auto-workflow 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- assets/logo.svg +6524 -0
- auto_workflow/__init__.py +40 -0
- auto_workflow/__main__.py +9 -0
- auto_workflow/artifacts.py +119 -0
- auto_workflow/build.py +158 -0
- auto_workflow/cache.py +111 -0
- auto_workflow/cli.py +78 -0
- auto_workflow/config.py +76 -0
- auto_workflow/context.py +32 -0
- auto_workflow/dag.py +80 -0
- auto_workflow/events.py +22 -0
- auto_workflow/exceptions.py +42 -0
- auto_workflow/execution.py +45 -0
- auto_workflow/fanout.py +59 -0
- auto_workflow/flow.py +165 -0
- auto_workflow/lifecycle.py +16 -0
- auto_workflow/logging_middleware.py +191 -0
- auto_workflow/metrics_provider.py +35 -0
- auto_workflow/middleware.py +59 -0
- auto_workflow/py.typed +0 -0
- auto_workflow/scheduler.py +362 -0
- auto_workflow/secrets.py +45 -0
- auto_workflow/task.py +158 -0
- auto_workflow/tracing.py +29 -0
- auto_workflow/types.py +27 -0
- auto_workflow/utils.py +39 -0
- auto_workflow-0.1.0.dist-info/LICENSE +674 -0
- auto_workflow-0.1.0.dist-info/METADATA +423 -0
- auto_workflow-0.1.0.dist-info/RECORD +31 -0
- auto_workflow-0.1.0.dist-info/WHEEL +4 -0
- auto_workflow-0.1.0.dist-info/entry_points.txt +3 -0
@@ -0,0 +1,423 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: auto-workflow
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: A lightweight, developer-first workflow & task orchestration engine for Python.
|
5
|
+
Home-page: https://github.com/stoiandl/auto-workflow
|
6
|
+
License: GPL-3.0-or-later
|
7
|
+
Author: andreistoica
|
8
|
+
Author-email: andreilst@yahoo.ro
|
9
|
+
Requires-Python: >=3.12,<4.0
|
10
|
+
Classifier: Development Status :: 3 - Alpha
|
11
|
+
Classifier: Environment :: Console
|
12
|
+
Classifier: Intended Audience :: Developers
|
13
|
+
Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
|
14
|
+
Classifier: Programming Language :: Python
|
15
|
+
Classifier: Programming Language :: Python :: 3
|
16
|
+
Classifier: Programming Language :: Python :: 3.12
|
17
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
18
|
+
Classifier: Topic :: Software Development :: Libraries
|
19
|
+
Classifier: Topic :: Software Development :: Libraries :: Application Frameworks
|
20
|
+
Classifier: Typing :: Typed
|
21
|
+
Requires-Dist: cloudpickle (>=3.0.0,<4.0.0)
|
22
|
+
Project-URL: Documentation, https://stoiandl.github.io/auto-workflow/
|
23
|
+
Project-URL: Repository, https://github.com/stoiandl/auto-workflow
|
24
|
+
Description-Content-Type: text/markdown
|
25
|
+
|
26
|
+
<div align="center">
|
27
|
+
|
28
|
+
<picture>
|
29
|
+
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/stoiandl/auto-workflow/main/assets/logo.svg" />
|
30
|
+
<img alt="auto-workflow" src="https://raw.githubusercontent.com/stoiandl/auto-workflow/main/assets/logo.svg" width="560" />
|
31
|
+
</picture>
|
32
|
+
|
33
|
+
# auto-workflow
|
34
|
+
|
35
|
+
[](https://github.com/stoiandl/auto-workflow/actions/workflows/ci.yml)
|
36
|
+
[](https://github.com/stoiandl/auto-workflow/actions/workflows/docs.yml)
|
37
|
+
[](https://app.codecov.io/gh/stoiandl/auto-workflow)
|
38
|
+
[](https://pypi.org/project/auto-workflow/)
|
39
|
+
[](https://pypi.org/project/auto-workflow/)
|
40
|
+
[](https://stoiandl.github.io/auto-workflow/) [](LICENSE)
|
41
|
+
|
42
|
+
_A lightweight, zero-bloat, developer‑first workflow & task orchestration engine for Python._
