auto-coder 0.1.376__py3-none-any.whl → 0.1.378__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of auto-coder might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: auto-coder
3
- Version: 0.1.376
3
+ Version: 0.1.378
4
4
  Summary: AutoCoder: AutoCoder
5
5
  Author: allwefantasy
6
6
  Classifier: Programming Language :: Python :: 3.10
@@ -11,7 +11,7 @@ autocoder/command_parser.py,sha256=fx1g9E6GaM273lGTcJqaFQ-hoksS_Ik2glBMnVltPCE,1
11
11
  autocoder/lang.py,sha256=PFtATuOhHRnfpqHQkXr6p4C893JvpsgwTMif3l-GEi0,14321
12
12
  autocoder/models.py,sha256=pD5u6gcMKRwWaLxeVin18g25k-ERyeHOFsRpOgO_Ae0,13788
13
13
  autocoder/run_context.py,sha256=IUfSO6_gp2Wt1blFWAmOpN0b0nDrTTk4LmtCYUBIoro,1643
14
- autocoder/version.py,sha256=WlQ9-Qe6RwJ6NWkzY0CcSmVY8liKGWp46Zr1N44Ch2Q,25
14
+ autocoder/version.py,sha256=xuF3SusSnIOX10d0qbVnD9k-LajmD1d2oX373bPrwk4,25
15
15
  autocoder/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
16
  autocoder/agent/agentic_filter.py,sha256=zlInIRhawKIYTJjCiJBWqPCOV5UtMbh5VnvszfTy2vo,39824
17
17
  autocoder/agent/auto_demand_organizer.py,sha256=URAq0gSEiHeV_W4zwhOI_83kHz0Ryfj1gcfh5jwCv_w,6501
@@ -256,7 +256,7 @@ autocoder/privacy/__init__.py,sha256=LnIVvGu_K66zCE-yhN_-dPO8R80pQyedCsXJ7wRqQaI
256
256
  autocoder/privacy/model_filter.py,sha256=RyGh_uWWE6hHqvaYZGjFylDJldDLxBz5LDZP7CG3sTo,14178
257
257
  autocoder/pyproject/__init__.py,sha256=qn0_-6O_LP-ZH91nneYrn3yaIMYCYYRD1Z3MSNhXUXI,13754
258
258
  autocoder/rag/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
259
- autocoder/rag/agentic_rag.py,sha256=v9UuihbUXcQLXi1u_WLPhtZIzKigHJNQot8DpcAV4Zc,8344
259
+ autocoder/rag/agentic_rag.py,sha256=sXs1qo696zp6ZFaueYDa6AKBzy7O8x9D3wgTkC0zjr4,7851
260
260
  autocoder/rag/api_server.py,sha256=TNN5CmR1nlMgeuZVYZ1U3a48XBp647Io9P-VvCkdI9o,13936
261
261
  autocoder/rag/conversation_to_queries.py,sha256=QUeRacDZVVd5XiDvKZ1G71h2QpfmfZldc27Is6sTMdU,6508
262
262
  autocoder/rag/doc_filter.py,sha256=UduVO2mlrngwJICrefjDJTYfdmQ4GcRXrfWDQ7xXksk,14206
@@ -308,7 +308,7 @@ autocoder/shadows/shadow_manager.py,sha256=atY6d9Si4twe3pqQ56SjMje5W1VxamPSZs_Wz
308
308
  autocoder/suffixproject/__init__.py,sha256=Rew-M9W4pgO9cvw9UCdrc6QVCPdBhVcIpPBnJxrLJ3M,10374
309
309
  autocoder/tsproject/__init__.py,sha256=e_TWVyXQQxYKsXqdQZuFVqNCQLdtBVNJRTs0fgLXVdA,11055
310
310
  autocoder/utils/__init__.py,sha256=W47ac6IOZhNR1rdbho9fvhHnPI_N1i4oMcZOwxLelbU,1123
311
- autocoder/utils/_markitdown.py,sha256=zrhWztp3cwChtOZ66aCtq7xX-w25cT_eaX5qX-7OaVo,54730
311
+ autocoder/utils/_markitdown.py,sha256=GEQHIBQVNXWmMLZaLYVjYv2V9VdL_VMfltI_vLuRsvk,54804
312
312
  autocoder/utils/auto_project_type.py,sha256=9_-wE9aavjbPiNSUVKxttJAdu5i5fu-zHyPYHr5XtWk,4422
313
313
  autocoder/utils/conversation_store.py,sha256=esd9zLarKYe0ZsYqjjwHc_ksmVQDDEhVt-Ejul2oyys,1178
314
314
  autocoder/utils/llm_client_interceptors.py,sha256=FEHNXoFZlCjAHQcjPRyX8FOMjo6rPXpO2AJ2zn2KTTo,901
@@ -329,9 +329,9 @@ autocoder/utils/types.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
329
329
  autocoder/utils/auto_coder_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
330
330
  autocoder/utils/auto_coder_utils/chat_stream_out.py,sha256=t902pKxQ5xM7zgIHiAOsTPLwxhE6VuvXAqPy751S7fg,14096
331
331
  autocoder/utils/chat_auto_coder_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
332
- auto_coder-0.1.376.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
333
- auto_coder-0.1.376.dist-info/METADATA,sha256=jMYPZc3mVRfyM_z1gb-53unRBkj65IIOv3MFSXC8ffw,2775
334
- auto_coder-0.1.376.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
335
- auto_coder-0.1.376.dist-info/entry_points.txt,sha256=0nzHtHH4pNcM7xq4EBA2toS28Qelrvcbrr59GqD_0Ak,350
336
- auto_coder-0.1.376.dist-info/top_level.txt,sha256=Jqc0_uJSw2GwoFQAa9iJxYns-2mWla-9ok_Y3Gcznjk,10
337
- auto_coder-0.1.376.dist-info/RECORD,,
332
+ auto_coder-0.1.378.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
333
+ auto_coder-0.1.378.dist-info/METADATA,sha256=Tokd3D3SksWZSyb7HRwQkD5NtD9NZa8k4R2afnJjiEM,2775
334
+ auto_coder-0.1.378.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
335
+ auto_coder-0.1.378.dist-info/entry_points.txt,sha256=0nzHtHH4pNcM7xq4EBA2toS28Qelrvcbrr59GqD_0Ak,350
336
+ auto_coder-0.1.378.dist-info/top_level.txt,sha256=Jqc0_uJSw2GwoFQAa9iJxYns-2mWla-9ok_Y3Gcznjk,10
337
+ auto_coder-0.1.378.dist-info/RECORD,,
@@ -40,7 +40,7 @@ class RAGAgent(BaseAgent):
40
40
  args: AutoCoderArgs,
41
41
  rag: LongContextRAG,
42
42
  conversation_history: Optional[List[Dict[str, Any]]] = None):
43
-
43
+ self.llm = llm
44
44
  self.default_llm = self.llm
45
45
  self.context_prune_llm = self.default_llm
46
46
  if self.default_llm.get_sub_client("context_prune_model"):
@@ -125,37 +125,24 @@ class AgenticRAG:
125
125
  "query":message["content"]
126
126
  }
127
127
 
