auto-coder 0.1.267__py3-none-any.whl → 0.1.269__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of auto-coder might be problematic. Click here for more details.

@@ -21,6 +21,8 @@ from loguru import logger
21
21
  from autocoder.utils import llms as llms_utils
22
22
  from autocoder.rag.token_counter import count_tokens
23
23
  from autocoder.common.global_cancel import global_cancel
24
+ from autocoder.common.auto_configure import config_readme
25
+ from autocoder.utils.auto_project_type import ProjectTypeAnalyzer
24
26
 
25
27
  class CommandMessage(BaseModel):
26
28
  role: str
@@ -155,7 +157,8 @@ class CommandAutoTuner:
155
157
  self.printer = Printer()
156
158
  self.memory_config = memory_config
157
159
  self.command_config = command_config
158
- self.tools = AutoCommandTools(args=args, llm=self.llm)
160
+ self.tools = AutoCommandTools(args=args, llm=self.llm)
161
+ self.project_type_analyzer = ProjectTypeAnalyzer(args=args, llm=self.llm)
159
162
 
160
163
  def get_conversations(self) -> List[CommandMessage]:
161
164
  """Get conversation history from memory file"""
@@ -213,7 +216,11 @@ class CommandAutoTuner:
213
216
  通过 get_project_structure 来获取项目结构,然后通过 get_project_map 来获取你想看的某个文件的用途,符号列表,最后再通过 read_files/read_file_with_keyword_ranges 函数来读取文件内容,确认对应的功能是否在相关的文件里。
214
217
  5. 调用 coding 函数的时候,尽可能多的 @文件和@@符号,让需求更加清晰明了,建议多描述具体怎么完成对应的需求。
215
218
  6. 对于代码需求设计,尽可能使用 chat 函数。
216
- 7. 如果成功执行了 coding 函数,最好再调用一次 chat("/review /commit")
219
+ 7. 如果成功执行了 coding 函数,最好再调用一次 chat("/review /commit")
220
+ 8. 我们所有的对话不能超过 {{ conversation_safe_zone_tokens }} 个tokens,当你读取索引文件 (get_project_map) 的时候,你可以看到
221
+ 每个文件的tokens数,你可以根据这个信息来决定如何读取这个文件。比如对于很小的文件,那么可以直接全部读取,
222
+ 而对于分析一个超大文件推荐组合 read_files 带上 line_ranges 参数来读取,或者组合 read_file_withread_file_with_keyword_ranges 等来读取,
223
+ 每个函数你还可以使用多次来获取更多信息。
217
224
  </function_combination_readme>
218
225
 
219
226
 
@@ -262,7 +269,8 @@ class CommandAutoTuner:
262
269
  "current_conf": json.dumps(self.memory_config.memory["conf"], indent=2),
263
270
  "env_info": env_info,
264
271
  "shell_type": shells.get_terminal_name(),
265
- "shell_encoding": shells.get_terminal_encoding()
272
+ "shell_encoding": shells.get_terminal_encoding(),
273
+ "conversation_safe_zone_tokens": self.args.conversation_prune_safe_zone_tokens
266
274
  }
267
275
 
268
276
  @byzerllm.prompt()
@@ -274,7 +282,7 @@ class CommandAutoTuner:
274
282
 
275
283
  <function_result>
276
284
  {{ result }}
277
- </function_result>
285
+ </function_result>
278
286
 
279
287
  请根据命令执行结果以及前面的对话,返回下一个函数。
280
288
 
@@ -283,7 +291,8 @@ class CommandAutoTuner:
283
291
  2. 你最多尝试 {{ auto_command_max_iterations }} 次,如果 {{ auto_command_max_iterations }} 次都没有满足要求,则不要返回任何函数,确保 suggestions 为空。
284
292
  '''
285
293
  return {
286
- "auto_command_max_iterations": self.args.auto_command_max_iterations
294
+ "auto_command_max_iterations": self.args.auto_command_max_iterations,
295
+ "conversation_safe_zone_tokens": self.args.conversation_prune_safe_zone_tokens
287
296
  }
288
297
 