|
43
|
+
|
44
|
+
**Status:** Alpha (APIs stabilizing). **Goal:** Production‑grade minimal core with pluggable power features.
|
45
|
+
|
46
|
+
</div>
|
47
|
+
|
48
|
+
## Quick links
|
49
|
+
|
50
|
+
- Docs (GitHub Pages): https://stoiandl.github.io/auto-workflow/
|
51
|
+
- Repository: https://github.com/stoiandl/auto-workflow
|
52
|
+
|
53
|
+
|
54
|
+
## Table of Contents
|
55
|
+
1. [Why Another Orchestrator?](#why-another-orchestrator)
|
56
|
+
2. [Philosophy & Design Principles](#philosophy--design-principles)
|
57
|
+
3. [Feature Overview](#feature-overview)
|
58
|
+
4. [Quick Start](#quick-start)
|
59
|
+
5. [Core Concepts](#core-concepts)
|
60
|
+
6. [Execution Modes](#execution-modes)
|
61
|
+
7. [Building Flows & DAGs](#building-flows--dags)
|
62
|
+
8. [Dynamic Fan‑Out / Conditional Branching](#dynamic-fan-out--conditional-branching)
|
63
|
+
9. [Result Handling, Caching & Idempotency](#result-handling-caching--idempotency)
|
64
|
+
10. [Retries, Timeouts & Failure Semantics](#retries-timeouts--failure-semantics)
|
65
|
+
11. [Hooks, Events & Middleware](#hooks-events--middleware)
|
66
|
+
12. [Configuration & Environment](#configuration--environment)
|
67
|
+
13. [Observability (Logging, Metrics, Tracing)](#observability-logging-metrics-tracing)
|
68
|
+
14. [Extensibility Roadmap](#extensibility-roadmap)
|
69
|
+
15. [Security & Isolation Considerations](#security--isolation-considerations)
|
70
|
+
16. [Comparison with Airflow & Prefect](#comparison-with-airflow--prefect)
|
71
|
+
17. [Project Structure (Proposed)](#project-structure-proposed)
|
72
|
+
18. [FAQ](#faq)
|
73
|
+
19. [Roadmap](#roadmap)
|
74
|
+
20. [Contributing](#contributing)
|
75
|
+
21. [Versioning & Stability](#versioning--stability)
|
76
|
+
22. [License](#license)
|
77
|
+
23. [Examples Overview](#examples-overview)
|
78
|
+
|
79
|
+
|
80
|
+
## Why Another Orchestrator?
|
81
|
+
Existing platforms (Airflow, Prefect, Dagster, Luigi) solve orchestration at scale—but often at the cost of:
|
82
|
+
|
83
|
+
|
84
|
+
`auto-workflow` targets a different sweet spot:
|
85
|
+
|
86
|
+
> **Be the simplest way to express, execute and evolve complex, dynamic task graphs directly in Python—locally first—while remaining extensible to production constraints.**
|
87
|
+
|
88
|
+
Core values: **No mandatory DB**, **no daemon**, **no CLI bureaucracy**, **opt‑in persistence**, **first-class async**, **predictable concurrency**, **explicit data flow**.
