@@ -240,6 +240,66 @@ class BaggedEnsembleModel(AbstractModel):
|
|
240
240
|
_skip_oof: bool = False,
|
241
241
|
**kwargs,
|
242
242
|
):
|
243
|
+
"""
|
244
|
+
|
245
|
+
Parameters
|
246
|
+
----------
|
247
|
+
X : pd.DataFrame
|
248
|
+
The training data features.
|
249
|
+
y : pd.Series
|
250
|
+
The training data ground truth labels.
|
251
|
+
X_val : pd.DataFrame, default None
|
252
|
+
The validation data features.
|
253
|
+
Ignored by BaggedEnsembleModel.
|
254
|
+
y_val : pd.Series, default None
|
255
|
+
The validation data ground truth labels.
|
256
|
+
Ignored by BaggedEnsembleModel.
|
257
|
+
X_pseudo : pd.DataFrame, default None
|
258
|
+
Pseudo data features.
|
259
|
+
If specified, this data is added to each fold model's training data.
|
260
|
+
y_pseudo : pd.Series, default None
|
261
|
+
Pseudo data ground truth labels.
|
262
|
+
If specified, this data is added to each fold model's training data.
|
263
|
+
k_fold : int | None, default None
|
264
|
+
If int, must be a value >=1. Passing 0 will result in an exception.
|
265
|
+
If >1, will fit with `k_fold` folds per n_repeat.
|
266
|
+
This splits X and y into `k_fold` chunks to fit `k_fold` models, each with `k-1` chunks used for training and the remaining used for validation.
|
267
|
+
If 1, will only fit 1 model using all the training data.
|
268
|
+
This is generally reserved for models which are refits of previously trained bags (along with specifying `_skip_oof=True`).
|
269
|
+
This can also be used for models which support child oof generation (Random Forest, Extra Trees, KNN).
|
270
|
+
If None, defaults to 5 if `groups` is None. Else it will be set based on `groups`.
|
271
|
+
k_fold_start : int, default 0
|
272
|
+
The fold to start fitting on.
|
273
|
+
This allows for fitting only a subset of the bagged ensemble's folds per fit call, if desired.
|
274
|
+
k_fold_end : int, default None
|
275
|
+
The fold to stop fitting on.
|
276
|
+
This allows for fitting only a subset of the bagged ensemble's folds per fit call, if desired.
|
277
|
+
If None, will be set to `k_fold`.
|
278
|
+
n_repeats : int, default 1
|
279
|
+
The number of bagging sets (aka repeats).
|
280
|
+
If 1, will only fit `k_fold` models.
|
281
|
+
If >1, will fit `n_repeats * k_fold` models.
|
282
|
+
For each repeat, will split X and y with an incrementing random seed.
|
283
|
+
n_repeat_start : int, default 0
|
284
|
+
The repeat to start on.
|
285
|
+
This allows for fitting only a subset of the bagged ensemble's repeats per fit call, if desired.
|
286
|
+
groups : pd.Series, default None
|
287
|
+
If specified, will split X and y based on `groups`, with each sample going to a specific group.
|
288
|
+
Overrides `k_fold` and disables `n_repeats>1` if specified.
|
289
|
+
_skip_oof : bool, default False
|
290
|
+
If True, will not calculate the out-of-fold predictions from the fold models.
|
291
|
+
This should be set to True when performing a bagged refit.
|
292
|
+
kwargs : dict,
|
293
|
+
Arguments passed downstream to the fold models.
|
294
|
+
|
295
|
+
Returns
|
296
|
+
-------
|
297
|
+
BaggedEnsembleModel
|
298
|
+
The fitted bagged ensemble model.
|
299
|
+
In most cases this is `self`.
|
300
|
+
If `refit_folds=True`, then instead the refit version of the bagged ensemble is returned.
|
301
|
+
|
302
|
+
"""
|
243
303
|
use_child_oof = self.params.get("use_child_oof", False)
|
244
304
|
if use_child_oof and groups is not None:
|
245
305
|
logger.log(20, f"\tForcing `use_child_oof=False` because `groups` is specified")
|
@@ -269,6 +329,7 @@ class BaggedEnsembleModel(AbstractModel):
|
|
269
329
|
n_repeat_start=n_repeat_start,
|
270
330
|
groups=groups,
|
271
331
|
use_child_oof=use_child_oof,
|
332
|
+
skip_oof=_skip_oof,
|
272
333
|
)
|
273
334
|
if k_fold_end is None:
|
274
335
|
k_fold_end = k_fold
|
@@ -384,6 +445,7 @@ class BaggedEnsembleModel(AbstractModel):
|
|
384
445
|
n_repeat_start: int,
|
385
446
|
groups: pd.Series | None,
|
386
447
|
use_child_oof: bool,
|
448
|
+
skip_oof: bool,
|
387
449
|
):
|
388
450
|
if groups is not None:
|
389
451
|
if self._n_repeats_finished != 0:
|
@@ -419,7 +481,7 @@ class BaggedEnsembleModel(AbstractModel):
|
|
419
481
|
f"\tTo enable this logic, `{self._child_type.__name__}._predict_proba_oof` must be implemented "
|
420
482
|
f"and `tags['valid_oof'] = True` must be set in `{self._child_type.__name__}._more_tags`."
