auto-coder 0.1.311__py3-none-any.whl → 0.1.312__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of auto-coder might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: auto-coder
3
- Version: 0.1.311
3
+ Version: 0.1.312
4
4
  Summary: AutoCoder: AutoCoder
5
5
  Author: allwefantasy
6
6
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
@@ -4,7 +4,7 @@ autocoder/auto_coder_lang.py,sha256=Rtupq6N3_HT7JRhDKdgCBcwRaiAnyCOR_Gsp4jUomrI,
4
4
  autocoder/auto_coder_rag.py,sha256=vOqwBHdK_KwMNUUc8ji_tlZ5DoALAG1rDjWAic3rM-4,34561
5
5
  autocoder/auto_coder_rag_client_mcp.py,sha256=QRxUbjc6A8UmDMQ8lXgZkjgqtq3lgKYeatJbDY6rSo0,6270
6
6
  autocoder/auto_coder_rag_mcp.py,sha256=-RrjNwFaS2e5v8XDIrKR-zlUNUE8UBaeOtojffBrvJo,8521
7
- autocoder/auto_coder_runner.py,sha256=bvd1UXYzVT2L-I2ZCkdxy9Ap8P2Q6F2JD-F7QLvaIPc,106545
7
+ autocoder/auto_coder_runner.py,sha256=ic8ZRGpyuhFNOl4tUVLhSmibOKHNXJudGwsiSjyW--Q,107324
8
8
  autocoder/auto_coder_server.py,sha256=E3Z829TPSooRSNhuh3_x9yaZi0f5G0Lm0ntoZhjGaoQ,20576
9
9
  autocoder/benchmark.py,sha256=Ypomkdzd1T3GE6dRICY3Hj547dZ6_inqJbBJIp5QMco,4423
10
10
  autocoder/chat_auto_coder.py,sha256=Cp5_m3pCxEDcRrVG1uojTfD8xecdl9FvYtD948TvLsg,25223
@@ -14,7 +14,7 @@ autocoder/command_parser.py,sha256=fx1g9E6GaM273lGTcJqaFQ-hoksS_Ik2glBMnVltPCE,1
14
14
  autocoder/lang.py,sha256=U6AjVV8Rs1uLyjFCZ8sT6WWuNUxMBqkXXIOs4S120uk,14511
15
15
  autocoder/models.py,sha256=AyoZ-Pzy0oyYUmWCxOIRiOImsqboSfRET7LO9-UOuxI,11172
16
16
  autocoder/run_context.py,sha256=IUfSO6_gp2Wt1blFWAmOpN0b0nDrTTk4LmtCYUBIoro,1643
17
- autocoder/version.py,sha256=kDx3aXxx7AO1nCfGSzsRo6Bz2Ha_vopiOcGfjEgOWis,23
17
+ autocoder/version.py,sha256=L0rufFyCm-NN1zcTnCIxTextGczJMaYraoueff8zemY,23
18
18
  autocoder/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
19
19
  autocoder/agent/auto_demand_organizer.py,sha256=URAq0gSEiHeV_W4zwhOI_83kHz0Ryfj1gcfh5jwCv_w,6501
20
20
  autocoder/agent/auto_filegroup.py,sha256=pBsAkBcpFTff-9L5OwI8xhf2xPKpl-aZwz-skF2B6dc,6296
@@ -86,6 +86,7 @@ autocoder/common/stats_panel.py,sha256=wGl9O45pjVVDxhNumLv4_NfLYSlUP_18Tw4hcJSjw
86
86
  autocoder/common/stream_out_type.py,sha256=uNHRg-1my6CxcPzQM6pACrYpTZbxOenVT8aLxnruv2w,333
87
87
  autocoder/common/sys_prompt.py,sha256=JlexfjZt554faqbgkCmzOJqYUzDHfbnxly5ugFfHfEE,26403
88
88
  autocoder/common/text.py,sha256=KGRQq314GHBmY4MWG8ossRoQi1_DTotvhxchpn78c-k,1003
89
+ autocoder/common/token_cost_caculate.py,sha256=5IoaFtcXrHMW-xDWoO5a1UQ8rSZqTeQRLXrgNGXE5NY,7626
89
90
  autocoder/common/types.py,sha256=PXTETrsTvhLE49jqAeUKGySvxBN9pjeyCgRHLDYdd9U,664
90
91
  autocoder/common/utils_code_auto_generate.py,sha256=Tvb3Mqxedj0Jhi0faKyWvILuNCty9fZi341fyIs33tA,4550
91
92
  autocoder/common/mcp_servers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -118,8 +119,8 @@ autocoder/index/filter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3
118
119
  autocoder/index/filter/normal_filter.py,sha256=MI-8xdXCrniaxYCHVTLkq5tafvcUiauD3LN0b3ymRXI,8361
119
120
  autocoder/index/filter/quick_filter.py,sha256=ozESEgy506FQ5ecjOumyo4D_KMrterB1QLmnVtiyOiM,43264
120
121
  autocoder/memory/__init__.py,sha256=5FeGvsesRViYL4BkFiHw9SdlyHeWlqALpTyqOpfnBRw,179
121
- autocoder/memory/active_context_manager.py,sha256=7f7DznnLXbXH6yptN8rOSSJcre0bSJ2dU9mM9L6bvno,27106
122
