auto-coder 0.1.302__py3-none-any.whl → 0.1.303__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of auto-coder might be problematic. Click here for more details.
- {auto_coder-0.1.302.dist-info → auto_coder-0.1.303.dist-info}/METADATA +2 -1
- {auto_coder-0.1.302.dist-info → auto_coder-0.1.303.dist-info}/RECORD +28 -20
- autocoder/auto_coder.py +5 -3
- autocoder/auto_coder_runner.py +7 -7
- autocoder/chat_auto_coder.py +6 -1
- autocoder/commands/auto_command.py +285 -206
- autocoder/commands/tools.py +123 -85
- autocoder/common/__init__.py +2 -0
- autocoder/common/action_yml_file_manager.py +22 -0
- autocoder/common/auto_configure.py +9 -4
- autocoder/common/stream_out_type.py +7 -0
- autocoder/dispacher/actions/action.py +221 -101
- autocoder/dispacher/actions/plugins/action_regex_project.py +18 -0
- autocoder/events/__init__.py +57 -0
- autocoder/events/event_content.py +423 -0
- autocoder/events/event_manager.py +327 -0
- autocoder/events/event_manager_singleton.py +245 -0
- autocoder/events/event_store.py +376 -0
- autocoder/events/event_types.py +103 -0
- autocoder/index/entry.py +88 -60
- autocoder/index/filter/quick_filter.py +71 -3
- autocoder/run_context.py +62 -0
- autocoder/utils/auto_coder_utils/chat_stream_out.py +32 -1
- autocoder/version.py +1 -1
- {auto_coder-0.1.302.dist-info → auto_coder-0.1.303.dist-info}/LICENSE +0 -0
- {auto_coder-0.1.302.dist-info → auto_coder-0.1.303.dist-info}/WHEEL +0 -0
- {auto_coder-0.1.302.dist-info → auto_coder-0.1.303.dist-info}/entry_points.txt +0 -0
- {auto_coder-0.1.302.dist-info → auto_coder-0.1.303.dist-info}/top_level.txt +0 -0
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
from enum import Enum
|
|
1
2
|
import json
|
|
2
3
|
import os
|
|
3
4
|
import time
|
|
@@ -24,8 +25,12 @@ from autocoder.common.global_cancel import global_cancel
|
|
|
24
25
|
from autocoder.common.auto_configure import config_readme
|
|
25
26
|
from autocoder.utils.auto_project_type import ProjectTypeAnalyzer
|
|
26
27
|
from rich.text import Text
|
|
27
|
-
from autocoder.common.mcp_server import get_mcp_server,McpServerInfoRequest
|
|
28
|
+
from autocoder.common.mcp_server import get_mcp_server, McpServerInfoRequest
|
|
28
29
|
from autocoder.common.action_yml_file_manager import ActionYmlFileManager
|
|
30
|
+
from autocoder.events.event_manager_singleton import get_event_manager
|
|
31
|
+
from autocoder.events import event_content as EventContentCreator
|
|
32
|
+
from autocoder.run_context import get_run_context
|
|
33
|
+
from autocoder.common.stream_out_type import AutoCommandStreamOutType
|
|
29
34
|
class CommandMessage(BaseModel):
|
|
30
35
|
role: str
|
|
31
36
|
content: str
|
|
@@ -38,19 +43,19 @@ class ExtendedCommandMessage(BaseModel):
|
|
|
38
43
|
|
|
39
44
|
class CommandConversation(BaseModel):
|
|
40
45
|
history: Dict[str, ExtendedCommandMessage]
|
|
41
|
-
current_conversation: List[
|
|
46
|
+
current_conversation: List[ExtendedCommandMessage]
|
|
42
47
|
|
|
43
48
|
|
|
44
49
|
def load_memory_file(args: AutoCoderArgs) -> CommandConversation:
|
|
45
|
-
"""Load command conversations from memory file"""
|
|
46
|
-
|
|
50
|
+
"""Load command conversations from memory file"""
|
|
51
|
+
|
|
47
52
|
memory_dir = os.path.join(".auto-coder", "memory")
|
|
48
53
|
file_path = os.path.join(memory_dir, "command_chat_history.json")
|
|
49
54
|
if os.path.exists(file_path):
|
|
50
55
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
51
56
|
try:
|
|
52
|
-
conversation = CommandConversation.model_validate_json(
|
|
53
|
-
|
|
57
|
+
conversation = CommandConversation.model_validate_json(
|
|
58
|
+
f.read())
|
|
54
59
|
return conversation
|
|
55
60
|
except Exception:
|
|
56
61
|
return CommandConversation(history={}, current_conversation=[])
|
|
@@ -58,7 +63,7 @@ def load_memory_file(args: AutoCoderArgs) -> CommandConversation:
|
|
|
58
63
|
|
|
59
64
|
|
|
60
65
|
class TimeBasedStrategy:
|
|
61
|
-
def __init__(self, max_idle_time=3600): #
|
|
66
|
+
def __init__(self, max_idle_time=3600*24): # 24 hour in seconds
|
|
62
67
|
self.max_idle_time = max_idle_time
|
|
63
68
|
|
|
64
69
|
def should_archive(self, last_message_time):
|
|
@@ -66,12 +71,13 @@ class TimeBasedStrategy:
|
|
|
66
71
|
current_time = time.time()
|
|
67
72
|
return current_time - last_message_time > self.max_idle_time
|
|
68
73
|
|
|
74
|
+
|
|
69
75
|
def save_to_memory_file(query: str, response: str):
|
|
70
76
|
"""Save command conversation to memory file using CommandConversation structure"""
|
|
71
77
|
memory_dir = os.path.join(".auto-coder", "memory")
|
|
72
78
|
os.makedirs(memory_dir, exist_ok=True)
|
|
73
79
|
file_path = os.path.join(memory_dir, "command_chat_history.json")
|
|
74
|
-
|
|
80
|
+
|
|
75
81
|
# Initialize time-based strategy
|
|
76
82
|
time_strategy = TimeBasedStrategy()
|
|
77
83
|
|
|
@@ -97,7 +103,8 @@ def save_to_memory_file(query: str, response: str):
|
|
|
97
103
|
f.read())
|
|
98
104
|
# Check if we should archive current conversation
|
|
99
105
|
if existing_conv.current_conversation:
|
|
100
|
-
last_message_time = float(
|
|
106
|
+
last_message_time = float(
|
|
107
|
+
existing_conv.current_conversation[-1].timestamp)
|
|
101
108
|
if time_strategy.should_archive(last_message_time):