289
298
  def analyze(self, request: AutoCommandRequest) -> AutoCommandResponse:
@@ -434,7 +443,7 @@ class CommandAutoTuner:
434
443
  safe_zone=self.args.conversation_prune_safe_zone_tokens
435
444
  )
436
445
  from autocoder.common.conversation_pruner import ConversationPruner
437
- pruner = ConversationPruner(self.llm)
446
+ pruner = ConversationPruner(self.args, self.llm)
438
447
  conversations = pruner.prune_conversations(conversations)
439
448
 
440
449
  title = printer.get_message_from_key("auto_command_analyzing")
@@ -640,34 +649,7 @@ class CommandAutoTuner:
640
649
 
641
650
  常见的一些配置选项示例:
642
651
 
643
- # 配置项说明
644
- ## auto_merge: 代码合并方式,可选值为editblock、diff、wholefile.
645
- - editblock: 生成 SEARCH/REPLACE 块,然后根据 SEARCH块到对应的源码查找,如果相似度阈值大于 editblock_similarity, 那么则将
646
- 找到的代码块替换为 REPLACE 块。大部分情况都推荐使用 editblock。
647
- - wholefile: 重新生成整个文件,然后替换原来的文件。对于重构场景,推荐使用 wholefile。
648
- - diff: 生成标准 git diff 格式,适用于简单的代码修改。
649
-
650
- ## editblock_similarity: editblock相似度阈值
651
- - editblock相似度阈值,取值范围为0-1,默认值为0.9。如果设置的太低,虽然能合并进去,但是会引入错误。推荐不要修改该值。
652
-
653
- ## generate_times_same_model: 相同模型生成次数,也叫采样数
654
- 当进行生成代码时,大模型会对同一个需求生成多份代码,然后会使用 generate_rerank_model 模型对多份代码进行重排序,
655
- 然后选择得分最高的代码。一般次数越多,最终得到正确的代码概率越高。默认值为1,推荐设置为3。但是设置值越多,可能速度就越慢,消耗的token也越多。
656
- 当用户提到,帮我采样数设置为3, 那么你就设置该参数即可。
657
-
658
- ## skip_filter_index: 是否跳过索引过滤
659
- 是否跳过根据用户的query 自动查找上下文。推荐设置为 false
660
-
661
- ## skip_build_index: 是否跳过索引构建
662
- 是否自动构建索引。推荐设置为 false。注意,如果该值设置为 true, 那么 skip_filter_index 设置不会生效。
663
-
664
- ## enable_global_memory: 是否开启全局记忆
665
- 是否开启全局记忆。
666
-
667
- ## rank_times_same_model: 相同模型重排序次数
668
- 默认值为1. 如果 generate_times_same_model 参数设置大于1,那么 coding 函数会自动对多份代码进行重排序。
669
- rank_times_same_model 表示重拍的次数,次数越多,选择到最好的代码的可能性越高,但是也会显著增加消耗的token和时间。
670
- 建议保持默认,要修改也建议不要超过3。
652
+ {{ config_readme }}
671
653
 
672
654
  比如你想开启索引,则可以执行:
673
655
 
@@ -985,23 +967,7 @@ class CommandAutoTuner:
985
967
  感兴趣,可以配合 read_files 函数来读取文件内容,从而帮你做更好的决策
986
968
 
987
969
  </usage>
988
- </command>
989
-
990
- <command>
991
- <name>get_related_files</name>
992
- <description>根据类名、函数名或文件用途描述,返回项目中相关的文件。</description>
993
- <usage>
994
- 该命令接受一个参数 query,为要查询的符号或描述字符串。
995
-
996
- 使用例子:
997
-
998
- get_related_files(query="用户登录功能")
999
-
1000
- 注意:
1001
- - 返回值为逗号分隔的文件路径列表
1002
- - 只能返回已被索引的文件
1003
- </usage>
1004
- </command>
970
+ </command>
1005
971
 
