auto-coder 0.1.254__py3-none-any.whl → 0.1.255__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of auto-coder might be problematic. Click here for more details.
- {auto_coder-0.1.254.dist-info → auto_coder-0.1.255.dist-info}/METADATA +1 -1
- {auto_coder-0.1.254.dist-info → auto_coder-0.1.255.dist-info}/RECORD +15 -13
- autocoder/auto_coder.py +7 -5
- autocoder/chat_auto_coder.py +54 -9
- autocoder/chat_auto_coder_lang.py +2 -2
- autocoder/common/auto_coder_lang.py +9 -0
- autocoder/common/command_completer.py +5 -1
- autocoder/common/model_speed_test.py +392 -0
- autocoder/data/byzerllm.md +1549 -0
- autocoder/models.py +1 -4
- autocoder/version.py +1 -1
- {auto_coder-0.1.254.dist-info → auto_coder-0.1.255.dist-info}/LICENSE +0 -0
- {auto_coder-0.1.254.dist-info → auto_coder-0.1.255.dist-info}/WHEEL +0 -0
- {auto_coder-0.1.254.dist-info → auto_coder-0.1.255.dist-info}/entry_points.txt +0 -0
- {auto_coder-0.1.254.dist-info → auto_coder-0.1.255.dist-info}/top_level.txt +0 -0
|
@@ -1,17 +1,17 @@
|
|
|
1
1
|
autocoder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
autocoder/auto_coder.py,sha256=
|
|
2
|
+
autocoder/auto_coder.py,sha256=uzNAtguu7O2m7vve1H2FQnWCmVuqT07RITxS5jgWz4U,64774
|
|
3
3
|
autocoder/auto_coder_lang.py,sha256=Rtupq6N3_HT7JRhDKdgCBcwRaiAnyCOR_Gsp4jUomrI,3229
|
|
4
4
|
autocoder/auto_coder_rag.py,sha256=DDAmqw36CO6phtdQuN8LYIbIR3YGdoZw5-pG0LjVxMc,29063
|
|
5
5
|
autocoder/auto_coder_rag_client_mcp.py,sha256=WV7j5JUiQge0x4-B7Hp5-pSAFXLbvLpzQMcCovbauIM,6276
|
|
6
6
|
autocoder/auto_coder_rag_mcp.py,sha256=-RrjNwFaS2e5v8XDIrKR-zlUNUE8UBaeOtojffBrvJo,8521
|
|
7
7
|
autocoder/auto_coder_server.py,sha256=XU9b4SBH7zjPPXaTWWHV4_zJm-XYa6njuLQaplYJH_c,20290
|
|
8
8
|
autocoder/benchmark.py,sha256=Ypomkdzd1T3GE6dRICY3Hj547dZ6_inqJbBJIp5QMco,4423
|
|
9
|
-
autocoder/chat_auto_coder.py,sha256=
|
|
10
|
-
autocoder/chat_auto_coder_lang.py,sha256=
|
|
9
|
+
autocoder/chat_auto_coder.py,sha256=a1YEp6OPMzpLbRpr2hrbzF6pRnhVPTVxyZfBiQHFPIw,109283
|
|
10
|
+
autocoder/chat_auto_coder_lang.py,sha256=1cJrjFGrcOQnuP2LdZpgGDSX4CNaIYI7KZGvEEtj6_Q,18242
|
|
11
11
|
autocoder/command_args.py,sha256=9aYJ-AmPxP1sQh6ciw04FWHjSn31f2W9afXFwo8wgx4,30441
|
|
12
12
|
autocoder/lang.py,sha256=U6AjVV8Rs1uLyjFCZ8sT6WWuNUxMBqkXXIOs4S120uk,14511
|
|
13
|
-
autocoder/models.py,sha256=
|
|
14
|
-
autocoder/version.py,sha256=
|
|
13
|
+
autocoder/models.py,sha256=0f653gjpQN_JO5k7h6wmTF4bVd6CW3fpQOyHIZ3ZUv4,7558
|
|
14
|
+
autocoder/version.py,sha256=vxd_TSbCxiXnBHQnfprB361BOJEhjQMPeDRseFI3YrY,23
|
|
15
15
|
autocoder/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
16
16
|
autocoder/agent/auto_demand_organizer.py,sha256=NWSAEsEk94vT3lGjfo25kKLMwYdPcpy9e-i21txPasQ,6942
|
|
17
17
|
autocoder/agent/auto_filegroup.py,sha256=CW7bqp0FW1GIEMnl-blyAc2UGT7O9Mom0q66ITz1ckM,6635
|
|
@@ -29,7 +29,7 @@ autocoder/common/__init__.py,sha256=6maackdzrYnUPvpgVPl92JdMOnw7X4n3EnEQA9OnLGE,
|
|
|
29
29
|
autocoder/common/anything2images.py,sha256=0ILBbWzY02M-CiWB-vzuomb_J1hVdxRcenAfIrAXq9M,25283