|
|
102
109
|
# Move current conversation to history
|
|
103
110
|
timestamp = str(int(last_message_time))
|
|
@@ -127,13 +134,14 @@ class CommandSuggestion(BaseModel):
|
|
|
127
134
|
confidence: float
|
|
128
135
|
reasoning: str
|
|
129
136
|
|
|
137
|
+
|
|
130
138
|
class AutoCommandResponse(BaseModel):
|
|
131
139
|
suggestions: List[CommandSuggestion]
|
|
132
140
|
reasoning: Optional[str] = None
|
|
133
141
|
|
|
134
142
|
|
|
135
143
|
class AutoCommandRequest(BaseModel):
|
|
136
|
-
user_input: str
|
|
144
|
+
user_input: str
|
|
137
145
|
|
|
138
146
|
|
|
139
147
|
class MemoryConfig(BaseModel):
|
|
@@ -173,7 +181,6 @@ class CommandConfig(BaseModel):
|
|
|
173
181
|
index_import: SkipValidation[Callable]
|
|
174
182
|
exclude_files: SkipValidation[Callable]
|
|
175
183
|
|
|
176
|
-
|
|
177
184
|
|
|
178
185
|
class CommandAutoTuner:
|
|
179
186
|
def __init__(self, llm: Union[byzerllm.ByzerLLM, byzerllm.SimpleByzerLLM],
|
|
@@ -185,7 +192,8 @@ class CommandAutoTuner:
|
|
|
185
192
|
self.memory_config = memory_config
|
|
186
193
|
self.command_config = command_config
|
|
187
194
|
self.tools = AutoCommandTools(args=args, llm=self.llm)
|
|
188
|
-
self.project_type_analyzer = ProjectTypeAnalyzer(
|
|
195
|
+
self.project_type_analyzer = ProjectTypeAnalyzer(
|
|
196
|
+
args=args, llm=self.llm)
|
|
189
197
|
try:
|
|
190
198
|
self.mcp_server = get_mcp_server()
|
|
191
199
|
mcp_server_info_response = self.mcp_server.send_request(McpServerInfoRequest(
|
|
@@ -196,7 +204,7 @@ class CommandAutoTuner:
|
|
|
196
204
|
except Exception as e:
|
|
197
205
|
logger.error(f"Error getting MCP server info: {str(e)}")
|
|
198
206
|
self.mcp_server_info = ""
|
|
199
|
-
|
|
207
|
+
|
|
200
208
|
def get_conversations(self) -> List[CommandMessage]:
|
|
201
209
|
"""Get conversation history from memory file"""
|
|
202
210
|
conversation = load_memory_file(args=self.args)
|
|
@@ -213,7 +221,7 @@ class CommandAutoTuner:
|
|
|
213
221
|
终端类型: {{ env_info.shell_type }}
|
|
214
222
|
终端编码: {{ env_info.shell_encoding }}
|
|
215
223
|
当前用户: {{ current_user }}
|
|
216
|
-
|
|
224
|
+
|
|
217
225
|
{%- if shell_type %}
|
|
218
226
|
脚本类型:{{ shell_type }}
|
|
219
227
|
{%- endif %}
|
|
@@ -225,9 +233,9 @@ class CommandAutoTuner:
|
|
|
225
233
|
虚拟环境: {{ env_info.virtualenv }}
|
|
226
234
|
{%- endif %}
|
|
227
235
|
</os_info>
|
|
228
|
-
|
|
236
|
+
|
|
229
237
|
我们的目标是根据用户输入和当前上下文,组合多个函数来完成用户的需求。
|
|
230
|
-
|
|
238
|
+
|
|
231
239
|
{% if current_files %}
|
|
232
240
|
## 当前活跃区文件列表:
|
|
233
241
|
<current_files>
|
|
@@ -242,7 +250,7 @@ class CommandAutoTuner:
|
|
|
242
250
|
<current_conf>
|
|
243
251
|
{{ current_conf }}
|
|
244
252
|
</current_conf>
|
|
245
|
-
|
|
253
|
+
|
|
246
254
|
## 可用函数列表:
|
|
247
255
|
{{ available_commands }}
|
|
248
256
|
|
|
@@ -268,7 +276,7 @@ class CommandAutoTuner:
|
|
|
268
276
|
|
|
269
277
|
请分析用户意图,组合一个或者多个函数,帮助用户完成需求。
|
|
270
278
|
返回格式必须是严格的JSON格式:
|
|
271
|
-
|
|
279
|
+
|
|
272
280
|
```json
|
|
273
281
|
{
|
|
274
282
|
"suggestions": [
|
|
@@ -287,7 +295,7 @@ class CommandAutoTuner:
|
|
|
287
295
|
满足需求。
|
|
288
296
|
"""
|
|
289
297
|
|
|
290
|
-
env_info = detect_env()
|
|
298
|
+
env_info = detect_env()
|
|
291
299
|
shell_type = "bash"
|
|
292
300
|
if shells.is_running_in_cmd():
|
|
293
301
|
shell_type = "cmd"
|
|
@@ -296,10 +304,10 @@ class CommandAutoTuner:
|
|
|
296
304
|
|
|
297
305
|
return {
|
|
298
306
|
"user_input": request.user_input,
|
|
299
|
-
"current_files": self.memory_config.memory["current_files"]["files"],
|
|
307
|
+
"current_files": self.memory_config.memory["current_files"]["files"],
|
|
300
308
|
"conversation_history": self.get_conversations(),
|
|
301
309
|
"available_commands": self._command_readme.prompt(),
|
|
302
|
-
"current_conf": json.dumps(self.memory_config.memory["conf"], indent=2),
|
|
310
|
+
"current_conf": json.dumps(self.memory_config.memory["conf"], indent=2),
|
|
303
311
|
"env_info": env_info,
|
|
304
312
|
"shell_type": shell_type,
|
|
305
313
|
"shell_encoding": shells.get_terminal_encoding(),
|
|
@@ -308,7 +316,7 @@ class CommandAutoTuner:
|
|
|
308
316
|
"current_user": shells.get_current_username(),
|
|
309
317
|
"command_combination_readme": self._command_combination_readme.prompt()
|
|
310
318
|
}
|
|
311
|
-
|
|
319
|
+
|
|
312
320
|
@byzerllm.prompt()
|
|
313
321
|
def _command_combination_readme(self) -> str:
|
|
314
322
|
"""
|
|
@@ -317,28 +325,28 @@ class CommandAutoTuner:
|
|
|
317
325
|
|
|
318
326
|
### 是否根据需求动态修改auto-coder软件配置
|
|
319
327
|
关注下当前软件的配置,结合当前用户的需求,如果觉得不合理的地方,可以通过 ask_user 函数来询问用户,是否要通过 help 函数修改一些配置。
|
|
320
|
-
|
|
328
|
+
|
|
321
329
|
### 如何了解当前项目
|
|
322
330
|
|
|
323
331
|
通常可以自己通过调用 get_project_structure 函数来获取项目结构(如果项目结构太大,该函数会拒绝返回,你可以选择 list_files 函数来查看目录),然后通过 get_project_map 函数来获取某几个文件的用途,符号列表,以及
|
|
324
332
|
文件大小(tokens数),最后再通过 read_files/read_file_with_keyword_ranges 函数来读取文件内容,从而更好的结合当前项目理解用户的需求。
|
|
325
|
-
|
|
333
|
+
|
|
326
334
|
### 复杂需求,先做讨论设计
|
|
327
335
|
对于一个比较复杂的代码需求,你可以先通过 chat 函数来获得一些设计,根据chat返回的结果,你可以选择多次调用chat调整最后的设计。最后,当你满意后,可以通过 coding("/apply") 来完成最后的编码。
|
|
328
336
|
注意,为了防止对话过长,你可以使用 chat("/new") 来创新新的会话。然后接着正常再次调用 chat 函数。 即可。
|
|
329
337
|
尽可通过了解项目后,多用 @文件和@@符号,这样 chat 函数可以更清晰的理解你关注的代码,文档和意图。