|
89
|
+
|
90
|
+
|
91
|
+
## Philosophy & Design Principles
|
92
|
+
| Principle | Description |
|
93
|
+
|-----------|-------------|
|
94
|
+
| Minimal Core | Ship only primitives: Task, Flow (DAG), Executor, Runtime. Everything else is a plugin or optional layer. |
|
95
|
+
| Python Native | Flows are plain Python; no YAML DSL or templating required. |
|
96
|
+
| Deterministic by Default | Task graph shape should be reproducible given the same inputs. Explicit APIs for dynamic fan‑out. |
|
97
|
+
| Composable | Tasks are small units; flows can nest; subgraphs are reusable. |
|
98
|
+
| Extensible | Storage adapters, retry policies, and event sinks are pluggable via clean interfaces. |
|
99
|
+
| Progressive Adoption | Use it as a simple task runner first; layer complexity only when needed. |
|
100
|
+
| Observability Hooks | Logging / metrics / tracing surfaces are unified and optional. |
|
101
|
+
| Zero Hidden State | No implicit global registry; registration is explicit or decorator‑driven with clear import semantics. |
|
102
|
+
| Performance Conscious | Support high‑throughput local pipelines via async & thread/process pools with minimal overhead. |
|
103
|
+
|
104
|
+
|
105
|
+
## Feature Overview
|
106
|
+
Planned / partially implemented capabilities:
|
107
|
+
|
108
|
+
|
109
|
+
|
110
|
+
## Quick Start
|
111
|
+
Install from PyPI:
|
112
|
+
|
113
|
+
```bash
|
114
|
+
pip install auto-workflow
|
115
|
+
```
|
116
|
+
|
117
|
+
Or for local development with Poetry:
|
118
|
+
|
119
|
+
Run tests locally:
|
120
|
+
|
121
|
+
```bash
|
122
|
+
poetry run pytest --cov=auto_workflow --cov-report=term-missing
|
123
|
+
```
|
124
|
+
|
125
|
+
### Define Tasks
|
126
|
+
```python
|
127
|
+
from auto_workflow import task, flow
|
128
|
+
|
129
|
+
@task
|
130
|
+
def load_numbers() -> list[int]:
|
131
|
+
return [1, 2, 3, 4]
|
132
|
+
|
133
|
+
@task
|
134
|
+
def square(x: int) -> int:
|
135
|
+
return x * x
|
136
|
+
|
137
|
+
@task
|
138
|
+
def aggregate(values: list[int]) -> int:
|
139
|
+
return sum(values)
|
140
|
+
|
141
|
+
@flow
|
142
|
+
def pipeline():
|
143
|
+
nums = load_numbers()
|
144
|
+
# Fan-out map (dynamic child tasks)
|
145
|
+
squared = [square(n) for n in nums] # Under the hood becomes dynamic tasks
|
146
|
+
return aggregate(squared)
|
147
|
+
|
148
|
+
if __name__ == "__main__":
|
149
|
+
result = pipeline.run()
|
150
|
+
print(result)
|
151
|
+
```
|
152
|
+
|
153
|
+
### CLI
|
154
|
+
```bash
|
155
|
+
python -m auto_workflow run path.to.pipeline:pipeline
|
156
|
+
```
|
157
|
+
|
158
|
+
List and describe flows:
|
159
|
+
|
160
|
+
```bash
|
161
|
+
python -m auto_workflow list path.to.module
|
162
|
+
python -m auto_workflow describe path.to.pipeline:pipeline
|
163
|
+
```
|
164
|
+
|
165
|
+
If installed via pip, a console script is also available:
|
166
|
+
|
167
|
+
```bash
|
168
|
+
auto-workflow run path.to.pipeline:pipeline
|
169
|
+
```
|
170
|
+
|
171
|
+
|
172
|
+
## Core Concepts
|
173
|
+
### Task
|
174
|
+
Unit of work: a pure (or side-effecting) Python callable that declares inputs & returns outputs. Decorated with `@task` for metadata: name, retries, timeout, tags, cache key fn.
|
175
|
+
|
176
|
+
### Flow (or Pipeline)
|
177
|
+
Container for a DAG of tasks. May be defined with `@flow` decorator wrapping a function whose body builds the dependency graph during invocation. Supports nested flows.
|
178
|
+
|
179
|
+
### DAG
|
180
|
+
Directed acyclic graph where edges represent data or control dependencies. Construction is implicit via using outputs of tasks as inputs to other tasks (like Prefect) but without global mutable state.
|
181
|
+
|
182
|
+
### Execution Context
|
183
|
+
Available via `from auto_workflow.context import get_context()` inside a task for run metadata, logger, parameters.
|
184
|
+
|
185
|
+
### Parameters
|
186
|
+
Flow-level runtime parameters passed at `.run(params={...})` enabling configurability without environment variables.
|
187
|
+
|
188
|
+
### Artifacts
|
189
|
+
Structured results (maybe large) that can optionally be stored externally; default is in‑memory pass‑through.