- autocoder/memory/active_package.py,sha256=CyfqZSgNucE5mGQH5JGHTE8lTU0KjFGkW2YN8vl9SoI,17480
122
+ autocoder/memory/active_context_manager.py,sha256=zeBOhOrlSeUU2-qaJPDCEGryJ5IorTrdsDoRJ3FHOac,33238
123
+ autocoder/memory/active_package.py,sha256=ccTs5BTrbno0Ji2YHdNfA4j1JbBTuTCvpW5bLl5xfiY,25336
123
124
  autocoder/memory/async_processor.py,sha256=htHzLGupw9IHQAEdLe2AEaALZSItPi3AltDt8FMTRHk,4643
124
125
  autocoder/memory/directory_mapper.py,sha256=BXHblOdRpeZb7URDECALp9uN5oi91KmkW9g_UaWFuZY,2513
125
126
  autocoder/plugins/__init__.py,sha256=uc8UNSAVb9uQvr5zUSS-Xu_RhrdbO2i3w2NhkrVtODM,43023
@@ -199,9 +200,9 @@ autocoder/utils/types.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
199
200
  autocoder/utils/auto_coder_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
200
201
  autocoder/utils/auto_coder_utils/chat_stream_out.py,sha256=xuBeWD0YOckqRo8JB1WkVIMOYH6c24m7JfV4svBfPDo,15113
201
202
  autocoder/utils/chat_auto_coder_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
202
- auto_coder-0.1.311.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
203
- auto_coder-0.1.311.dist-info/METADATA,sha256=uq838XUS-zoqEjGBAsnn8Le2qP29MYnffnCX01gUTeU,2747
204
- auto_coder-0.1.311.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
205
- auto_coder-0.1.311.dist-info/entry_points.txt,sha256=0nzHtHH4pNcM7xq4EBA2toS28Qelrvcbrr59GqD_0Ak,350
206
- auto_coder-0.1.311.dist-info/top_level.txt,sha256=Jqc0_uJSw2GwoFQAa9iJxYns-2mWla-9ok_Y3Gcznjk,10
207
- auto_coder-0.1.311.dist-info/RECORD,,
203
+ auto_coder-0.1.312.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
204
+ auto_coder-0.1.312.dist-info/METADATA,sha256=gH2LE277ri7M4pw622UTxMm4c63pMk0H6RyiO3h4MBM,2747
205
+ auto_coder-0.1.312.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
206
+ auto_coder-0.1.312.dist-info/entry_points.txt,sha256=0nzHtHH4pNcM7xq4EBA2toS28Qelrvcbrr59GqD_0Ak,350
207
+ auto_coder-0.1.312.dist-info/top_level.txt,sha256=Jqc0_uJSw2GwoFQAa9iJxYns-2mWla-9ok_Y3Gcznjk,10
208
+ auto_coder-0.1.312.dist-info/RECORD,,
@@ -1854,12 +1854,14 @@ def active_context(query: str):
1854
1854
  return
1855
1855
 
1856
1856
  # 创建表格
1857
- table = Table(title="活动上下文任务列表")
1858
- table.add_column("任务ID", style="cyan")
1859
- table.add_column("状态", style="green")
1860
- table.add_column("开始时间", style="yellow")
1861
- table.add_column("完成时间", style="yellow")
1862
- table.add_column("文件", style="blue")
1857
+ table = Table(title="活动上下文任务列表", show_lines=True, expand=True)
1858
+ table.add_column("任务ID", style="cyan", no_wrap=False)
1859
+ table.add_column("状态", style="green", no_wrap=False)
1860
+ table.add_column("开始时间", style="yellow", no_wrap=False)
1861
+ table.add_column("完成时间", style="yellow", no_wrap=False)
1862
+ table.add_column("文件", style="blue", no_wrap=False)
1863
+ table.add_column("Token统计", style="magenta", no_wrap=False)
1864
+ table.add_column("费用", style="red", no_wrap=False)
1863
1865
 
1864
1866
  # 添加任务数据
1865
1867
  for task in all_tasks:
@@ -1887,17 +1889,29 @@ def active_context(query: str):
1887
1889
  # 获取文件名
1888
1890
  file_name = task.get("file_name", "未知")
1889
1891
 
1892
+ # 获取token信息
1893
+ total_tokens = task.get("total_tokens", 0)
1894
+ input_tokens = task.get("input_tokens", 0)
1895
+ output_tokens = task.get("output_tokens", 0)