|
|
330
|
-
|
|
338
|
+
|
|
331
339
|
### 调用 coding 函数应该注意的事项
|
|
332
340
|
调用 coding 函数的时候,尽可能多的 @文件和@@符号,让需求更加清晰明了,建议多描述具体怎么完成对应的需求。
|
|
333
341
|
对于代码需求设计,尽可能使用 chat 函数。如果成功执行了 coding 函数, 最好再调用一次 chat("/review /commit"),方便总结这次代码变更。
|
|
334
342
|
注意,review 完后,需要询问用户是否要做啥调整不,如果用户说不用,那么就停止。否则根据意图进行后续操作。
|
|
335
|
-
|
|
343
|
+
|
|
336
344
|
### 关于对话大小的问题
|
|
337
345
|
我们对话历史以及查看的内容累计不能超过 {{ conversation_safe_zone_tokens }} 个tokens,当你读取索引文件 (get_project_map) 的时候,你可以看到
|
|
338
346
|
每个文件的tokens数,你可以根据这个信息来决定如何读取这个文件。如果不确定,使用 count_file_tokens 函数来获取文件的tokens数,再决定如何读取。
|
|
339
347
|
而对于分析一个超大文件推荐组合 read_files 带上 line_ranges 参数来读取,或者组合 read_file_with_keyword_ranges 等来读取,
|
|
340
348
|
每个函数你还可以使用多次来获取更多信息。
|
|
341
|
-
|
|
349
|
+
|
|
342
350
|
### 善用脚本完成一些基本的操作
|
|
343
351
|
根据操作系统,终端类型,脚本类型等各种信息,在涉及到路径或者脚本的时候,需要考虑平台差异性。
|
|
344
352
|
|
|
@@ -348,51 +356,52 @@ class CommandAutoTuner:
|
|
|
348
356
|
|
|
349
357
|
如果你没有明确目标,需要单纯查看这个文件获取必要的信息,可以先通过 count_file_tokens 函数来获取文件的tokens数,如果数目小于安全对话窗口的tokens数的1/2, 那么可以直接用
|
|
350
358
|
read_files 函数来读取,否则建议一次读取200-600行,多次读取直到找到合适的信息。
|
|
351
|
-
|
|
359
|
+
|
|
352
360
|
## 其他一些注意事项
|
|
353
361
|
1. 使用 read_files 时,一次性读取文件数量不要超过1个,每次只读取200行。如果发现读取的内容不够,则继续读取下面200行。
|
|
354
362
|
2. 确实有必要才使用 get_project_structure 函数,否则可以多使用 list_files 函数来查看目录。
|
|
355
363
|
3. 最后,不要局限在我们前面描述的使用说明中,根据各个函数的说明,灵活组合和使用各个函数,发挥自己的想象力,尽可能的完成用户的需求。
|
|
356
364
|
</function_combination_readme>
|
|
357
|
-
"""
|
|
358
|
-
|
|
365
|
+
"""
|
|
366
|
+
|
|
359
367
|
@byzerllm.prompt()
|
|
360
|
-
def _execute_command_result(self, result:str) -> str:
|
|
368
|
+
def _execute_command_result(self, result: str) -> str:
|
|
361
369
|
'''
|
|
362
370
|
根据函数执行结果,返回下一个函数。
|
|
363
371
|
|
|
364
372
|
下面是我们上一个函数执行结果:
|
|
365
|
-
|
|
373
|
+
|
|
366
374
|
<function_result>
|
|
367
375
|
{{ result }}
|
|
368
376
|
</function_result>
|
|
369
377
|
|
|
370
378
|
请根据命令执行结果以及前面的对话,返回下一个函数。
|
|
371
|
-
|
|
379
|
+
|
|
372
380
|
*** 非常非常重要的提示 ***
|
|
373
|
-
1.
|
|
381
|
+
1. 如果已经满足要求,则总是调用 response_user函数,对用户的初始问题根据前面所有信息做一次详细的回复。
|
|
374
382
|
2. 你最多尝试 {{ auto_command_max_iterations }} 次,如果 {{ auto_command_max_iterations }} 次都没有满足要求,则不要返回任何函数,确保 suggestions 为空。
|
|
375
|
-
'''
|
|
383
|
+
'''
|
|
376
384
|
return {
|
|
377
385
|
"auto_command_max_iterations": self.args.auto_command_max_iterations,
|
|
378
386
|
"conversation_safe_zone_tokens": self.args.conversation_prune_safe_zone_tokens
|
|
379
|
-
}
|
|
380
|
-
|
|
387
|
+
}
|
|
388
|
+
|
|
381
389
|
def analyze(self, request: AutoCommandRequest) -> AutoCommandResponse:
|
|
382
390
|
# 获取 prompt 内容
|
|
383
391
|
prompt = self._analyze.prompt(request)
|
|
384
|
-
|
|
392
|
+
|
|
385
393
|
# 获取对当前项目变更的最近8条历史人物
|
|
386
394
|
action_yml_file_manager = ActionYmlFileManager(self.args.source_dir)
|
|
387
395
|
history_tasks = action_yml_file_manager.to_tasks_prompt(limit=8)
|
|
388
396
|
new_messages = []
|
|
389
397
|
if self.args.enable_task_history:
|
|
390
398
|
new_messages.append({"role": "user", "content": history_tasks})
|
|
391
|
-
new_messages.append(
|
|
392
|
-
|
|
399
|
+
new_messages.append(
|
|
400
|
+
{"role": "assistant", "content": "好的,我知道最近的任务对项目的变更了,我会参考这些来更好的理解你的需求。"})
|
|
401
|
+
|
|
393
402
|
# 构造对话上下文
|
|
394
403
|
conversations = new_messages + [{"role": "user", "content": prompt}]
|
|
395
|
-
|
|
404
|
+
|
|
396
405
|
# 使用 stream_out 进行输出
|
|
397
406
|
printer = Printer()
|
|
398
407
|
title = printer.get_message_from_key("auto_command_analyzing")
|
|
@@ -401,116 +410,163 @@ class CommandAutoTuner:
|
|
|
401
410
|
def extract_command_response(content: str) -> str:
|
|
402
411
|
# 提取 JSON 并转换为 AutoCommandResponse
|
|
403
412
|
try:
|
|
404
|
-
response = to_model(content, AutoCommandResponse)
|
|
405
|
-
if response.suggestions:
|
|
413
|
+
response = to_model(content, AutoCommandResponse)
|
|
414
|
+
if response.suggestions:
|
|
406
415
|
command = response.suggestions[0].command
|
|
407
|
-
parameters = response.suggestions[0].parameters
|
|
416
|
+
parameters = response.suggestions[0].parameters
|
|
408
417
|
if parameters:
|
|
409
|
-
params_str = ", ".join(
|
|
418
|
+
params_str = ", ".join(
|
|
419
|
+
[f"{k}={v}" for k, v in parameters.items()])
|
|
410
420
|
else:
|
|
411
|
-
params_str = ""
|
|
421
|
+
params_str = ""
|
|
412
422
|
return f"{command}({params_str})"
|
|
413
423
|
else:
|
|
414
|
-
return printer.get_message_from_key("satisfied_prompt")
|
|
415
|
-
except Exception as e:
|
|
424
|
+
return printer.get_message_from_key("satisfied_prompt")
|
|
425
|
+
except Exception as e:
|
|
416
426
|
logger.error(f"Error extracting command response: {str(e)}")
|
|
417
427
|
return content
|
|
418
|
-
|
|
428
|
+
|
|
419
429
|
model_name = ",".join(llms_utils.get_llm_names(self.llm))
|
|
420
430
|
start_time = time.monotonic()
|
|
421
431
|
result, last_meta = stream_out(
|
|
422
|
-
self.llm.stream_chat_oai(
|
|
432
|
+
self.llm.stream_chat_oai(
|
|
433
|
+
conversations=conversations, delta_mode=True),
|
|
423
434
|
model_name=model_name,
|
|
424
435
|
title=title,
|
|
425
436
|
final_title=final_title,
|
|
426
|
-
display_func=
|
|
437
|
+
display_func=extract_command_response,
|
|
438
|
+
args=self.args,
|
|
439
|
+
extra_meta={
|
|
440