|
|
30
30
|
autocoder/common/anything2img.py,sha256=4TREa-sOA-iargieUy7MpyCYVUE-9Mmq0wJtwomPqnE,7662
|
|
31
31
|
autocoder/common/audio.py,sha256=Kn9nWKQddWnUrAz0a_ZUgjcu4VUU_IcZBigT7n3N3qc,7439
|
|
32
|
-
autocoder/common/auto_coder_lang.py,sha256=
|
|
32
|
+
autocoder/common/auto_coder_lang.py,sha256=nF8XrHpSbibk6ro8Oum-0V0FXcDS1lHP_hL-CnPJtT4,16974
|
|
33
33
|
autocoder/common/buildin_tokenizer.py,sha256=L7d5t39ZFvUd6EoMPXUhYK1toD0FHlRH1jtjKRGokWU,1236
|
|
34
34
|
autocoder/common/chunk_validation.py,sha256=BrR_ZWavW8IANuueEE7hS8NFAwEvm8TX34WnPx_1hs8,3030
|
|
35
35
|
autocoder/common/cleaner.py,sha256=NU72i8C6o9m0vXExab7nao5bstBUsfJFcj11cXa9l4U,1089
|
|
@@ -43,7 +43,7 @@ autocoder/common/code_auto_merge_diff.py,sha256=qpEuHJEgX6sWK7EDFEKqcYkyI28wOyM4
|
|
|
43
43
|
autocoder/common/code_auto_merge_editblock.py,sha256=sxgYMLMACRwJvw-bABkdDHezPelsDFrOCpGuhtT5Dzs,17504
|
|
44
44
|
autocoder/common/code_auto_merge_strict_diff.py,sha256=P0nKNkBrFMybTSZ7kOdA_JixoVmLCZIhAP5q7ILJ9j0,9538
|
|
45
45
|
autocoder/common/code_modification_ranker.py,sha256=qfadP9P-iiidCG2A_MjAf3Ca8cMz7YlnN08D_kH6uFc,6447
|
|
46
|
-
autocoder/common/command_completer.py,sha256=
|
|
46
|
+
autocoder/common/command_completer.py,sha256=IShrZJSpR-Q_MCj_aCVdVyscLYDKj5ZQK357QBcQ_oQ,9420
|
|
47
47
|
autocoder/common/command_generator.py,sha256=-hmbD_AnCa5HxL4BznuEfYAf_l8AxU5fAG5F0sM_fuE,2116
|
|
48
48
|
autocoder/common/command_templates.py,sha256=mnB3n8i0yjH1mqzyClEg8Wpr9VbZV44kxky66Zu6OJY,8557
|
|
49
49
|
autocoder/common/const.py,sha256=eTjhjh4Aj4CUzviJ81jaf3Y5cwqsLATySn2wJxaS6RQ,2911
|
|
@@ -57,6 +57,7 @@ autocoder/common/mcp_hub.py,sha256=2ZyJv3Aiv4Y97UHut49oYhIFcu7ICR-mptDEBSgT3uE,1
|
|
|
57
57
|
autocoder/common/mcp_server.py,sha256=1G6e0IbeS_h7CA1vr0dPAnf0o2H1f1A8I4bua8EUtKw,12318
|
|
58
58
|
autocoder/common/mcp_tools.py,sha256=KsLvRrB6pvmebqd-lDaSH6IBJR0AIxWRE-dtCEG_w9k,12485
|
|
59
59
|
autocoder/common/memory_manager.py,sha256=2ZjYG7BPyvbYalZBF6AM_G5e10Qkw_zrqtD4Zd7GSsQ,3663
|
|
60
|
+
autocoder/common/model_speed_test.py,sha256=U48xUUpOnbwUal1cdij4YAn_H2PD2pNaqrMHaYtQRfI,15200
|
|
60
61
|
autocoder/common/printer.py,sha256=P1WU0QjlfnjqTP5uA55GkHZCpFzRPFkc34DMMandreg,2023
|
|
61
62
|
autocoder/common/recall_validation.py,sha256=Avt9Q9dX3kG6Pf2zsdlOHmsjd-OeSj7U1PFBDp_Cve0,1700
|
|
62
63
|
autocoder/common/screenshots.py,sha256=_gA-z1HxGjPShBrtgkdideq58MG6rqFB2qMUJKjrycs,3769
|
|
@@ -69,6 +70,7 @@ autocoder/common/types.py,sha256=PXTETrsTvhLE49jqAeUKGySvxBN9pjeyCgRHLDYdd9U,664
|
|
|
69
70
|
autocoder/common/utils_code_auto_generate.py,sha256=kDW5B_2wRLk7hAls2hewliDacV86lrPz8Jan01BvtCw,3573
|
|
70
71
|
autocoder/common/mcp_servers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
71
72
|
autocoder/common/mcp_servers/mcp_server_perplexity.py,sha256=IXTyMpd1CQcBLzVinA-_OIOHoNmbzvuW6pXIadaKHJE,5533
|
|
73
|
+
autocoder/data/byzerllm.md,sha256=SGCMpEaUQ0ysPxQsgzyyp5sgvEr8dZsxEGAfVcPBIq0,47741
|
|
72
74
|
autocoder/data/tokenizer.json,sha256=7Lb5_DaYlDRvBRH0B0ynXO5c1fOwbQLxujX805-OEh0,7847602