|
190
|
+
|
191
|
+
|
192
|
+
## Execution Modes
|
193
|
+
Tasks run using one of three simple modes:
|
194
|
+
|
195
|
+
Mode selection:
|
196
|
+
|
197
|
+
|
198
|
+
## Building Flows & DAGs
|
199
|
+
Two equivalent approaches (both may be supported):
|
200
|
+
|
201
|
+
1. **Imperative Functional** (Python execution builds nodes):
|
202
|
+
```python
|
203
|
+
@flow
|
204
|
+
def my_flow():
|
205
|
+
a = task_a()
|
206
|
+
b = task_b(a)
|
207
|
+
c = task_c(a, b)
|
208
|
+
return c
|
209
|
+
```
|
210
|
+
2. **Explicit Builder** (defer evaluation):
|
211
|
+
```python
|
212
|
+
from auto_workflow import FlowBuilder
|
213
|
+
fb = FlowBuilder(name="my_flow")
|
214
|
+
a = fb.task(task_a)
|
215
|
+
b = fb.task(task_b, a)
|
216
|
+
c = fb.task(task_c, a, b)
|
217
|
+
flow = fb.build()
|
218
|
+
flow.run()
|
219
|
+
```
|
220
|
+
|
221
|
+
|
222
|
+
## Dynamic Fan-Out / Conditional Branching
|
223
|
+
Dynamic forks are explicit to preserve introspection & safety:
|
224
|
+
```python
|
225
|
+
@task
|
226
|
+
def split_batches(data: list[int]) -> list[list[int]]: ...
|
227
|
+
|
228
|
+
@task
|
229
|
+
def process_batch(batch: list[int]) -> int: ...
|
230
|
+
|
231
|
+
@task
|
232
|
+
def combine(results: list[int]) -> int: return sum(results)
|
233
|
+
|
234
|
+
@flow
|
235
|
+
def batch_flow(data: list[int]):
|
236
|
+
batches = split_batches(data)
|
237
|
+
results = fan_out(process_batch, iterable=batches, max_concurrency=8)
|
238
|
+
return combine(results)
|
239
|
+
|
240
|
+
@flow
|
241
|
+
def conditional_flow(flag: bool):
|
242
|
+
a = task_a()
|
243
|
+
if flag:
|
244
|
+
b = task_b(a)
|
245
|
+
else:
|
246
|
+
b = task_c(a)
|
247
|
+
return b
|
248
|
+
```
|
249
|
+
`fan_out` constructs a bounded dynamic subgraph; a future `fan_in` utility may allow explicit barrier semantics.
|
250
|
+
|
251
|
+
|
252
|
+
## Result Handling, Caching & Idempotency
|
253
|
+
Strategies (planned):
|
254
|
+
|
255
|
+
Example (concept):
|
256
|
+
```python
|
257
|
+
@task(cache_ttl=3600)
|
258
|
+
def expensive(x: int) -> int:
|
259
|
+
return do_work(x)
|
260
|
+
```
|
261
|
+
|
262
|
+
|
263
|
+
## Retries, Timeouts & Failure Semantics
|
264
|
+
Per-task configuration:
|
265
|
+
```python
|
266
|
+
@task(retries=3, retry_backoff=2.0, retry_jitter=0.3, timeout=30)
|
267
|
+
def flaky(): ...
|
268
|
+
```
|
269
|
+
Failure policy options (proposed):
|
270
|
+
|
271
|
+
|
272
|
+
## Hooks, Events & Middleware
|
273
|
+
Lifecycle hook points:
|
274
|
+
|
275
|
+
Middleware chain (similar to ASGI / HTTP frameworks):
|
276
|
+
```python
|
277
|
+
def timing_middleware(next_call):
|
278
|
+
async def wrapper(task_ctx):
|
279
|
+
start = monotonic()
|
280
|
+
try:
|
281
|
+
return await next_call(task_ctx)
|
282
|
+
finally:
|
283
|
+
duration = monotonic() - start
|
284
|
+
task_ctx.logger.debug("task.duration", extra={"ms": duration*1000})
|
285
|
+
return wrapper
|
286
|
+
```
|
287
|
+
|
288
|
+
Event bus emission (planned): structured events -> pluggable sinks (stdout logger, OTLP exporter, WebSocket UI).