1896
+ token_info = f"总计: {total_tokens:,}\n输入: {input_tokens:,}\n输出: {output_tokens:,}"
1897
+
1898
+ # 获取费用信息
1899
+ cost = task.get("cost", 0.0)
1900
+ cost_info = f"${cost:.6f}"
1901
+
1890
1902
  # 添加到表格
1891
1903
  table.add_row(
1892
1904
  task.get("task_id", "未知"),
1893
1905
  status_display,
1894
1906
  start_time_str,
1895
1907
  completion_time_str,
1896
- file_name
1908
+ file_name,
1909
+ token_info,
1910
+ cost_info
1897
1911
  )
1898
1912
 
1899
1913
  # 显示表格
1900
- console = Console()
1914
+ console = Console(width=120) # 设置更宽的显示宽度
1901
1915
  console.print(table)
1902
1916
 
1903
1917
 
@@ -0,0 +1,200 @@
1
+ from typing import Dict, Any, Optional, Tuple, List
2
+ import time
3
+ from loguru import logger
4
+ import byzerllm
5
+ from byzerllm import MetaHolder
6
+ from autocoder.utils import llms
7
+ from autocoder.events.event_manager_singleton import get_event_manager
8
+ from autocoder.events import event_content as EventContentCreator
9
+ from pydantic import BaseModel, Field
10
+
11
+
12
+ class TokenUsageStats(BaseModel):
13
+ """Token使用统计数据模型"""
14
+ input_tokens: int = Field(default=0, description="输入的token数量")
15
+ output_tokens: int = Field(default=0, description="输出的token数量")
16
+ input_cost: float = Field(default=0.0, description="输入token的成本")
17
+ output_cost: float = Field(default=0.0, description="输出token的成本")
18
+
19
+ @property
20
+ def total_tokens(self) -> int:
21
+ """总token数"""
22
+ return self.input_tokens + self.output_tokens
23
+
24
+ @property
25
+ def total_cost(self) -> float:
26
+ """总成本"""
27
+ return self.input_cost + self.output_cost
28
+
29
+
30
+ class TokenCostCalculator:
31
+ """
32
+ Token计费计算器 - 提供获取模型信息、计算token成本和记录token统计信息的公共功能
33
+ """
34
+
35
+ def __init__(self, logger_name: str = "TokenCostCalculator"):
36
+ """
37
+ 初始化Token计费计算器
38
+
39
+ Args:
40
+ logger_name: logger名称,默认为TokenCostCalculator
41
+ """
42
+ self.logger = logger.bind(name=logger_name)
43
+
44
+ def get_model_info(self, llm: byzerllm.ByzerLLM,product_mode:str="lite") -> Tuple[str, Dict[str, Dict[str, float]]]:
45
+ """
46
+ 获取模型名称和价格信息
47
+
48
+ Args:
49
+ llm: ByzerLLM实例
50
+
51
+ Returns:
52
+ Tuple[str, Dict]: 模型名称字符串和价格信息字典
53
+ """
54
+ # 获取模型名称列表
55
+ model_names = llms.get_llm_names(llm)
56
+ model_name = ",".join(model_names)
57
+
58
+ # 获取模型价格信息
59
+ model_info_map = {}
60
+ for name in model_names:
61
+ info = llms.get_model_info(name, product_mode)
62
+ if info:
63
+ model_info_map[name] = {
64
+ "input_price": info.get("input_price", 0.0),
65
+ "output_price": info.get("output_price", 0.0)
66
+ }
67
+
68
+ return model_name, model_info_map
69
+
70
+ def calculate_token_costs(self, meta_holder: MetaHolder,
71
+ model_info_map: Dict[str, Dict[str, float]]) -> TokenUsageStats:
72
+ """
73
+ 计算token统计和成本
74
+
75
+ Args:
76
+ meta_holder: MetaHolder实例
77
+ model_info_map: 模型价格信息字典
78
+
79
+ Returns:
80
+ TokenUsageStats: Token使用统计数据对象
81
+ """
82
+ stats = TokenUsageStats()
83
+
84
+ if meta_holder.get_meta():
85
+ meta_dict = meta_holder.get_meta()
86
+ stats.input_tokens = meta_dict.get("input_tokens_count", 0)
87
+ stats.output_tokens = meta_dict.get("generated_tokens_count", 0)
88
+
89
+ for name, info in model_info_map.items():
90
+ stats.input_cost += (stats.input_tokens *