1006
972
  <command>
1007
973
  <name>get_project_map</name>
@@ -1200,10 +1166,26 @@ class CommandAutoTuner:
1200
1166
  exclude_files(query="/drop regex://.*/package-lock\.json")
1201
1167
  </usage>
1202
1168
  </command>
1169
+
1170
+ <command>
1171
+ <name>get_project_type</name>
1172
+ <description>获取项目类型。</description>
1173
+ <usage>
1174
+ 该命令获取项目类型。
1175
+
1176
+ 使用例子:
1177
+ get_project_type()
1178
+
1179
+ 此时会返回诸如 "ts,py,java,go,js,ts" 这样的字符串,表示项目类型。
1180
+ </usage>
1181
+ </command>
1203
1182
  </commands>
1204
1183
 
1205
1184
 
1206
1185
  '''
1186
+ return {
1187
+ "config_readme": config_readme.prompt()
1188
+ }
1207
1189
 
1208
1190
  def execute_auto_command(self, command: str, parameters: Dict[str, Any]) -> None:
1209
1191
  """
@@ -1242,9 +1224,7 @@ class CommandAutoTuner:
1242
1224
  "get_project_related_files": self.tools.get_project_related_files,
1243
1225
  "ask_user":self.tools.ask_user,
1244
1226
  "read_file_with_keyword_ranges": self.tools.read_file_with_keyword_ranges,
1245
-
1246
-
1247
-
1227
+ "get_project_type": self.project_type_analyzer.analyze,
1248
1228
  }
1249
1229
 
1250
1230
  if command not in command_map:
@@ -376,12 +376,16 @@ class AutoCoderArgs(pydantic.BaseModel):
376
376
  conversation_prune_group_size: Optional[int] = 4
377
377
  conversation_prune_strategy: Optional[str] = "summarize"
378
378
 
379
- context_prune_strategy: Optional[str] = "score"
379
+ context_prune_strategy: Optional[str] = "extract"
380
380
  context_prune: Optional[bool] = True
381
+ context_prune_sliding_window_size: Optional[int] = 1000
382
+ context_prune_sliding_window_overlap: Optional[int] = 100
381
383
 
382
384
  auto_command_max_iterations: Optional[int] = 10
383
385
 
384
- skip_commit: Optional[bool] = False
386
+ skip_commit: Optional[bool] = False
387
+
388
+ enable_beta: Optional[bool] = False
385
389
 
386
390
  class Config:
387
391
  protected_namespaces = ()
@@ -3,6 +3,7 @@ from byzerllm.utils import format_str_jinja2
3
3
 
4
4
  MESSAGES = {
5
5
  "en": {
6
+ "file_scored_message": "File scored: {{file_path}} - Score: {{score}}",
6
7
  "invalid_file_pattern": "Invalid file pattern: {{file_pattern}}. e.g. regex://.*/package-lock\\.json",
7
8
  "config_validation_error": "Config validation error: {{error}}",
8
9
  "invalid_boolean_value": "Value '{{value}}' is not a valid boolean(true/false)",
@@ -159,9 +160,15 @@ MESSAGES = {
159
160
  "index_export_success": "Index exported successfully: {{path}}",
160
161
  "index_import_success": "Index imported successfully: {{path}}",
161
162
  "edits_title": "edits",
162
- "diff_blocks_title":"diff blocks"
163
+ "diff_blocks_title":"diff blocks",
164
+ "index_exclude_files_error": "index filter exclude files fail: {{ error }}",
165
+ "file_sliding_window_processing": "File {{ file_path }} is too large ({{ tokens }} tokens), processing with sliding window...",
166
+ "file_snippet_processing": "Processing file {{ file_path }} with code snippet extraction..."
163
167
  },
164
168
  "zh": {
169
+ "file_sliding_window_processing": "文件 {{ file_path }} 过大 ({{ tokens }} tokens),正在使用滑动窗口处理...",
170
+ "file_snippet_processing": "正在对文件 {{ file_path }} 进行代码片段提取...",
171
+ "file_scored_message": "文件评分: {{file_path}} - 分数: {{score}}",
165
172
  "invalid_file_pattern": "无效的文件模式: {{file_pattern}}. 例如: regex://.*/package-lock\\.json",
166
173
  "conf_not_found": "未找到配置文件: {{path}}",
167
174
  "conf_import_success": "成功导入配置: {{path}}",
@@ -317,6 +324,7 @@ MESSAGES = {
317
324
  "index_import_success": "索引导入成功: {{path}}",
318
325
  "edits_title": "编辑块",
319
326
  "diff_blocks_title": "差异块",
327
+ "index_exclude_files_error": "索引排除文件时出错: {{error}}"
320
328
  }}
321
329
 