|
+
"stream_out_type": AutoCommandStreamOutType.COMMAND_SUGGESTION.value
|
|
441
|
+
}
|
|
427
442
|
)
|
|
428
|
-
|
|
443
|
+
|
|
429
444
|
if last_meta:
|
|
430
|
-
elapsed_time = time.monotonic() - start_time
|
|
445
|
+
elapsed_time = time.monotonic() - start_time
|
|
431
446
|
speed = last_meta.generated_tokens_count / elapsed_time
|
|
432
|
-
|
|
447
|
+
|
|
433
448
|
# Get model info for pricing
|
|
434
449
|
from autocoder.utils import llms as llm_utils
|
|
435
|
-
model_info = llm_utils.get_model_info(
|
|
436
|
-
|
|
437
|
-
|
|
438
|
-
|
|
450
|
+
model_info = llm_utils.get_model_info(
|
|
451
|
+
model_name, self.args.product_mode) or {}
|
|
452
|
+
input_price = model_info.get(
|
|
453
|
+
"input_price", 0.0) if model_info else 0.0
|
|
454
|
+
output_price = model_info.get(
|
|
455
|
+
"output_price", 0.0) if model_info else 0.0
|
|
456
|
+
|
|
439
457
|
# Calculate costs
|
|
440
|
-
input_cost = (last_meta.input_tokens_count *
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
458
|
+
input_cost = (last_meta.input_tokens_count *
|
|
459
|
+
input_price) / 1000000 # Convert to millions
|
|
460
|
+
output_cost = (last_meta.generated_tokens_count *
|
|
461
|
+
output_price) / 1000000 # Convert to millions
|
|
462
|
+
|
|
463
|
+
temp_content = printer.get_message_from_key_with_format("stream_out_stats",
|
|
464
|
+
model_name=",".join(
|
|
465
|
+
llms_utils.get_llm_names(self.llm)),
|
|
466
|
+
elapsed_time=elapsed_time,
|
|
467
|
+
first_token_time=last_meta.first_token_time,
|
|
468
|
+
input_tokens=last_meta.input_tokens_count,
|
|
469
|
+
output_tokens=last_meta.generated_tokens_count,
|
|
470
|
+
input_cost=round(
|
|
471
|
+
input_cost, 4),
|
|
472
|
+
output_cost=round(
|
|
473
|
+
output_cost, 4),
|
|
474
|
+
speed=round(speed, 2))
|
|
475
|
+
printer.print_str_in_terminal(temp_content)
|
|
476
|
+
get_event_manager(self.args.event_file).write_result(
|
|
477
|
+
EventContentCreator.create_result(content=EventContentCreator.ResultTokenStatContent(
|
|
478
|
+
model_name=model_name,
|
|
479
|
+
elapsed_time=elapsed_time,
|
|
480
|
+
first_token_time=last_meta.first_token_time,
|
|
481
|
+
input_tokens=last_meta.input_tokens_count,
|
|
482
|
+
output_tokens=last_meta.generated_tokens_count,
|
|
483
|
+
input_cost=round(input_cost, 4),
|
|
484
|
+
output_cost=round(output_cost, 4),
|
|
485
|
+
speed=round(speed, 2)
|
|
486
|
+
)).to_dict()
|
|
487
|
+
)
|
|
488
|
+
|
|
489
|
+
# 这里打印
|
|
490
|
+
|
|
491
|
+
conversations.append({"role": "assistant", "content": result})
|
|
492
|
+
# 提取 JSON 并转换为 AutoCommandResponse
|
|
493
|
+
response = to_model(result, AutoCommandResponse)
|
|
494
|
+
|
|
459
495
|
# 保存对话记录
|
|
460
496
|
save_to_memory_file(
|
|
461
497
|
query=request.user_input,
|
|
462
498
|
response=response.model_dump_json(indent=2)
|
|
463
499
|
)
|
|
464
500
|
result_manager = ResultManager()
|
|
465
|
-
|
|
501
|
+
|
|
466
502
|
while True:
|
|
467
503
|
if global_cancel.requested:
|
|
468
504
|
printer = Printer(console)
|
|
469
|
-
printer.print_in_terminal("generation_cancelled")
|
|
505
|
+
printer.print_in_terminal("generation_cancelled")
|
|
470
506
|
break
|
|
471
507
|
# 执行命令
|
|
472
508
|
command = response.suggestions[0].command
|
|
473
509
|
parameters = response.suggestions[0].parameters
|
|
510
|
+
|
|
511
|
+
# 打印正在执行的命令
|
|
512
|
+
temp_content = printer.get_message_from_key_with_format("auto_command_executing",
|
|
513
|
+
command=command
|
|
514
|
+
)
|
|
515
|
+
printer.print_str_in_terminal(temp_content,style="blue")
|
|
516
|
+
|
|
517
|
+
get_event_manager(self.args.event_file).write_result(EventContentCreator.create_result(content=
|
|
518
|
+
EventContentCreator.ResultCommandPrepareStatContent(
|
|
519
|
+
command=command,
|
|
520
|
+
parameters=parameters
|
|
521
|
+
).to_dict()))
|
|
474
522
|
|
|
475
|
-
|
|
476
|
-
self.printer.print_in_terminal(
|
|
477
|
-
"auto_command_executing",
|
|
478
|
-
style="blue",
|
|
479
|
-
command=command
|
|
480
|
-
)
|
|
481
|
-
|
|
482
|
-
self.execute_auto_command(command, parameters)
|
|
523
|
+
self.execute_auto_command(command, parameters)
|
|
483
524
|
content = ""
|
|
484
525
|
last_result = result_manager.get_last()
|
|
485
526
|
if last_result:
|
|
486
|
-
action = last_result.meta["action"]
|
|
487
|
-
if action == "coding":
|
|
527
|
+
action = last_result.meta["action"]
|
|
528
|
+
if action == "coding":
|
|
488
529
|
# 如果上一步是 coding,则需要把上一步的更改前和更改后的内容作为上下文
|
|
489
|
-
changes = git_utils.get_changes_by_commit_message(
|
|
530
|
+
changes = git_utils.get_changes_by_commit_message(
|
|
531
|
+
"", last_result.meta["commit_message"])
|
|
490
532
|
if changes.success:
|
|
491
533
|
for file_path, change in changes.changes.items():
|
|
492
534
|
if change:
|
|
493
535
|
content += f"## File: {file_path}[更改前]\n{change.before or 'New File'}\n\nFile: {file_path}\n\n[更改后]\n{change.after or 'Deleted File'}\n\n"
|
|
494
536
|
else:
|
|
495
|
-
content = printer.
|
|
537
|
+
content = printer.get_message_from_key("no_changes_made")
|
|
496
538
|
else:
|
|
497
539
|
# 其他的直接获取执行结果
|
|
498
540
|
content = last_result.content
|
|
499
541
|
|
|
500
542
|
if action != command:
|
|
501
543
|
# command 和 action 不一致,则认为命令执行失败,退出
|
|
502
|
-
printer.