91
+ info.get("input_price", 0.0)) / 1000000
92
+ stats.output_cost += (stats.output_tokens *
93
+ info.get("output_price", 0.0)) / 1000000
94
+
95
+ return stats
96
+
97
+ def log_event(self,
98
+ model_name: str,
99
+ operation_name: str,
100
+ start_time: float,
101
+ end_time: float,
102
+ stats: TokenUsageStats,
103
+ event_file: Optional[str] = None):
104
+ """
105
+ 记录token统计信息到日志和事件系统
106
+
107
+ Args:
108
+ model_name: 模型名称
109
+ operation_name: 操作名称,用于日志记录
110
+ start_time: 开始时间
111
+ end_time: 结束时间
112
+ stats: Token使用统计数据
113
+ event_file: 事件文件路径,如果提供则写入事件
114
+ """
115
+ elapsed_time = end_time - start_time
116
+
117
+ # 计算token生成速度(每秒生成的token数)
118
+ speed = stats.output_tokens / elapsed_time if elapsed_time > 0 else 0
119
+
120
+ # 记录日志
121
+ self.logger.info(f"{operation_name} Stats - Model: {model_name}, "
122
+ f"Input Tokens: {stats.input_tokens}, "
123
+ f"Output Tokens: {stats.output_tokens}, "
124
+ f"Total Tokens: {stats.total_tokens}, "
125
+ f"Time: {elapsed_time:.2f}s, "
126
+ f"Speed: {speed:.2f}tokens/s, "
127
+ f"Total Cost: ${stats.total_cost:.6f}")
128
+
129
+ # 记录事件(如果提供了event_file)
130
+ try:
131
+ if event_file:
132
+ get_event_manager(event_file).write_result(
133
+ EventContentCreator.create_result(content=EventContentCreator.ResultTokenStatContent(
134
+ model_name=model_name,
135
+ elapsed_time=elapsed_time,
136
+ first_token_time=0, # 不跟踪首个token时间
137
+ input_tokens=stats.input_tokens,
138
+ output_tokens=stats.output_tokens,
139
+ input_cost=stats.input_cost,
140
+ output_cost=stats.output_cost,
141
+ speed=speed
142
+ ).to_dict()))
143
+ else:
144
+ # 尝试使用默认事件管理器
145
+ get_event_manager().write_result(
146
+ EventContentCreator.create_result(content=EventContentCreator.ResultTokenStatContent(
147
+ model_name=model_name,
148
+ elapsed_time=elapsed_time,
149
+ input_tokens=stats.input_tokens,
150
+ output_tokens=stats.output_tokens,
151
+ input_cost=stats.input_cost,
152
+ output_cost=stats.output_cost,
153
+ speed=speed
154
+ ).to_dict()))
155
+ except Exception as e:
156
+ self.logger.error(f"Error writing event for {operation_name}: {e}")
157
+
158
+ def track_token_usage(self,
159
+ llm: byzerllm.ByzerLLM,
160
+ meta_holder: MetaHolder,
161
+ operation_name: str,
162
+ start_time: float,
163
+ end_time: float,
164
+ product_mode: Optional[str] = None,
165
+ event_file: Optional[str] = None) -> TokenUsageStats:
166
+ """
167
+ 跟踪token使用情况的便捷方法,整合了获取模型信息、计算成本和记录统计的功能
168
+
169
+ Args:
170
+ llm: ByzerLLM实例
171
+ meta_holder: MetaHolder实例
172
+ operation_name: 操作名称
173
+ start_time: 开始时间
174
+ end_time: 结束时间
175
+ product_mode: 产品模式,如果不提供则使用实例的product_mode
176
+ event_file: 事件文件路径
177
+
178
+ Returns:
179
+ TokenUsageStats: Token使用统计数据对象
180
+ """
181
+ # 使用传入的product_mode或实例的product_mode
182
+ actual_product_mode = product_mode
183
+
184
+ # 获取模型信息
185
+ model_name, model_info_map = self.get_model_info(llm,actual_product_mode)
186
+
187
+ # 计算token统计和成本
188
+ stats = self.calculate_token_costs(meta_holder, model_info_map)
189
+
190
+ # 记录事件
191
+ self.log_event(
192
+ model_name=model_name,
193
+ operation_name=operation_name,
194
+ start_time=start_time,
195
+ end_time=end_time,
196
+ stats=stats,
197
+ event_file=event_file
198
+ )
199
+
200
+ return stats