128
-
128
+ @byzerllm.prompt()
129
129
  def system_prompt(self):
130
130
  '''
131
131
  你是一个基于知识库的智能助手,我的核心能力是通过检索增强生成(RAG)技术来回答用户问题。
132
132
 
133
133
  你的工作流程如下:
134
- 1. 当用户提出问题时,我会首先理解问题的核心意图和关键信息需求
134
+ 1. 当用户提出问题时,你首先理解问题的核心意图和关键信息需求
135
135
  2. 你会从多个角度分析问题,确定最佳的检索策略和关键词,然后召回工具 recall 获取与问题最相关的详细内容,只有在特别有必要的情况下,你才回使用 read_file 来获得相关文件更详细的信息。
136
136
  5. 如果获得的信息足够回答用户问题,你会直接生成回答。
137
137
  6. 如果获得的信息不足以回答用户问题,你会继续使用 recall 工具,直到你确信已经获取了足够的信息来回答用户问题。
138
138
  7. 有的问题可能需要拆解成多个问题,分别进行recall,然后最终得到的结果才是完整信息,最后才能进行回答。
139
-
140
- 此外,你回答会遵循以下要求:
141
-
142
- 1. 严格基于召回的文档内容回答
143
- - 如果召回的文档提供的信息无法回答问题,请明确回复:"抱歉,文档中没有足够的信息来回答这个问题。"
144
- - 不要添加、推测或扩展文档未提及的信息
145
-
146
- 2. 格式如 ![image](/path/to/images/path.png) 的 Markdown 图片处理
147
- - 根据Markdown 图片前后文本内容推测改图片与问题的相关性,有相关性则在回答中输出该Markdown图片路径
148
- - 根据相关图片在文档中的位置,自然融入答复内容,保持上下文连贯
149
- - 完整保留原始图片路径,不省略任何部分
150
-
151
- 3. 回答格式要求
152
- - 使用markdown格式提升可读性
139
+ 8. 当你遇到图片的时候,请根据图片前后文本内容推测改图片与问题的相关性,有相关性则在回答中使用 ![]()格式输出该Markdown图片路径,否则不输出。
153
140
  {% if local_image_host %}
154
- 4. 图片路径处理
141
+ 9. 图片路径处理
155
142
  - 图片地址需返回绝对路径,
156
- - 对于Windows风格的路径,需要转换为Linux风格, 例如:C:\\Users\\user\\Desktop\\image.png 转换为 C:/Users/user/Desktop/image.png
143
+ - 对于Windows风格的路径,需要转换为Linux风格, 例如:![image](C:\\Users\\user\\Desktop\\image.png) 转换为 ![image](C:/Users/user/Desktop/image.png)
157
144
  - 为请求图片资源 需增加 http://{{ local_image_host }}/static/ 作为前缀
158
- 例如:/path/to/images/image.png, 返回 http://{{ local_image_host }}/static/path/to/images/image.png
145
+ 举个例子:![image](/path/to/images/image.png), 返回 ![image](http://{{ local_image_host }}/static/path/to/images/image.png)
159
146
  {% endif %}
160
147
  '''
161
148
  return {
@@ -1442,6 +1442,10 @@ def try_parse_image(image_path: str, llm=None):
1442
1442
  try:
1443
1443
  v = ImageLoader.image_to_markdown(image_path, llm=llm, engine="paddle")
1444
1444
  logger.info(f"[try_parse_image][{req_id}] image_to_markdown result: {str(v)[:200]}")
1445
+
1446
+ if not v:
1447
+ return ""
1448
+
1445
1449
  if llm:
1446
1450
  v = ImageLoader.format_table_in_content(v, llm)
1447
1451
  logger.info(f"[try_parse_image][{req_id}] format_table_in_content result: {str(v)[:200]}")
autocoder/version.py CHANGED
@@ -1,2 +1,2 @@
1
1
 
2
- __version__ = "0.1.376"
2
+ __version__ = "0.1.378"