|
|
544
|
+
temp_content = printer.get_message_from_key_with_format(
|
|
545
|
+
"auto_command_action_break", command=command, action=action)
|
|
546
|
+
printer.print_str_in_terminal(temp_content,style="yellow")
|
|
547
|
+
get_event_manager(self.args.event_file).write_result(
|
|
548
|
+
EventContentCreator.create_result(content=temp_content))
|
|
549
|
+
break
|
|
550
|
+
|
|
551
|
+
if command == "response_user":
|
|
503
552
|
break
|
|
504
553
|
|
|
554
|
+
get_event_manager(self.args.event_file).write_result(
|
|
555
|
+
EventContentCreator.create_result(content=EventContentCreator.ResultCommandExecuteStatContent(
|
|
556
|
+
command=command,
|
|
557
|
+
content=content
|
|
558
|
+
).to_dict()))
|
|
559
|
+
|
|
505
560
|
# 打印执行结果
|
|
506
561
|
console = Console()
|
|
507
562
|
# 截取content前后200字符
|
|
508
|
-
truncated_content = content[:200] + "\n...\n" +
|
|
563
|
+
truncated_content = content[:200] + "\n...\n" + \
|
|
564
|
+
content[-200:] if len(content) > 400 else content
|
|
509
565
|
title = printer.get_message_from_key_with_format(
|
|
510
|
-
"command_execution_result",
|
|
566
|
+
"command_execution_result",
|
|
511
567
|
action=action
|
|
512
568
|
)
|
|
513
|
-
# 转义内容,避免Rich将内容中的[]解释为markup语法
|
|
569
|
+
# 转义内容,避免Rich将内容中的[]解释为markup语法
|
|
514
570
|
text_content = Text(truncated_content)
|
|
515
571
|
console.print(Panel(
|
|
516
572
|
text_content,
|
|
@@ -518,88 +574,111 @@ class CommandAutoTuner:
|
|
|
518
574
|
border_style="blue",
|
|
519
575
|
padding=(1, 2)
|
|
520
576
|
))
|
|
521
|
-
# 保持原content不变,继续后续处理
|
|
522
577
|
|
|
523
578
|
# 添加新的对话内容
|
|
524
579
|
new_content = self._execute_command_result.prompt(content)
|
|
525
580
|
conversations.append({"role": "user", "content": new_content})
|
|
526
|
-
|
|
527
|
-
# 统计 token 数量
|
|
528
|
-
total_tokens = count_tokens(json.dumps(
|
|
581
|
+
|
|
582
|
+
# 统计 token 数量
|
|
583
|
+
total_tokens = count_tokens(json.dumps(
|
|
584
|
+
conversations, ensure_ascii=False))
|
|
529
585
|
|
|
530
586
|
# 如果对话过长,使用默认策略进行修剪
|
|
531
587
|
if total_tokens > self.args.conversation_prune_safe_zone_tokens:
|
|
532
588
|
self.printer.print_in_terminal(
|
|
533
|
-
"conversation_pruning_start",
|
|
589
|
+
"conversation_pruning_start",
|
|
534
590
|
style="yellow",
|
|
535
591
|
total_tokens=total_tokens,
|
|
536
592
|
safe_zone=self.args.conversation_prune_safe_zone_tokens
|
|
537
593
|
)
|
|
538
594
|
from autocoder.common.conversation_pruner import ConversationPruner
|
|
539
595
|
pruner = ConversationPruner(self.args, self.llm)
|
|
540
|
-
conversations = pruner.prune_conversations(conversations)
|
|
596
|
+
conversations = pruner.prune_conversations(conversations)
|
|
541
597
|
|
|
542
598
|
title = printer.get_message_from_key("auto_command_analyzing")
|
|
543
599
|
model_name = ",".join(llms_utils.get_llm_names(self.llm))
|
|
544
|
-
|
|
600
|
+
|
|
545
601
|
start_time = time.monotonic()
|
|
546
602
|
result, last_meta = stream_out(
|
|
547
|
-
self.llm.stream_chat_oai(
|
|
603
|
+
self.llm.stream_chat_oai(
|
|
604
|
+
conversations=conversations, delta_mode=True),
|
|
548
605
|
model_name=model_name,
|
|
549
606
|
title=title,
|
|
550
607
|
final_title=final_title,
|
|
551
|
-
display_func=
|
|
552
|
-
|
|
553
|
-
|
|
608
|
+
display_func=extract_command_response,
|
|
609
|
+
args=self.args,
|
|
610
|
+
extra_meta={
|
|
611
|
+
"stream_out_type": AutoCommandStreamOutType.COMMAND_SUGGESTION.value
|
|
612
|
+
}
|
|
613
|
+
)
|
|
614
|
+
|
|
554
615
|
if last_meta:
|
|
555
616
|
elapsed_time = time.monotonic() - start_time
|
|
556
617
|
printer = Printer()
|
|
557
618
|
speed = last_meta.generated_tokens_count / elapsed_time
|
|
558
|
-
|
|
619
|
+
|
|
559
620
|
# Get model info for pricing
|
|
560
621
|
from autocoder.utils import llms as llm_utils
|
|
561
|
-
model_info = llm_utils.get_model_info(
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
622
|
+
model_info = llm_utils.get_model_info(
|
|
623
|
+
model_name, self.args.product_mode) or {}
|
|
624
|
+
input_price = model_info.get(
|
|
625
|
+
"input_price", 0.0) if model_info else 0.0
|
|
626
|
+
output_price = model_info.get(
|
|
627
|
+
"output_price", 0.0) if model_info else 0.0
|
|
628
|
+
|
|
565
629
|
# Calculate costs
|
|
566
|
-
input_cost = (last_meta.input_tokens_count *
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
574
|
-
|
|
575
|
-
|
|
576
|
-
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
630
|
+
input_cost = (last_meta.input_tokens_count *
|
|
631
|
+
input_price) / 1000000 # Convert to millions
|
|
632
|
+
# Convert to millions
|
|
633
|
+
output_cost = (
|
|
634
|
+
last_meta.generated_tokens_count * output_price) / 1000000
|
|
635
|
+
|
|
636
|
+
temp_content = printer.get_message_from_key_with_format("stream_out_stats",
|
|
637
|
+
model_name=model_name,
|
|
638
|
+
elapsed_time=elapsed_time,
|
|
639
|
+
first_token_time=last_meta.first_token_time,
|
|
640
|
+
input_tokens=last_meta.input_tokens_count,
|
|
641
|
+
output_tokens=last_meta.generated_tokens_count,
|
|
642
|
+
input_cost=round(input_cost, 4),
|
|
643
|
+
output_cost=round(
|
|
644
|
+
output_cost, 4),
|
|
645
|
+
speed=round(speed, 2))
|
|
646
|
+
printer.print_str_in_terminal(temp_content)
|
|
647
|
+
get_event_manager(self.args.event_file).write_result(
|
|
648
|
+
EventContentCreator.create_result(content=EventContentCreator.ResultTokenStatContent(
|
|
649
|
+
model_name=model_name,
|
|
650
|
+