|
421
483
|
)
|
422
|
-
if k_fold == 1 and not use_child_oof and not self._get_tags().get("can_get_oof_from_train", False):
|
484
|
+
if k_fold == 1 and not skip_oof and not use_child_oof and not self._get_tags().get("can_get_oof_from_train", False):
|
423
485
|
logger.log(
|
424
486
|
30,
|
425
487
|
f"\tWARNING: Fitting bagged model with `k_fold=1`, "
|
autogluon/core/version.py
CHANGED
{autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.core
|
3
|
-
Version: 1.2.
|
3
|
+
Version: 1.2.1b20250213
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -45,12 +45,12 @@ Requires-Dist: tqdm<5,>=4.38
|
|
45
45
|
Requires-Dist: requests
|
46
46
|
Requires-Dist: matplotlib<3.11,>=3.7.0
|
47
47
|
Requires-Dist: boto3<2,>=1.10
|
48
|
-
Requires-Dist: autogluon.common==1.2.
|
48
|
+
Requires-Dist: autogluon.common==1.2.1b20250213
|
49
49
|
Provides-Extra: all
|
50
|
+
Requires-Dist: ray[default]<2.41,>=2.10.0; extra == "all"
|
51
|
+
Requires-Dist: ray[default,tune]<2.41,>=2.10.0; extra == "all"
|
50
52
|
Requires-Dist: pyarrow>=15.0.0; extra == "all"
|
51
53
|
Requires-Dist: hyperopt<0.2.8,>=0.2.7; extra == "all"
|
52
|
-
Requires-Dist: ray[default,tune]<2.41,>=2.10.0; extra == "all"
|
53
|
-
Requires-Dist: ray[default]<2.41,>=2.10.0; extra == "all"
|
54
54
|
Provides-Extra: ray
|
55
55
|
Requires-Dist: ray[default]<2.41,>=2.10.0; extra == "ray"
|
56
56
|
Provides-Extra: raytune
|
@@ -1,9 +1,9 @@
|
|
1
|
-
autogluon.core-1.2.
|
1
|
+
autogluon.core-1.2.1b20250213-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/core/__init__.py,sha256=8KfvvHzXX3a4q6z43Dw1yE7VtbAoiSMaglVpKDy6Xeg,245
|
3
3
|
autogluon/core/_setup_utils.py,sha256=ikxn4zc3PNyjJJT5SsgL0dvP-6Rbq6_dItGMiZNINv4,6958
|
4
4
|
autogluon/core/constants.py,sha256=nEVLdSFJ-5O-tz3jUD3qPX65RMp7g8qOR38XlurbP4Y,3403
|
5
5
|
autogluon/core/problem_type.py,sha256=XJmMgeNBgS7u43pDK-spTivatPyh_INOXveEXwQt-Rw,2993
|
6
|
-
autogluon/core/version.py,sha256
|
6
|
+
autogluon/core/version.py,sha256=-eMcoN37NqYnyDHzrKYBqqrt5oVGROjtYzQ6FocTpmU,91
|
7
7
|
autogluon/core/augmentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
8
8
|
autogluon/core/augmentation/distill_utils.py,sha256=JBlp2WOMNKoJv8aKVwJVRQSalSk8jx36HM7-k_VvkhY,9404
|
9
9
|
autogluon/core/calibrate/__init__.py,sha256=eU6qLj7DKUhaz2HHNHDrfroRaLM-mhuSncK_v1UP4F8,62
|
@@ -40,14 +40,14 @@ autogluon/core/models/__init__.py,sha256=dg3onYq5wW3-sfdNurnSIGpX0rpEjG_abgzyfwD
|
|
40
40
|
autogluon/core/models/_utils.py,sha256=qswE9n1ge1AJSExgstEbrZiMFmMRa4Mf5Sz8D9-XU6c,2091
|
41
41
|
autogluon/core/models/abstract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
42
42
|
autogluon/core/models/abstract/_tags.py,sha256=Qr_3an0ZMig24S3OwISa-nTFfWHQe3pwPTiXq4zlEec,3409
|
43
|
-
autogluon/core/models/abstract/abstract_model.py,sha256=
|
43
|
+
autogluon/core/models/abstract/abstract_model.py,sha256=SPknoRqTiRCZfTvoFrf2V3BW4h5MVbrl-2HvSHfCjOM,120532
|
44
44
|