322
330
 
@@ -119,7 +119,45 @@ class AutoConfigRequest(BaseModel):
119
119
 
120
120
  class AutoConfigResponse(BaseModel):
121
121
  configs: List[Dict[str, Any]] = Field(default_factory=list)
122
- reasoning: str = ""
122
+ reasoning: str = ""
123
+
124
+
125
+ @byzerllm.prompt()
126
+ def config_readme() -> str:
127
+ """
128
+ # 配置项说明
129
+ ## auto_merge: 代码合并方式,可选值为editblock、diff、wholefile.
130
+ - editblock: 生成 SEARCH/REPLACE 块,然后根据 SEARCH块到对应的源码查找,如果相似度阈值大于 editblock_similarity, 那么则将
131
+ 找到的代码块替换为 REPLACE 块。大部分情况都推荐使用 editblock。
132
+ - wholefile: 重新生成整个文件,然后替换原来的文件。对于重构场景,推荐使用 wholefile。
133
+ - diff: 生成标准 git diff 格式,适用于简单的代码修改。
134
+
135
+ ## editblock_similarity: editblock相似度阈值
136
+ - editblock相似度阈值,取值范围为0-1,默认值为0.9。如果设置的太低,虽然能合并进去,但是会引入错误。推荐不要修改该值。
137
+
138
+ ## generate_times_same_model: 相同模型生成次数
139
+ 当进行生成代码时,大模型会对同一个需求生成多份代码,然后会使用 generate_rerank_model 模型对多份代码进行重排序,
140
+ 然后选择得分最高的代码。一般次数越多,最终得到正确的代码概率越高。默认值为1,推荐设置为3。但是设置值越多,可能速度就越慢,消耗的token也越多。
141
+
142
+ ## skip_filter_index: 是否跳过索引过滤
143
+ 是否跳过根据用户的query 自动查找上下文。推荐设置为 false
144
+
145
+ ## skip_build_index: 是否跳过索引构建
146
+ 是否自动构建索引。推荐设置为 false。注意,如果该值设置为 true, 那么 skip_filter_index 设置不会生效。
147
+
148
+ ## rank_times_same_model: 相同模型重排序次数
149
+ 默认值为1. 如果 generate_times_same_model 参数设置大于1,那么 coding 函数会自动对多份代码进行重排序。
150
+ rank_times_same_model 表示重拍的次数,次数越多,选择到最好的代码的可能性越高,但是也会显著增加消耗的token和时间。
151
+ 建议保持默认,要修改也建议不要超过3。
152
+
153
+ ## project_type: 项目类型
154
+ 项目类型通常为如下三种选择:
155
+ 1. ts
156
+ 2. py
157
+ 3. 代码文件后缀名列表(比如.java,.py,.go,.js,.ts),多个按逗号分割
158
+
159
+ 推荐使用 3 选项,因为项目类型通常为多种后缀名混合。
160
+ """
123
161
 
124
162
  class ConfigAutoTuner:
125
163
  def __init__(self,args: AutoCoderArgs, llm: Union[byzerllm.ByzerLLM, byzerllm.SimpleByzerLLM], memory_config: MemoryConfig):
@@ -135,34 +173,7 @@ class ConfigAutoTuner:
135
173
  self.memory_config.configure(conf, skip_print)
136
174
 