elapsed_time=elapsed_time,
|
|
651
|
+
first_token_time=last_meta.first_token_time,
|
|
652
|
+
input_tokens=last_meta.input_tokens_count,
|
|
653
|
+
output_tokens=last_meta.generated_tokens_count,
|
|
654
|
+
).to_dict()))
|
|
655
|
+
|
|
656
|
+
conversations.append({"role": "assistant", "content": result})
|
|
657
|
+
# 提取 JSON 并转换为 AutoCommandResponse
|
|
658
|
+
response = to_model(result, AutoCommandResponse)
|
|
659
|
+
if not response or not response.suggestions:
|
|
660
|
+
break
|
|
661
|
+
|
|
585
662
|
save_to_memory_file(
|
|
586
663
|
query=request.user_input,
|
|
587
664
|
response=response.model_dump_json(indent=2)
|
|
588
|
-
)
|
|
665
|
+
)
|
|
666
|
+
else:
|
|
667
|
+
temp_content = printer.get_message_from_key_with_format("auto_command_break", command=command)
|
|
668
|
+
printer.print_str_in_terminal(temp_content,style="yellow")
|
|
669
|
+
get_event_manager(self.args.event_file).write_result(
|
|
670
|
+
EventContentCreator.create_result(content=temp_content))
|
|
671
|
+
break
|
|
672
|
+
|
|
673
|
+
return response
|
|
589
674
|
|
|
590
|
-
else:
|
|
591
|
-
self.printer.print_in_terminal("auto_command_break", style="yellow", command=command)
|
|
592
|
-
break
|
|
593
|
-
|
|
594
|
-
return response
|
|
595
|
-
|
|
596
675
|
@byzerllm.prompt()
|
|
597
676
|
def _command_readme(self) -> str:
|
|
598
677
|
'''
|
|
599
678
|
你有如下函数可供使用:
|
|
600
|
-
|
|
679
|
+
|
|
601
680
|
<commands>
|
|
602
|
-
|
|
681
|
+
|
|
603
682
|
<command>
|
|
604
683
|
<name>add_files</name>
|
|
605
684
|
<description>
|
|
@@ -713,7 +792,7 @@ class CommandAutoTuner:
|
|
|
713
792
|
- 如果没有可撤销的操作会提示错误
|
|
714
793
|
</usage>
|
|
715
794
|
</command>
|
|
716
|
-
|
|
795
|
+
|
|
717
796
|
<command>
|
|
718
797
|
<name>help</name>
|
|
719
798
|
<description>
|
|
@@ -731,7 +810,7 @@ class CommandAutoTuner:
|
|
|
731
810
|
help(query="")
|
|
732
811
|
|
|
733
812
|
## 帮助用户执行特定的配置
|
|
734
|
-
|
|
813
|
+
|
|
735
814
|
help(query="关闭索引")
|
|
736
815
|
|
|
737
816
|
这条命令会触发:
|
|
@@ -743,7 +822,7 @@ class CommandAutoTuner:
|
|
|
743
822
|
常见的一些配置选项示例:
|
|
744
823
|
|
|
745
824
|
{{ config_readme }}
|
|
746
|
-
|
|
825
|
+
|
|
747
826
|
比如你想开启索引,则可以执行:
|
|
748
827
|
|
|
749
828
|
help(query="开启索引")
|
|
@@ -754,7 +833,7 @@ class CommandAutoTuner:
|
|
|
754
833
|
|
|
755
834
|
</usage>
|
|
756
835
|
</command>
|
|
757
|
-
|
|
836
|
+
|
|
758
837
|
<command>
|
|
759
838
|
<name>chat</name>
|
|
760
839
|
<description>进入聊天模式,与AI进行交互对话。支持多轮对话和上下文理解。</description>
|
|
@@ -817,7 +896,7 @@ class CommandAutoTuner:
|
|
|
817
896
|
使用例子:
|
|
818
897
|
|
|
819
898
|
coding(query="创建一个处理用户登录的函数")
|
|
820
|
-
|
|
899
|
+
|
|
821
900
|
|
|
822
901
|
## 和 chat 搭配使用
|
|
823
902
|
当你用过 chat 之后,继续使用 coding 时,可以添加 /apply 来带上 chat 的对话内容。
|
|
@@ -858,7 +937,7 @@ class CommandAutoTuner:
|
|
|
858
937
|
使用例子:
|
|
859
938
|
|
|
860
939
|
lib(args=["/add", "byzer-llm"])
|
|
861
|
-
|
|
940
|
+
|
|
862
941
|
|
|
863
942
|
## 移除库
|
|
864
943
|
使用 /remove 移除库
|
|
@@ -900,7 +979,7 @@ class CommandAutoTuner:
|
|
|
900
979
|
<description>模型控制面板命令,用于管理和控制AI模型。</description>
|
|
901
980
|
<usage>
|
|
902
981
|
该命令用于管理和控制AI模型的配置和运行。 包含一个参数:query,字符串类型。
|
|
903
|
-
|
|
982
|
+
|
|
904
983
|
## 罗列模型模板
|
|
905
984
|
|
|
906
985
|
models(query="/list")
|
|
@@ -911,11 +990,11 @@ class CommandAutoTuner:
|
|
|
911
990
|
##添加模型模板
|
|
912
991
|
|
|
913
992
|
比如我想添加 open router 或者硅基流动的模型,则可以通过如下方式:
|
|
914
|
-
|
|
993
|
+
|
|
915
994
|
models(query="/add_model name=openrouter-sonnet-3.5 base_url=https://openrouter.ai/api/v1")
|
|
916
|
-
|
|
995
|
+
|
|
917
996
|
这样就能添加自定义模型: openrouter-sonnet-3.5
|
|
918
|
-
|
|
997
|
+
|
|
919
998
|
|
|
920
999
|
如果你想添加添加硅基流动deepseek 模型的方式为:
|
|
921
1000
|
|
|
@@ -966,7 +1045,7 @@ class CommandAutoTuner:
|
|
|
966
1045
|
models(query="/add_model name=tencent_v3_chat base_url=https://tencent.ai.qq.com/v1 model_name=deepseek-v3")
|
|
967
1046
|
|
|
968
1047
|
*** 特别注意 ***
|
|
969
|
-
|
|
1048
|
+
|
|
970
1049
|
在使用本函数时,如果添加的模型用户在需求中没有提供像推理点名称,激活时的 api key,以及模型名称等,从而导致添加模型会发生不确定性,
|
|
971
1050
|
你务必需要先通过函数 ask_user 来获取,之后得到完整信息再来执行 models 相关的操作。
|
|
972
1051
|
|
|
@@ -976,8 +1055,8 @@ class CommandAutoTuner:
|
|
|
976
1055
|
models(query="/add_model name=ark_r1_chat base_url=https://ark.cn-beijing.volces.com/api/v3 model_name=<收集到的推理点名称> is_reasoning=true")
|
|
977
1056
|
|
|
978
1057
|
models(query="/activate ark_r1_chat <收集到的API key>")
|
|
979
|
-
|
|
980
|
-
|
|
1058
|
+
|
|
1059
|
+
|
|
981
1060
|
</usage>
|
|
982
1061
|
</command>
|
|
983
1062
|
|
|
@@ -991,10 +1070,10 @@ class CommandAutoTuner:
|
|
|
991
1070
|
</description>
|
|
992
1071
|
<usage>
|
|
993
1072
|
该命令接受一个参数 question,为需要向用户询问的问题字符串。
|
|
994
|
-
|
|
1073
|
+
|
|
995
1074
|
使用例子:
|
|
996
1075
|
ask_user(question="请输入火山引擎的 R1 模型推理点")
|
|
997
|
-
|
|
1076
|
+
|
|
998
1077
|
</command>
|
|
999
1078
|
|
|
1000
1079
|
<command>
|
|
@@ -1002,11 +1081,11 @@ class CommandAutoTuner:
|
|
|
1002
1081
|
<description>运行指定的Python代码。主要用于执行一些Python脚本或测试代码。</description>
|
|
1003
1082
|
<usage>
|
|
1004
1083
|
该命令接受一个参数 code,为要执行的Python代码字符串。
|
|
1005
|
-
|
|
1084
|
+
|
|
1006
1085
|
使用例子:
|
|
1007
|
-
|
|
1086
|
+
|
|
1008
1087
|
run_python(code="print('Hello World')")
|
|
1009
|
-
|
|
1088
|
+
|
|
1010
1089
|
注意:
|
|
1011
1090
|
- 代码将在项目根目录下执行
|
|
1012
1091
|
- 可以访问项目中的所有文件
|
|
@@ -1019,12 +1098,12 @@ class CommandAutoTuner:
|
|
|
1019
1098
|
<description>运行指定的Shell脚本。主要用于编译、运行、测试等任务。</description>
|
|
1020
1099
|