autogluon/core/models/abstract/abstract_nn_model.py,sha256=IId0ivO8uVvmpnK9OiM2CtPVrP1ewOaQQKtQUDtK7_k,4818
|
45
45
|
autogluon/core/models/abstract/model_trial.py,sha256=PKEo1jfLSBCOLM42QE5VBD1u41MaVMRk31zhNhLiqTw,5035
|
46
46
|
autogluon/core/models/dummy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
47
|
autogluon/core/models/dummy/_dummy_quantile_regressor.py,sha256=i-ZW2flJ60jsMfMK24IP39Xwc55-UlBDvHmqanIf29Q,664
|
48
48
|
autogluon/core/models/dummy/dummy_model.py,sha256=at2FZSM2_LuAQ78E2YrRCRt3UaKMyyOnc6p2rtZgA2w,1414
|
49
49
|
autogluon/core/models/ensemble/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
50
|
-
autogluon/core/models/ensemble/bagged_ensemble_model.py,sha256=
|
50
|
+
autogluon/core/models/ensemble/bagged_ensemble_model.py,sha256=8GijtiLwFXugKWWIKY4ss_Xa_EGdASWtvJ2JUJu2avs,75887
|
51
51
|
autogluon/core/models/ensemble/fold_fitting_strategy.py,sha256=01vzNVvE4FIFgD6YqbhK63XoUlSztnVFsrDdsoqm75U,47021
|
52
52
|
autogluon/core/models/ensemble/ray_parallel_fold_fitting_strategy.py,sha256=8RASa-eV6n9kUgbqQHNt7k4IrvuB9NdrunIMLYOLwgA,2068
|
53
53
|
autogluon/core/models/ensemble/stacker_ensemble_model.py,sha256=DuDXgozvG9JYYkRvGACA7EXDAtj3Tz_uAjXTfxu5tFg,18041
|
@@ -89,11 +89,11 @@ autogluon/core/utils/utils.py,sha256=FMa9kIUAxA3IIBbATmBnNEVObSAivehZ2_zCy3PRR-c
|
|
89
89
|
autogluon/core/utils/version_utils.py,sha256=5-r8hLRKTaZbj5qo2uzE_2E4casH49Ye3WyeHlgHuz4,3252
|
90
90
|
autogluon/core/utils/loaders/__init__.py,sha256=W5FAdQvpDcn_uisqJrlSAObWVta-YjJLKGN3NCbEgIo,109
|
91
91
|
autogluon/core/utils/savers/__init__.py,sha256=bGWciSxAkj6u06vOC4pTvr22f_1ey0glgvmjCMEOm78,89
|
92
|
-
autogluon.core-1.2.
|
93
|
-
autogluon.core-1.2.
|
94
|
-
autogluon.core-1.2.
|
95
|
-
autogluon.core-1.2.
|
96
|
-
autogluon.core-1.2.
|
97
|
-
autogluon.core-1.2.
|
98
|
-
autogluon.core-1.2.
|
99
|
-
autogluon.core-1.2.
|
92
|
+
autogluon.core-1.2.1b20250213.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
93
|
+
autogluon.core-1.2.1b20250213.dist-info/METADATA,sha256=4-NKXJvr8G2aZnpp2DnNNS0v9i6Dyclv0MbDgYbUL3M,12377
|
94
|
+
autogluon.core-1.2.1b20250213.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
95
|
+
autogluon.core-1.2.1b20250213.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
96
|
+
autogluon.core-1.2.1b20250213.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
97
|
+
autogluon.core-1.2.1b20250213.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
98
|
+
autogluon.core-1.2.1b20250213.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
99
|
+
autogluon.core-1.2.1b20250213.dist-info/RECORD,,
|
/autogluon.core-1.2.1b20250211-py3.9-nspkg.pth → /autogluon.core-1.2.1b20250213-py3.9-nspkg.pth
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
{autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/top_level.txt
RENAMED
File without changes
|
{autogluon.core-1.2.1b20250211.dist-info → autogluon.core-1.2.1b20250213.dist-info}/zip-safe
RENAMED
File without changes
|