|
|
73
75
|
autocoder/db/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
74
76
|
autocoder/db/store.py,sha256=tFT66bP2ZKIqZip-uhLkHRSLaaOAUUDZfozJwcqix3c,1908
|
|
@@ -144,9 +146,9 @@ autocoder/utils/types.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
|
144
146
|
autocoder/utils/auto_coder_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
145
147
|
autocoder/utils/auto_coder_utils/chat_stream_out.py,sha256=xWXqICANbDOovH4wcFW1eSI7lB7TjXbk1mSU4bTKEW4,11434
|
|
146
148
|
autocoder/utils/chat_auto_coder_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
147
|
-
auto_coder-0.1.
|
|
148
|
-
auto_coder-0.1.
|
|
149
|
-
auto_coder-0.1.
|
|
150
|
-
auto_coder-0.1.
|
|
151
|
-
auto_coder-0.1.
|
|
152
|
-
auto_coder-0.1.
|
|
149
|
+
auto_coder-0.1.255.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
150
|
+
auto_coder-0.1.255.dist-info/METADATA,sha256=2uB08jgGHyp3_DWMI2_vxoFoptVJO76Va-yek1umBac,2616
|
|
151
|
+
auto_coder-0.1.255.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
152
|
+
auto_coder-0.1.255.dist-info/entry_points.txt,sha256=0nzHtHH4pNcM7xq4EBA2toS28Qelrvcbrr59GqD_0Ak,350
|
|
153
|
+
auto_coder-0.1.255.dist-info/top_level.txt,sha256=Jqc0_uJSw2GwoFQAa9iJxYns-2mWla-9ok_Y3Gcznjk,10
|
|
154
|
+
auto_coder-0.1.255.dist-info/RECORD,,
|
autocoder/auto_coder.py
CHANGED
|
@@ -256,11 +256,13 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
256
256
|
libs_dir = os.path.join(auto_coder_dir, "storage", "libs")
|
|
257
257
|
code_search_path = None
|
|
258
258
|
if os.path.exists(libs_dir):
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
259
|
+
latest_retrieval_lib_dir = get_latest_byzer_retrieval_lib(libs_dir)
|
|
260
|
+
if latest_retrieval_lib_dir :
|
|
261
|
+
retrieval_libs_dir = os.path.join(
|
|
262
|
+
libs_dir, latest_retrieval_lib_dir
|
|
263
|
+
)
|
|
264
|
+
if os.path.exists(retrieval_libs_dir):
|
|
265
|
+
code_search_path = [retrieval_libs_dir]
|
|
264
266
|
|
|
265
267
|
try:
|
|
266
268
|
init_options = {}
|
autocoder/chat_auto_coder.py
CHANGED
|
@@ -2197,24 +2197,49 @@ def manage_models(params, query: str):
|
|
|
2197
2197
|
subcmd = "/remove"
|
|
2198
2198
|
query = query.replace("/remove", "", 1).strip()
|
|
2199
2199
|
|
|
2200
|
+
if "/speed-test" in query:
|
|
2201
|
+
subcmd = "/speed-test"
|
|
2202
|
+
query = query.replace("/speed-test", "", 1).strip()
|
|
2203
|
+
|
|
2204
|
+
if "/speed_test" in query:
|
|
2205
|
+
subcmd = "/speed-test"
|
|
2206
|
+
query = query.replace("/speed_test", "", 1).strip()
|
|
2207
|
+
|
|
2208
|
+
if "input_price" in query:
|
|
2209
|
+
subcmd = "/input_price"
|
|
2210
|
+
query = query.replace("/input_price", "", 1).strip()
|
|
2211
|
+
|
|
2212
|
+
if "output_price" in query:
|
|
2213
|
+
subcmd = "/output_price"
|
|
2214
|
+
query = query.replace("/output_price", "", 1).strip()
|
|
2215
|
+
|
|
2216
|
+
if "/speed" in query:
|
|
2217
|
+
subcmd = "/speed"
|
|
2218
|
+
query = query.replace("/speed", "", 1).strip()
|