<usage>
|
|
1021
1100
|
该命令接受一个参数 command,为要执行的Shell脚本字符串。
|
|
1022
|
-
|
|
1023
|
-
|
|
1101
|
+
|
|
1102
|
+
|
|
1024
1103
|
使用例子:
|
|
1025
|
-
|
|
1104
|
+
|
|
1026
1105
|
execute_shell_command(command="ls -l")
|
|
1027
|
-
|
|
1106
|
+
|
|
1028
1107
|
注意:
|
|
1029
1108
|
- 脚本将在项目根目录下执行
|
|
1030
1109
|
- 禁止执行包含 rm 命令的脚本
|
|
@@ -1051,14 +1130,14 @@ class CommandAutoTuner:
|
|
|
1051
1130
|
<description>返回当前项目结构</description>
|
|
1052
1131
|
<usage>
|
|
1053
1132
|
该命令不需要参数。返回一个目录树结构(类似 tree 命令的输出)
|
|
1054
|
-
|
|
1133
|
+
|
|
1055
1134
|
使用例子:
|
|
1056
|
-
|
|
1135
|
+
|
|
1057
1136
|
get_project_structure()
|
|
1058
|
-
|
|
1137
|
+
|
|
1059
1138
|
该函数特别适合你通过目录结构来了解这个项目是什么类型的项目,有什么文件,如果你对一些文件
|
|
1060
1139
|
感兴趣,可以配合 read_files 函数来读取文件内容,从而帮你做更好的决策
|
|
1061
|
-
|
|
1140
|
+
|
|
1062
1141
|
</usage>
|
|
1063
1142
|
</command>
|
|
1064
1143
|
|
|
@@ -1068,19 +1147,19 @@ class CommandAutoTuner:
|
|
|
1068
1147
|
<usage>
|
|
1069
1148
|
该命令接受一个参数 file_paths,路径list,或者是以逗号分割的多个文件路径。
|
|
1070
1149
|
路径支持相对路径和绝对路径。
|
|
1071
|
-
|
|
1150
|
+
|
|
1072
1151
|
使用例子:
|
|
1073
|
-
|
|
1152
|
+
|
|
1074
1153
|
get_project_map(file_paths=["full/path/to/main.py","partial/path/to/utils.py"]),
|
|
1075
|
-
|
|
1154
|
+
|
|
1076
1155
|
或者:
|
|
1077
|
-
|
|
1156
|
+
|
|
1078
1157
|
get_project_map(file_paths="full/path/to/main.py,partial/path/to/utils.py")
|
|
1079
1158
|
|
|
1080
1159
|
该函数特别适合你想要了解某个文件的用途,以及该文件的导入的包,定义的类,函数,变量等信息。
|
|
1081
1160
|
同时,你还能看到文件的大小(tokens数),以及索引的大小(tokens数),以及构建索引花费费用等信息。
|
|
1082
1161
|
如果你觉得该文件确实是你关注的,你可以通过 read_files 函数来读取文件完整内容,从而帮你做更好的决策。
|
|
1083
|
-
|
|
1162
|
+
|
|
1084
1163
|
注意:
|
|
1085
1164
|
- 返回值为JSON格式文本
|
|
1086
1165
|
- 只能返回已被索引的文件
|
|
@@ -1125,9 +1204,9 @@ class CommandAutoTuner:
|
|
|
1125
1204
|
|
|
1126
1205
|
你可以使用 get_project_structure 函数获取项目结构后,然后再通过 get_project_map 函数获取某个文件的用途,符号列表,以及
|
|
1127
1206
|
文件大小(tokens数),最后再通过 read_files 函数来读取文件内容,从而帮你做更好的决策。如果需要读取的文件过大,
|
|
1128
|
-
|
|
1207
|
+
|
|
1129
1208
|
特别注意:使用 read_files 时,一次性读取文件数量不要超过1个,每次只读取200行。如果发现读取的内容不够,则继续读取下面200行。
|
|
1130
|
-
|
|
1209
|
+
|
|
1131
1210
|
</usage>
|
|
1132
1211
|
</command>
|
|
1133
1212
|
|
|
@@ -1136,11 +1215,11 @@ class CommandAutoTuner:
|
|
|
1136
1215
|
<description>根据文件名中的关键字搜索文件。</description>
|
|
1137
1216
|
<usage>
|
|
1138
1217
|
该命令接受一个参数 keyword,为要搜索的关键字字符串。
|
|
1139
|
-
|
|
1218
|
+
|
|
1140
1219
|
使用例子:
|
|
1141
|
-
|
|
1220
|
+
|
|
1142
1221
|
find_files_by_name(keyword="test")
|
|
1143
|
-
|
|
1222
|
+
|
|
1144
1223
|
注意:
|
|
1145
1224
|
- 搜索不区分大小写
|
|
1146
1225
|
- 返回所有匹配的文件路径,逗号分隔
|
|
@@ -1152,11 +1231,11 @@ class CommandAutoTuner:
|
|
|
1152
1231
|
<description>根据文件内容中的关键字搜索文件。</description>
|
|
1153
1232
|
<usage>
|
|
1154
1233
|
该命令接受一个参数 keyword,为要搜索的关键字字符串。
|
|
1155
|
-
|
|
1234
|
+
|
|
1156
1235
|
使用例子:
|
|
1157
|
-
|
|
1236
|
+
|
|
1158
1237
|
find_files_by_content(keyword="TODO")
|
|
1159
|
-
|
|
1238
|
+
|
|
1160
1239
|
注意:
|
|
1161
1240
|
- 搜索不区分大小写
|
|
1162
1241
|
- 如果结果过多,只返回前10个匹配项
|
|
@@ -1181,7 +1260,7 @@ class CommandAutoTuner:
|
|
|
1181
1260
|
```
|
|
1182
1261
|
##File: /path/to/file.py
|
|
1183
1262
|
##Line: 10-20
|
|
1184
|
-
|
|
1263
|
+
|
|
1185
1264
|
内容
|
|
1186
1265
|
```
|
|
1187
1266
|
|
|
@@ -1199,10 +1278,10 @@ class CommandAutoTuner:
|
|
|
1199
1278
|
<description>配置管理命令,用于管理和控制配置。</description>
|
|
1200
1279
|
<usage>
|
|
1201
1280
|
该命令导出当前软件的配置,并保存到指定路径。
|
|
1202
|
-
|
|
1281
|
+
|
|
1203
1282
|
使用例子:
|
|
1204
1283
|
conf_export(path="导出路径,通常是.json文件")
|
|
1205
|
-
|
|
1284
|
+
|
|
1206
1285
|
</usage>
|
|
1207
1286
|
</command>
|
|
1208
1287
|
|
|
@@ -1211,10 +1290,10 @@ class CommandAutoTuner:
|
|
|
1211
1290
|
<description>配置管理命令,用于管理和控制配置。</description>
|
|
1212
1291
|
<usage>
|
|
1213
1292
|
该命令导入指定路径的配置文件到当前软件。
|
|
1214
|
-
|
|
1293
|
+
|
|
1215
1294
|
使用例子:
|
|
1216
1295
|
conf_import(path="导入路径,通常是.json文件")
|
|
1217
|
-
|
|
1296
|
+
|
|
1218
1297
|
</usage>
|
|
1219
1298
|
</command>
|
|
1220
1299
|
|
|
@@ -1223,10 +1302,10 @@ class CommandAutoTuner:
|
|
|
1223
1302
|
<description>索引管理命令,用于管理和控制索引。</description>
|
|
1224
1303
|
<usage>
|
|
1225
1304
|
该命令导出当前软件的索引,并保存到指定路径。
|
|
1226
|
-
|
|
1305
|
+
|
|
1227
1306
|
使用例子:
|
|
1228
1307
|
index_export(path="导出路径,通常是.json文件")
|
|
1229
|
-
|
|
1308
|
+
|
|
1230
1309
|
</usage>
|
|
1231
1310
|
</command>
|
|
1232
1311
|
|
|
@@ -1235,10 +1314,10 @@ class CommandAutoTuner:
|
|
|
1235
1314
|
<description>索引管理命令,用于管理和控制索引。</description>
|
|
1236
1315
|
<usage>
|
|
1237
1316
|
该命令导入指定路径的索引文件到当前软件。
|
|
1238
|
-
|
|
1317
|
+
|
|
1239
1318
|
使用例子:
|
|
1240
1319
|
index_import(path="导入路径,通常最后是.json文件")
|
|
1241
|
-
|
|
1320
|
+
|
|
1242
1321
|
</usage>
|
|
1243
1322
|
</command>
|
|
1244
1323
|
|
|
@@ -1247,11 +1326,11 @@ class CommandAutoTuner:
|
|
|
1247
1326
|
<description>排除指定文件。</description>
|
|
1248
1327
|
<usage>
|
|
1249
1328
|
该命令接受一个参数 query, 为要排除的文件模式字符串,多个文件模式用逗号分隔。
|
|
1250
|
-
|
|
1329
|
+
|
|
1251
1330
|
使用例子,比如你想要排除 package-lock.json 文件,你可以这样调用:
|
|
1252
|
-
|
|
1331
|
+
|
|
1253
1332
|
exclude_files(query="regex://.*/package-lock\.json")
|
|
1254
|
-
|
|
1333
|
+
|
|
1255
1334
|
注意:
|
|
1256
1335
|
- 文件模式字符串必须以 regex:// 开头
|
|
1257
1336
|
- regex:// 后面部分是标准的正则表达式
|
|
@@ -1284,7 +1363,7 @@ class CommandAutoTuner:
|
|
|
1284
1363
|
<description>响应用户。</description>
|
|
1285
1364
|
<usage>
|
|
1286
1365
|
如果你需要直接发送信息给用户,那么可以通过 response_user 函数来直接回复用户。
|
|
1287
|
-
|
|
1366
|
+
|
|
1288
1367
|
比如用户问你是谁?