137
175
 
138
- @byzerllm.prompt()
139
- def config_readme(self) -> str:
140
- """
141
- # 配置项说明
142
- ## auto_merge: 代码合并方式,可选值为editblock、diff、wholefile.
143
- - editblock: 生成 SEARCH/REPLACE 块,然后根据 SEARCH块到对应的源码查找,如果相似度阈值大于 editblock_similarity, 那么则将
144
- 找到的代码块替换为 REPLACE 块。大部分情况都推荐使用 editblock。
145
- - wholefile: 重新生成整个文件,然后替换原来的文件。对于重构场景,推荐使用 wholefile。
146
- - diff: 生成标准 git diff 格式,适用于简单的代码修改。
147
-
148
- ## editblock_similarity: editblock相似度阈值
149
- - editblock相似度阈值,取值范围为0-1,默认值为0.9。如果设置的太低,虽然能合并进去,但是会引入错误。推荐不要修改该值。
150
-
151
- ## generate_times_same_model: 相同模型生成次数
152
- 当进行生成代码时,大模型会对同一个需求生成多份代码,然后会使用 generate_rerank_model 模型对多份代码进行重排序,
153
- 然后选择得分最高的代码。一般次数越多,最终得到正确的代码概率越高。默认值为1,推荐设置为3。但是设置值越多,可能速度就越慢,消耗的token也越多。
154
-
155
- ## skip_filter_index: 是否跳过索引过滤
156
- 是否跳过根据用户的query 自动查找上下文。推荐设置为 false
157
-
158
- ## skip_build_index: 是否跳过索引构建
159
- 是否自动构建索引。推荐设置为 false。注意,如果该值设置为 true, 那么 skip_filter_index 设置不会生效。
160
-
161
- ## rank_times_same_model: 相同模型重排序次数
162
- 默认值为1. 如果 generate_times_same_model 参数设置大于1,那么 coding 函数会自动对多份代码进行重排序。
163
- rank_times_same_model 表示重拍的次数,次数越多,选择到最好的代码的可能性越高,但是也会显著增加消耗的token和时间。
164
- 建议保持默认,要修改也建议不要超过3。
165
- """
176
+
166
177
 
167
178
  def command_readme(self) -> str:
168
179
  """
@@ -212,7 +223,7 @@ class ConfigAutoTuner:
212
223
  "query": request.query,
213
224
  "current_conf": json.dumps(self.memory_config.memory["conf"], indent=2),
214
225
  "last_execution_stat": "",
215
- "config_readme": self.config_readme.prompt()
226
+ "config_readme": config_readme.prompt()
216
227
  }
217
228
 
218
229
  def tune(self, request: AutoConfigRequest) -> 'AutoConfigResponse':
@@ -174,9 +174,8 @@ def base_base(source_dir:str,project_type:str)->str:
174
174
  source_dir: {{ source_dir }}
175
175
  target_file: {{ target_file }}
176
176
 
177
- model: v3_chat
178
- model_max_input_length: 100000
179
- model_max_input_length: 120000
177
+ model: v3_chat
178
+ model_max_input_length: 60000
180
179
  enable_multi_round_generate: false
181
180
  index_filter_workers: 100
182
181
  index_build_workers: 100
@@ -1,4 +1,5 @@
1
1
  from typing import List, Dict, Any, Union
2
+ from typing import Tuple
2
3
  from pathlib import Path
3
4
  import json
4
5
  from loguru import logger
@@ -9,11 +10,109 @@ from autocoder.index.types import VerifyFileRelevance
9
10
  import byzerllm
10
11
  from concurrent.futures import ThreadPoolExecutor, as_completed
11
12
 