|
289
|
+
|
290
|
+
|
291
|
+
## Configuration & Environment
|
292
|
+
Minimal first-class configuration (future `pyproject.toml` block):
|
293
|
+
```toml
|
294
|
+
[tool.auto_workflow]
|
295
|
+
default-executor = "async"
|
296
|
+
log-level = "INFO"
|
297
|
+
max-dynamic-tasks = 2048
|
298
|
+
```
|
299
|
+
Environment overrides are available for documented keys (see docs/configuration.md).
|
300
|
+
|
301
|
+
|
302
|
+
## Observability (Logging, Metrics, Tracing)
|
303
|
+
Implemented surface + extensions you can plug in:
|
304
|
+
|
305
|
+
|
306
|
+
## Extensibility Roadmap
|
307
|
+
| Extension | Interface | Status |
|
308
|
+
|-----------|-----------|--------|
|
309
|
+
| Executor plugins | `BaseExecutor` | Planned |
|
310
|
+
| Storage backend | `ArtifactStore` | Planned |
|
311
|
+
| Cache backend | `ResultCache` | Planned |
|
312
|
+
| Metrics provider | `MetricsProvider` | Planned |
|
313
|
+
| Tracing adapter | `Tracer` | Planned |
|
314
|
+
| Retry policy | Strategy object | Planned |
|
315
|
+
| Scheduling layer | External module | Backlog |
|
316
|
+
| UI / API | Optional service | Backlog |
|
317
|
+
|
318
|
+
|
319
|
+
## Security & Isolation Considerations
|
320
|
+
|
321
|
+
|
322
|
+
## Comparison with Airflow & Prefect
|
323
|
+
| Aspect | auto-workflow | Airflow | Prefect |
|
324
|
+
|--------|---------------|---------|---------|
|
325
|
+
| Requires DB / Scheduler | No (local in-process) | Yes | No (cloud optional) |
|
326
|
+
| First-class async | Yes (core) | Limited | Yes |
|
327
|
+
| Dynamic DAG at runtime | Explicit fan-out | Limited / brittle | Supported |
|
328
|
+
| Footprint | Minimal deps | Heavy | Moderate |
|
329
|
+
| UI bundled | No (optional) | Yes | Yes |
|
330
|
+
| Plugin surface | Lean, Pythonic | Large | Large |
|
331
|
+
| Setup time | Seconds | Minutes+ | Minutes |
|
332
|
+
|
333
|
+
|
334
|
+
## Project Structure (Proposed)
|
335
|
+
```
|
336
|
+
auto_workflow/
|
337
|
+
__init__.py
|
338
|
+
tasks.py # @task decorator & Task definition
|
339
|
+
flow.py # Flow abstraction & @flow decorator
|
340
|
+
dag.py # Internal DAG model
|
341
|
+
execution.py
|
342
|
+
base.py
|
343
|
+
async_executor.py
|
344
|
+
thread_executor.py
|
345
|
+
runtime/
|
346
|
+
context.py
|
347
|
+
scheduler.py # Lightweight topological / async scheduler
|
348
|
+
middleware/
|
349
|
+
events/
|
350
|
+
caching/
|
351
|
+
storage/
|
352
|
+
observability/
|
353
|
+
tests/
|
354
|
+
examples/
|
355
|
+
docs/
|
356
|
+
```
|
357
|
+
|
358
|
+
|
359
|
+
## FAQ
|
360
|
+
**Q: Is persistence required?** No—default run is ephemeral in memory.
|
361
|
+
|
362
|
+
**Q: Can I dynamically create thousands of tasks?** Yes, but bounded; guardrails (`max-dynamic-tasks`) will protect runaway expansion.
|
363
|
+
|
364
|
+
**Q: How are circular dependencies prevented?** DAG builder performs cycle detection before execution.
|
365
|
+
|
366
|
+
**Q: Do I need decorators?** No; you can manually wrap callables into Tasks if you prefer pure functional style.
|
367
|
+
|
368
|
+
**Q: How does it serialize arguments across processes?** Planned fallback: cloudpickle; user can register custom serializer.