|
2219
|
+
|
|
2220
|
+
|
|
2221
|
+
|
|
2200
2222
|
if not subcmd:
|
|
2201
|
-
printer.print_in_terminal("models_usage")
|
|
2202
|
-
return
|
|
2223
|
+
printer.print_in_terminal("models_usage")
|
|
2203
2224
|
|
|
2204
2225
|
if subcmd == "/list":
|
|
2205
2226
|
if models_data:
|
|
2227
|
+
# Sort models by speed (average_speed)
|
|
2228
|
+
sorted_models = sorted(models_data, key=lambda x: float(x.get('average_speed', 0)))
|
|
2229
|
+
sorted_models.reverse()
|
|
2230
|
+
|
|
2206
2231
|
table = Table(
|
|
2207
2232
|
title=printer.get_message_from_key("models_title"),
|
|
2208
2233
|
expand=True,
|
|
2209
2234
|
show_lines=True
|
|
2210
2235
|
)
|
|
2211
|
-
table.add_column("Name", style="cyan", width=
|
|
2212
|
-
table.add_column("Model Name", style="magenta", width=30, overflow="fold")
|
|
2213
|
-
table.add_column("Base URL", style="white", width=
|
|
2214
|
-
table.add_column("Input Price (M)", style="magenta", width=15)
|
|
2215
|
-
table.add_column("Output Price (M)", style="magenta", width=15)
|
|
2216
|
-
table.add_column("Speed (s/req)", style="blue", width=15)
|
|
2217
|
-
for m in
|
|
2236
|
+
table.add_column("Name", style="cyan", width=30, overflow="fold", no_wrap=False)
|
|
2237
|
+
table.add_column("Model Name", style="magenta", width=30, overflow="fold", no_wrap=False)
|
|
2238
|
+
table.add_column("Base URL", style="white", width=40, overflow="fold", no_wrap=False)
|
|
2239
|
+
table.add_column("Input Price (M)", style="magenta", width=15, overflow="fold", no_wrap=False)
|
|
2240
|
+
table.add_column("Output Price (M)", style="magenta", width=15, overflow="fold", no_wrap=False)
|
|
2241
|
+
table.add_column("Speed (s/req)", style="blue", width=15, overflow="fold", no_wrap=False)
|
|
2242
|
+
for m in sorted_models:
|
|
2218
2243
|
# Check if api_key_path exists and file exists
|
|
2219
2244
|
is_api_key_set = "api_key" in m
|
|
2220
2245
|
name = m.get("name", "")
|
|
@@ -2281,6 +2306,26 @@ def manage_models(params, query: str):
|
|
|
2281
2306
|
else:
|
|
2282
2307
|
printer.print_in_terminal("models_speed_usage", style="red")
|
|
2283
2308
|
|
|
2309
|
+
elif subcmd == "/speed-test":
|
|
2310
|
+
from autocoder.common.model_speed_test import render_speed_test_in_terminal
|
|
2311
|
+
test_rounds = 1 # 默认测试轮数
|
|
2312
|
+
|
|
2313
|
+
enable_long_context = False
|
|
2314
|
+
if "/long_context" in query:
|
|
2315
|
+
enable_long_context = True
|
|
2316
|
+
query = query.replace("/long_context", "", 1).strip()
|
|
2317
|
+
|
|
2318
|
+
if "/long-context" in query:
|
|
2319
|
+
enable_long_context = True
|
|
2320
|
+
query = query.replace("/long-context", "", 1).strip()
|
|
2321
|
+
|
|
2322
|
+
# 解析可选的测试轮数参数
|
|
2323
|
+
args = query.strip().split()
|
|
2324
|
+
if args and args[0].isdigit():
|
|
2325
|
+
test_rounds = int(args[0])
|
|
2326
|
+
|
|
2327
|
+
render_speed_test_in_terminal(params.product_mode, test_rounds,enable_long_context=enable_long_context)
|
|
2328
|
+
|
|
2284
2329
|
elif subcmd == "/add":
|
|
2285