13
+ from autocoder.common.printer import Printer
14
+ from autocoder.common.auto_coder_lang import get_message_with_format
15
+
12
16
  class PruneContext:
13
17
  def __init__(self, max_tokens: int, args: AutoCoderArgs, llm: Union[byzerllm.ByzerLLM, byzerllm.SimpleByzerLLM]):
14
18
  self.max_tokens = max_tokens
15
19
  self.args = args
16
20
  self.llm = llm
21
+ self.printer = Printer()
22
+
23
+ def _split_content_with_sliding_window(self, content: str, window_size=100, overlap=20) -> List[Tuple[int, int, str]]:
24
+ """使用滑动窗口分割大文件内容,返回包含行号信息的文本块
25
+
26
+ Args:
27
+ content: 要分割的文件内容
28
+ window_size: 每个窗口包含的行数
29
+ overlap: 相邻窗口的重叠行数
30
+
31
+ Returns:
32
+ List[Tuple[int, int, str]]: 返回元组列表,每个元组包含:
33
+ - 起始行号(从1开始),在原始文件的绝对行号
34
+ - 结束行号,在原始文件的绝对行号
35
+ - 带行号的内容文本
36
+ """
37
+ # 按行分割内容
38
+ lines = content.splitlines()
39
+ chunks = []
40
+ start = 0
41
+
42
+ while start < len(lines):
43
+ # 计算当前窗口的结束位置
44
+ end = min(start + window_size, len(lines))
45
+
46
+ # 计算实际的起始位置(考虑重叠)
47
+ actual_start = max(0, start - overlap)
48
+
49
+ # 提取当前窗口的行
50
+ chunk_lines = lines[actual_start:end]
51
+
52
+ # 为每一行添加行号
53
+ # 行号从actual_start+1开始,保持与原文件的绝对行号一致
54
+ chunk_content = "\n".join([
55
+ f"{i+1} {line}" for i, line in enumerate(chunk_lines, start=actual_start)
56
+ ])
57
+
58
+ # 保存分块信息:(起始行号, 结束行号, 带行号的内容)
59
+ # 行号从1开始计数
60
+ chunks.append((actual_start + 1, end, chunk_content))
61
+
62
+ # 移动到下一个窗口的起始位置
63
+ # 减去overlap确保窗口重叠
64
+ start += (window_size - overlap)
65
+
66
+ return chunks
67
+
68
+ def _merge_overlapping_snippets(self, snippets: List[dict]) -> List[dict]:
69
+ """合并重叠或相邻的代码片段
70
+
71
+ Args:
72
+ snippets: 代码片段列表,每个片段是包含start_line和end_line的字典
73
+
74
+ Returns:
75
+ List[dict]: 合并后的代码片段列表
76
+
77
+ 示例:
78
+ 输入: [
79
+ {"start_line": 1, "end_line": 5},
80
+ {"start_line": 4, "end_line": 8},
81
+ {"start_line": 10, "end_line": 12}
82
+ ]
83
+ 输出: [
84
+ {"start_line": 1, "end_line": 8},
85
+ {"start_line": 10, "end_line": 12}
86
+ ]
87
+ """
88
+ if not snippets:
89
+ return []
90
+
91
+ # 按起始行排序
92
+ sorted_snippets = sorted(snippets, key=lambda x: x["start_line"])
93
+
94
+ merged = [sorted_snippets[0]]
95
+
96
+ for current in sorted_snippets[1:]:
97
+ last = merged[-1]
98
+
99
+ # 判断是否需要合并:
100
+ # 1. 如果当前片段的起始行小于等于上一个片段的结束行+1
101
+ # 2. +1是为了合并相邻的片段,比如1-5和6-8应该合并为1-8
102
+ if current["start_line"] <= last["end_line"] + 1:
103
+ # 合并区间:
104
+ # - 起始行取两者最小值
105
+ # - 结束行取两者最大值
106
+ merged[-1] = {
107
+ "start_line": min(last["start_line"], current["start_line"]),
108
+ "end_line": max(last["end_line"], current["end_line"])
109
+ }
110
+ else:
111
+ # 如果不重叠且不相邻,则作为新片段添加
112
+ merged.append(current)
113
+
114
+ return merged
115
+
17
116
 
18
117
  def _delete_overflow_files(self, file_paths: List[str]) -> List[SourceCode]:
19
118
  """直接删除超出 token 限制的文件"""
@@ -36,6 +135,8 @@ class PruneContext:
36
135
  selected_files.append(SourceCode(module_name=file_path,source_code=content,tokens=token_count))
37
136
 
38
137
  return selected_files
138
+
139
+
39
140
 
40
141
  def _extract_code_snippets(self, file_paths: List[str], conversations: List[Dict[str, str]]) -> List[SourceCode]:
41
142
  """抽取关键代码片段策略"""
@@ -44,7 +145,7 @@ class PruneContext:
44
145
  full_file_tokens = int(self.max_tokens * 0.8)
45
146
 