|
369
|
+
|
370
|
+
**Q: Scheduling / cron?** Out of core scope—provide a thin adapter so external schedulers (cron, systemd timers, GitHub Actions) can invoke flows.
|
371
|
+
|
372
|
+
|
373
|
+
## Roadmap
|
374
|
+
|
375
|
+
|
376
|
+
## Examples Overview
|
377
|
+
Explore runnable examples in `examples/` (also rendered in the online docs):
|
378
|
+
|
379
|
+
| File | Concept Highlights |
|
380
|
+
|------|--------------------|
|
381
|
+
| `data_pipeline.py` | Basic ETL flow with persistence & simple mapping |
|
382
|
+
| `concurrent_priority.py` | Priority scheduling & mixed async timings |
|
383
|
+
| `dynamic_fanout.py` | Runtime fan-out expansion and aggregation |
|
384
|
+
| `retries_timeouts.py` | Retry + timeout interplay demonstration |
|
385
|
+
| `secrets_and_artifacts.py` | Secrets provider & artifact persistence usage |
|
386
|
+
| `tracing_custom.py` | Custom tracer capturing spans & durations |
|
387
|
+
|
388
|
+
Run any example:
|
389
|
+
```bash
|
390
|
+
python examples/tracing_custom.py
|
391
|
+
```
|
392
|
+
|
393
|
+
For more narrative documentation see the [Examples page](https://stoiandl.github.io/auto-workflow/examples/).
|
394
|
+
|
395
|
+
|
396
|
+
## Contributing
|
397
|
+
Contributions are welcome once the core API draft solidifies. Until then:
|
398
|
+
1. Open an issue to discuss proposals.
|
399
|
+
2. Keep changes atomic & well-tested.
|
400
|
+
3. Adhere to Ruff formatting & lint rules (pre-commit enforced).
|
401
|
+
4. Add or update examples & docs for new features.
|
402
|
+
|
403
|
+
Planned contribution guides: `CONTRIBUTING.md`, `CODE_OF_CONDUCT.md`.
|
404
|
+
|
405
|
+
|
406
|
+
## Versioning & Stability
|
407
|
+
Pre-1.0: **Breaking changes can occur in minor releases**. After 1.0 we will follow [Semantic Versioning](https://semver.org/).
|
408
|
+
|
409
|
+
Migration notes will be maintained in `CHANGELOG.md` (to be added).
|
410
|
+
|
411
|
+
|
412
|
+
## License
|
413
|
+
This project is licensed under the GNU General Public License v3.0. See `LICENSE` for details. If you need alternate licensing, open an issue to discuss.
|
414
|
+
|
415
|
+
|
416
|
+
## Legal / Disclaimer
|
417
|
+
This project is experimental; do not deploy to critical production paths until a 1.0 release is tagged. Feedback welcomed to refine design decisions.
|
418
|
+
|
419
|
+
|
420
|
+
Happy orchestrating! 🚀
|
421
|
+
|
422
|
+
Note on releases: Publishing to PyPI is performed by CI when a tag `vX.Y.Z` is pushed to the repository. We use PyPI Trusted Publishing; no local uploads are required.