2330
|
# Support both simplified and legacy formats
|
|
2286
2331
|
args = query.strip().split(" ")
|
|
@@ -85,7 +85,7 @@ MESSAGES = {
|
|
|
85
85
|
"design_desc": "Generate SVG image based on the provided description",
|
|
86
86
|
"commit_desc": "Auto generate yaml file and commit changes based on user's manual changes",
|
|
87
87
|
"models_desc": "Manage model configurations, only available in lite mode",
|
|
88
|
-
"models_usage": "Usage: /models /list
|
|
88
|
+
"models_usage": "Usage: /models <command>\nAvailable subcommands:\n /list - List all models\n /add <name> <api_key> - Add a built-in model\n /add_model - Add a custom model\n /remove <name> - Remove a model\n /input_price <name> <value> - Set model input price\n /output_price <name> <value> - Set model output price\n /speed <name> <value> - Set model speed\n /speed-test - Test models speed\n /speed-test-long - Test models speed with long context",
|
|
89
89
|
"models_added": "Added/Updated model '{{name}}' successfully.",
|
|
90
90
|
"models_add_failed": "Failed to add model '{{name}}'. Model not found in defaults.",
|
|
91
91
|
"models_add_usage": "Usage: /models /add <name> <api_key> or\n/models /add <name> <model_type> <model_name> <base_url> <api_key_path> [description]",
|
|
@@ -213,7 +213,7 @@ MESSAGES = {
|
|
|
213
213
|
"conf_value": "值",
|
|
214
214
|
"conf_title": "配置设置",
|
|
215
215
|
"conf_subtitle": "使用 /conf <key>:<value> 修改这些设置",
|
|
216
|
-
"models_usage": "用法: /models /list
|
|
216
|
+
"models_usage": "用法: /models <命令>\n可用的子命令:\n /list - 列出所有模型\n /add <名称> <API密钥> - 添加内置模型\n /add_model - 添加自定义模型\n /remove <名称> - 移除模型\n /input_price <名称> <价格> - 设置模型输入价格\n /output_price <名称> <价格> - 设置模型输出价格\n /speed <名称> <速度> - 设置模型速度\n /speed-test - 测试模型速度\n /speed-test-long - 使用长文本上下文测试模型速度",
|
|
217
217
|
"models_added": "成功添加/更新模型 '{{name}}'。",
|
|
218
218
|
"models_add_failed": "添加模型 '{{name}}' 失败。在默认模型中未找到该模型。",
|
|
219
219
|
"models_add_usage": "用法: /models /add <name> <api_key> 或\n/models /add <name> <model_type> <model_name> <base_url> <api_key_path> [description]",
|
|
@@ -3,6 +3,11 @@ from byzerllm.utils import format_str_jinja2
|
|
|
3
3
|
|
|
4
4
|
MESSAGES = {
|
|
5
5
|
"en": {
|
|
6
|
+
"models_no_active": "No active models found",
|
|
7
|
+
"models_speed_test_results": "Model Speed Test Results",
|
|
8
|
+
"models_testing": "Testing model: {{name}}...",
|
|
9
|
+
"models_testing_start": "Starting speed test for all active models...",
|
|
10
|
+
"models_testing_progress": "Testing progress: {{ completed }}/{{ total }} models",
|
|
6
11
|
"generation_cancelled": "[Interrupted] Generation cancelled",
|
|
7
12
|
"model_not_found": "Model {{model_name}} not found",
|
|
8
13
|
"generating_shell_script": "Generating Shell Script",
|
|
@@ -92,6 +97,10 @@ MESSAGES = {
|
|
|
92
97
|
"estimated_input_tokens_in_generate": "Estimated input tokens in generate ({{ generate_mode }}): {{ estimated_input_tokens }}",
|
|
93
98
|
},
|
|
94
99
|
"zh": {
|
|
100
|
+
"models_no_active": "未找到激活的模型",