46
147
  @byzerllm.prompt()
47
- def extract_code_snippets(conversations: List[Dict[str, str]], content: str) -> str:
148
+ def extract_code_snippets(conversations: List[Dict[str, str]], content: str, is_partial_content: bool = False) -> str:
48
149
  """
49
150
  根据提供的代码文件和对话历史提取相关代码片段。
50
151
 
@@ -107,6 +208,13 @@ class PruneContext:
107
208
  {{ content }}
108
209
  </code_file>
109
210
 
211
+ <% if is_partial_content: %>
212
+ <partial_content_process_note>
213
+ 当前处理的是文件的局部内容(行号{start_line}-{end_line}),
214
+ 请仅基于当前可见内容判断相关性,返回标注的行号区间。
215
+ </partial_content_process_note>
216
+ <% endif %>
217
+
110
218
  2. 对话历史:
111
219
  <conversation_history>
112
220
  {% for msg in conversations %}
@@ -127,15 +235,17 @@ class PruneContext:
127
235
  4. 如果没有相关代码段,返回空数组[]。
128
236
 
129
237
  输出格式:
130
- 严格的JSON数组,不包含其他文字或解释。
131
-
238
+ 严格的JSON数组,不包含其他文字或解释。
239
+
132
240
  ```json
133
241
  [
134
242
  {"start_line": 第一个代码段的起始行号, "end_line": 第一个代码段的结束行号},
135
243
  {"start_line": 第二个代码段的起始行号, "end_line": 第二个代码段的结束行号}
136
244
  ]
137
- ```
245
+ ```
246
+
138
247
  """
248
+
139
249
 
140
250
  for file_path in file_paths:
141
251
  try:
@@ -148,21 +258,67 @@ class PruneContext:
148
258
  selected_files.append(SourceCode(module_name=file_path,source_code=content,tokens=tokens))
149
259
  token_count += tokens
150
260
  continue
151
-
261
+
262
+ ## 如果单个文件太大,那么先按滑动窗口分割,然后对窗口抽取代码片段
263
+ if tokens > self.max_tokens:
264
+ self.printer.print_in_terminal("file_sliding_window_processing", file_path=file_path, tokens=tokens)
265
+ chunks = self._split_content_with_sliding_window(content,
266
+ self.args.context_prune_sliding_window_size,
267
+ self.args.context_prune_sliding_window_overlap)
268
+ all_snippets = []
269
+ for chunk_start, chunk_end, chunk_content in chunks:
270
+ extracted = extract_code_snippets.with_llm(self.llm).run(
271
+ conversations=conversations,
272
+ content=chunk_content,
273
+ is_partial_content=True
274
+ )
275
+ if extracted:
276
+ json_str = extract_code(extracted)[0][1]
277
+ snippets = json.loads(json_str)
278
+
279
+ # 获取到的本来就是在原始文件里的绝对行号
280
+ # 后续在构建代码片段内容时,会为了适配数组操作修改行号,这里无需处理
281
+ adjusted_snippets = [{
282
+ "start_line": snippet["start_line"],
283
+ "end_line": snippet["end_line"]
284
+ } for snippet in snippets]
285
+ all_snippets.extend(adjusted_snippets)
286
+ merged_snippets = self._merge_overlapping_snippets(all_snippets)
287
+ content_snippets = self._build_snippet_content(file_path, content, merged_snippets)
288
+ snippet_tokens = count_tokens(content_snippets)
289
+ if token_count + snippet_tokens <= self.max_tokens:
290
+ selected_files.append(SourceCode(module_name=file_path,source_code=content_snippets,tokens=snippet_tokens))
291
+ token_count += snippet_tokens
292
+ continue
293
+ else:
294
+ break
295
+
152
296
  # 抽取关键片段
297
+ lines = content.splitlines()
298
+ new_content = ""
299
+
300
+ ## 将文件内容按行编号
301
+ for index,line in enumerate(lines):
302
+ new_content += f"{index+1} {line}\n"
303
+
304
+ ## 抽取代码片段
305
+ self.printer.print_in_terminal("file_snippet_processing", file_path=file_path)
153
306
  extracted = extract_code_snippets.with_llm(self.llm).run(
154
307
  conversations=conversations,
155
- content=content
308
+ content=new_content
156
309
  )
157
310
 
311
+ ## 构建代码片段内容