|
|
1289
1368
|
你可以通过如下方式来回答:
|
|
1290
1369
|
response_user(response="你好,我是 auto-coder")
|
|
@@ -1299,10 +1378,10 @@ class CommandAutoTuner:
|
|
|
1299
1378
|
|
|
1300
1379
|
使用例子:
|
|
1301
1380
|
count_file_tokens(file_path="full")
|
|
1302
|
-
|
|
1381
|
+
|
|
1303
1382
|
注意:
|
|
1304
1383
|
- 返回值为int类型,表示文件的token数量。
|
|
1305
|
-
|
|
1384
|
+
|
|
1306
1385
|
</usage>
|
|
1307
1386
|
</command>
|
|
1308
1387
|
|
|
@@ -1314,10 +1393,10 @@ class CommandAutoTuner:
|
|
|
1314
1393
|
|
|
1315
1394
|
使用例子:
|
|
1316
1395
|
count_string_tokens(text="你好,世界")
|
|
1317
|
-
|
|
1396
|
+
|
|
1318
1397
|
注意:
|
|
1319
1398
|
- 返回值为int类型,表示文本的token数量。
|
|
1320
|
-
|
|
1399
|
+
|
|
1321
1400
|
</usage>
|
|
1322
1401
|
</command>
|
|
1323
1402
|
|
|
@@ -1330,15 +1409,15 @@ class CommandAutoTuner:
|
|
|
1330
1409
|
使用例子:
|
|
1331
1410
|
find_symbol_definition(symbol="MyClass")
|
|
1332
1411
|
find_symbol_definition(symbol="process_data")
|
|
1333
|
-
|
|
1412
|
+
|
|
1334
1413
|
注意:
|
|
1335
1414
|
- 返回值为字符串,包含符号定义所在的文件路径列表,以逗号分隔
|
|
1336
1415
|
- 支持精确匹配和模糊匹配(不区分大小写)
|
|
1337
1416
|
- 如果未找到匹配项,会返回提示信息
|
|
1338
|
-
|
|
1417
|
+
|
|
1339
1418
|
</usage>
|
|
1340
1419
|
</command>
|
|
1341
|
-
|
|
1420
|
+
|
|
1342
1421
|
<command>
|
|
1343
1422
|
<n>execute_mcp_server</n>
|
|
1344
1423
|
<description>执行MCP服务器</description>
|
|
@@ -1351,13 +1430,13 @@ class CommandAutoTuner:
|
|
|
1351
1430
|
<mcp_server_info>
|
|
1352
1431
|
{{ mcp_server_info }}
|
|
1353
1432
|
</mcp_server_info>
|
|
1354
|
-
|
|
1433
|
+
|
|
1355
1434
|
</usage>
|
|
1356
1435
|
</command>
|
|
1357
1436
|
'''
|
|
1358
1437
|
return {
|
|
1359
1438
|
"config_readme": config_readme.prompt(),
|
|
1360
|
-
"mcp_server_info": self.mcp_server_info
|
|
1439
|
+
"mcp_server_info": self.mcp_server_info
|
|
1361
1440
|
}
|
|
1362
1441
|
|
|
1363
1442
|
def execute_auto_command(self, command: str, parameters: Dict[str, Any]) -> None:
|
|
@@ -1367,7 +1446,7 @@ class CommandAutoTuner:
|
|
|
1367
1446
|
command_map = {
|
|
1368
1447
|
"add_files": self.command_config.add_files,
|
|
1369
1448
|
"remove_files": self.command_config.remove_files,
|
|
1370
|
-
"list_files": self.command_config.list_files,
|
|
1449
|
+
"list_files": self.command_config.list_files,
|
|
1371
1450
|
"revert": self.command_config.revert,
|
|
1372
1451
|
"commit": self.command_config.commit,
|
|
1373
1452
|
"help": self.command_config.help,
|
|
@@ -1387,16 +1466,16 @@ class CommandAutoTuner:
|
|
|
1387
1466
|
"index_import": self.command_config.index_import,
|
|
1388
1467
|
"exclude_files": self.command_config.exclude_files,
|
|
1389
1468
|
|
|
1390
|
-
"run_python": self.tools.run_python_code,
|
|
1469
|
+
"run_python": self.tools.run_python_code,
|
|
1391
1470
|
"get_related_files_by_symbols": self.tools.get_related_files_by_symbols,
|
|
1392
1471
|
"get_project_map": self.tools.get_project_map,
|
|
1393
1472
|
"get_project_structure": self.tools.get_project_structure,
|
|
1394
1473
|
"list_files": self.tools.list_files,
|
|
1395
1474
|
"read_files": self.tools.read_files,
|
|
1396
1475
|
"find_files_by_name": self.tools.find_files_by_name,
|
|
1397
|
-
"find_files_by_content": self.tools.find_files_by_content,
|
|
1476
|
+
"find_files_by_content": self.tools.find_files_by_content,
|
|
1398
1477
|
"get_project_related_files": self.tools.get_project_related_files,
|
|
1399
|
-
"ask_user":self.tools.ask_user,
|
|
1478
|
+
"ask_user": self.tools.ask_user,
|
|
1400
1479
|
"read_file_with_keyword_ranges": self.tools.read_file_with_keyword_ranges,
|
|
1401
1480
|
"get_project_type": self.project_type_analyzer.analyze,
|
|
1402
1481
|
"response_user": self.tools.response_user,
|
|
@@ -1404,7 +1483,7 @@ class CommandAutoTuner:
|
|
|
1404
1483
|
"count_file_tokens": self.tools.count_file_tokens,
|
|
1405
1484
|
"count_string_tokens": self.tools.count_string_tokens,
|
|
1406
1485
|
"find_symbol_definition": self.tools.find_symbol_definition,
|
|
1407
|
-
|
|
1486
|
+
|
|
1408
1487
|
}
|
|
1409
1488
|
|
|
1410
1489
|
if command not in command_map:
|
|
@@ -1417,7 +1496,7 @@ class CommandAutoTuner:
|
|
|
1417
1496
|
if parameters:
|
|
1418
1497
|
command_map[command](**parameters)
|
|
1419
1498
|
else:
|
|
1420
|
-
command_map[command]()
|
|
1499
|
+
command_map[command]()
|
|
1421
1500
|
|
|
1422
1501
|
except Exception as e:
|
|
1423
1502
|
error_msg = str(e)
|