|
423
|
+
|
@@ -0,0 +1,31 @@
|
|
1
|
+
assets/logo.svg,sha256=rqCM-kp_z5gZOdUD4jXoVRNADYRx9oNhNPII6saGEgI,338305
|
2
|
+
auto_workflow/__init__.py,sha256=dIlETObkeObo--97_IltqY_a-SGiVZ1OsxMHS-AEKt8,1207
|
3
|
+
auto_workflow/__main__.py,sha256=2eElgytBmJuifQ4kycddgmZ-L9Bc5AL0xylbjaub_M0,219
|
4
|
+
auto_workflow/artifacts.py,sha256=r6QxfRDbZaakeNH1KnIeZ0Z0iSAqshhLZW9wz7hWurI,3519
|
5
|
+
auto_workflow/build.py,sha256=FDKWMACNeCU2oDeBHF5GkPZk_-CFmLbkfVXP9GIeMeI,5262
|
6
|
+
auto_workflow/cache.py,sha256=fOh2swSiFPUPcEAdoi6A3Kar5o_t_1Uiby-WxFcS0Zg,3534
|
7
|
+
auto_workflow/cli.py,sha256=JMocusDbL3m9T_z2PphjauaH7BCMmmxd4ObjZkH0AkM,2632
|
8
|
+
auto_workflow/config.py,sha256=tBGTs6QD32uQkrybnMxOM4b83PWIymO-pHGT4GVzIHQ,2377
|
9
|
+
auto_workflow/context.py,sha256=bkCzU9M-wMpM0yxcOj8U3FB4343fDYb-AWQUcjsT2L0,848
|
10
|
+
auto_workflow/dag.py,sha256=RNb8rUvModscqPmFhSastuyiQtkdpxPXsmWeZS1azQU,2668
|
11
|
+
auto_workflow/events.py,sha256=7rfLP5e0k3o2XcOe0F7BWRlqEZjxqK0hRflf2ggF__Q,650
|
12
|
+
auto_workflow/exceptions.py,sha256=mcMJfKfDXPDh2qtiamyr5q0VQAUWYenQ4A0iOVsr8Es,1187
|
13
|
+
auto_workflow/execution.py,sha256=_-BaznbjCCaMo5T7vCuXzlMtS_jYiMzi-AdVvJs-Z9U,1358
|
14
|
+
auto_workflow/fanout.py,sha256=s-9J5pDnV8fJV2pyzVcI7gyfPOwBHm210ZcHyuWGUF4,1943
|
15
|
+
auto_workflow/flow.py,sha256=TyIdJcBJ8FLNIl6BV75AqswpzGrUz6mYQW2uxP5WFxE,5918
|
16
|
+
auto_workflow/lifecycle.py,sha256=8zwmu9JoRzcndWSFu1TU_JOKIqlUieWo-rMq93p3NuI,413
|
17
|
+
auto_workflow/logging_middleware.py,sha256=os_Km_vMImlYwSfWISSErm0fgxJBmydDgvJynE5X9AA,5693
|
18
|
+
auto_workflow/metrics_provider.py,sha256=tZoleZumkvdjGdTWcRjiFADkc2i-45Z5AkLhQD2OyP4,1010
|
19
|
+
auto_workflow/middleware.py,sha256=_NAufUTDb_HG0Q-G6McCn8cvpB7Dcy1JR2rgRZxpmjM,1741
|
20
|
+
auto_workflow/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
21
|
+
auto_workflow/scheduler.py,sha256=OPlDHjWzak93H1lbomx22GhO-FlSQ6TOkzKEghk-00A,16474
|
22
|
+
auto_workflow/secrets.py,sha256=8_F7taMkT0yo4Ztl17m5YkSWAI7HJP70bfZt2Ai9Ry4,1168
|
23
|
+
auto_workflow/task.py,sha256=SWWOku4oN1pQU2hGHDlaU09wgsbGOnRifyO14ir5-EE,5562
|
24
|
+
auto_workflow/tracing.py,sha256=UH6pQbnrXJpF59XcvsRRiNPKzgtP9pkVeR9YKXD0Ihk,619
|
25
|
+
auto_workflow/types.py,sha256=2C-SBNG9YQNqw6nApOXatDsmkBRF0oBxm2jsSEbYAs8,538
|
26
|
+
auto_workflow/utils.py,sha256=sWu303zJR5vz6ncP-zXTxpR6q97N8dZRt22ZxhwRI0c,1186
|
27
|
+
auto_workflow-0.1.0.dist-info/LICENSE,sha256=0R_K7rXirniQSUGGNOLY97m7rCIyrb8C05mycpAV6FY,35072
|
28
|
+
auto_workflow-0.1.0.dist-info/METADATA,sha256=YEJ0L_henh9PEa5wj4dvxzvXKfEL4F_5FOAVqI4mk7Q,14411
|
29
|
+
auto_workflow-0.1.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
30
|
+
auto_workflow-0.1.0.dist-info/entry_points.txt,sha256=7De4UkwX05DfQ3E4b3qvB9m2ovW4mSsO1qRUcxjWERo,56
|
31
|
+
auto_workflow-0.1.0.dist-info/RECORD,,
|