158
312
  if extracted:
159
313
  json_str = extract_code(extracted)[0][1]
160
314
  snippets = json.loads(json_str)
161
- new_content = self._build_snippet_content(file_path, content, snippets)
315
+ content_snippets = self._build_snippet_content(file_path, content, snippets)
162
316
 
163
- snippet_tokens = count_tokens(new_content)
317
+ snippet_tokens = count_tokens(content_snippets)
164
318
  if token_count + snippet_tokens <= self.max_tokens:
165
- selected_files.append(SourceCode(module_name=file_path,source_code=new_content,tokens=snippet_tokens))
319
+ selected_files.append(SourceCode(module_name=file_path,
320
+ source_code=content_snippets,
321
+ tokens=snippet_tokens))
166
322
  token_count += snippet_tokens
167
323
  else:
168
324
  break
@@ -171,10 +327,32 @@ class PruneContext:
171
327
  continue
172
328
 
173
329
  return selected_files
330
+
331
+
332
+ def _merge_overlapping_snippets(self, snippets: List[dict]) -> List[dict]:
333
+ if not snippets:
334
+ return []
335
+
336
+ # 按起始行排序
337
+ sorted_snippets = sorted(snippets, key=lambda x: x["start_line"])
338
+
339
+ merged = [sorted_snippets[0]]
340
+ for current in sorted_snippets[1:]:
341
+ last = merged[-1]
342
+ if current["start_line"] <= last["end_line"] + 1: # 允许1行间隔
343
+ # 合并区间
344
+ merged[-1] = {
345
+ "start_line": min(last["start_line"], current["start_line"]),
346
+ "end_line": max(last["end_line"], current["end_line"])
347
+ }
348
+ else:
349
+ merged.append(current)
350
+
351
+ return merged
174
352
 
175
353
  def _build_snippet_content(self, file_path: str, full_content: str, snippets: List[dict]) -> str:
176
354
  """构建包含代码片段的文件内容"""
177
- lines = full_content.split("\n")
355
+ lines = full_content.splitlines()
178
356
  header = f"Snippets:\n"
179
357
 
180
358
  content = []
@@ -201,7 +379,7 @@ class PruneContext:
201
379
  total_tokens,sources = self._count_tokens(file_paths)
202
380
  if total_tokens <= self.max_tokens:
203
381
  return sources
204
-
382
+ # print(f"total_tokens: {total_tokens} {self.max_tokens}, 进行策略: {strategy}")
205
383
  if strategy == "score":
206
384
  return self._score_and_filter_files(file_paths, conversations)
207
385
  if strategy == "delete":
@@ -210,7 +388,7 @@ class PruneContext:
210
388
  return self._extract_code_snippets(file_paths, conversations)
211
389
  else:
212
390
  raise ValueError(f"无效策略: {strategy}. 可选值: delete/extract/score")
213
-
391
+
214
392
  def _count_tokens(self, file_paths: List[str]) -> int:
215
393
  """计算文件总token数"""
216
394
  total_tokens = 0
@@ -281,9 +459,15 @@ class PruneContext:
281
459
  with ThreadPoolExecutor() as executor:
282
460
  futures = [executor.submit(_score_file, file_path) for file_path in file_paths]
283
461
  for future in as_completed(futures):
284
- result = future.result()
285
- print(f"score file {result['file_path']} {result['score']}")
462
+ result = future.result()
286
463
  if result:
464
+ self.printer.print_str_in_terminal(
465
+ get_message_with_format(
466
+ "file_scored_message",
467
+ file_path=result["file_path"],
468
+ score=result["score"]
469
+ )
470
+ )
287
471
  scored_files.append(result)
288
472
 
289
473
  # 第二步:按分数从高到低排序
@@ -302,4 +486,3 @@ class PruneContext:
302
486
  break
303
487
 
304
488
  return selected_files
305
-