|
|
101
|
+
"models_speed_test_results": "模型速度测试结果",
|
|
102
|
+
"models_testing": "正在测试模型: {{name}}...",
|
|
103
|
+
"models_testing_start": "开始对所有激活的模型进行速度测试...",
|
|
95
104
|
"generation_cancelled": "[已中断] 生成已取消",
|
|
96
105
|
"model_not_found": "未找到模型: {{model_name}}",
|
|
97
106
|
"generating_shell_script": "正在生成 Shell 脚本",
|
|
@@ -0,0 +1,392 @@
|
|
|
1
|
+
import time
|
|
2
|
+
import byzerllm
|
|
3
|
+
from typing import Dict, Any, List, Optional
|
|
4
|
+
from rich.console import Console
|
|
5
|
+
from rich.table import Table
|
|
6
|
+
from rich.panel import Panel
|
|
7
|
+
from autocoder.common.printer import Printer
|
|
8
|
+
from autocoder import models as models_module
|
|
9
|
+
from autocoder.utils.llms import get_single_llm
|
|
10
|
+
import byzerllm
|
|
11
|
+
import pkg_resources
|
|
12
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
13
|
+
from typing import Dict, List, Tuple
|
|
14
|
+
from pydantic import BaseModel
|
|
15
|
+
|
|
16
|
+
class ModelSpeedTestResult(BaseModel):
|
|
17
|
+
model_name: str
|
|
18
|
+
tokens_per_second: float
|
|
19
|
+
first_token_time: float
|
|
20
|
+
input_tokens_count: float
|
|
21
|
+
generated_tokens_count: float
|
|
22
|
+
input_tokens_cost: float
|
|
23
|
+
generated_tokens_cost: float
|
|
24
|
+
status: str
|
|
25
|
+
error: Optional[str] = None
|
|
26
|
+
|
|
27
|
+
class SpeedTestResults(BaseModel):
|
|
28
|
+
results: List[ModelSpeedTestResult]
|
|
29
|
+
|
|
30
|
+
byzerllm_content = ""
|
|
31
|
+
try:
|
|
32
|
+
byzerllm_conten_path = pkg_resources.resource_filename(
|
|
33
|
+
"autocoder", "data/byzerllm.md"
|
|
34
|
+
)
|
|
35
|
+
with open(byzerllm_conten_path, "r",encoding="utf-8") as f:
|
|
36
|
+
byzerllm_content = f.read()
|
|
37
|
+
except FileNotFoundError:
|
|
38
|
+
pass
|
|
39
|
+
|
|
40
|
+
@byzerllm.prompt()
|
|
41
|
+
def long_context_prompt() -> str:
|
|
42
|
+
'''
|
|
43
|
+
下面是我们提供的一份文档:
|
|
44
|
+
<document>
|
|
45
|
+
{{ content }}
|
|
46
|
+
</document>
|
|
47
|
+
|
|
48
|
+
请根据上述文档,实现用户的需求:
|
|
49
|
+
|
|
50
|
+
<query>
|
|
51
|
+
我想开发一个翻译程序,使用prompt 函数实现。
|
|
52
|
+
</query>
|
|
53
|
+
'''
|
|
54
|
+
return {
|
|
55
|
+
"content": byzerllm_content
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
@byzerllm.prompt()
|
|
59
|
+
def short_context_prompt() -> str:
|
|
60
|
+
'''
|
|
61
|
+
Hello, can you help me test the response speed?
|
|
62
|
+
'''
|
|
63
|
+
return {}
|
|
64
|
+
|
|
65
|
+
def test_model_speed(model_name: str,
|
|
66
|
+
product_mode: str,
|
|
67
|
+
test_rounds: int = 3,
|
|
68
|
+
enable_long_context: bool = False
|
|
69
|
+
) -> Dict[str, Any]:
|
|
70
|
+
from autocoder.models import get_model_by_name
|
|
71
|
+
"""
|
|
72
|
+
测试单个模型的速度
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
model_name: 模型名称
|
|
76
|
+
product_mode: 产品模式 (lite/pro)
|
|
77
|
+
test_rounds: 测试轮数
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
Dict包含测试结果:
|
|
81
|
+
- avg_time: 平均响应时间
|
|
82
|
+
- min_time: 最小响应时间
|
|
83
|
+
- max_time: 最大响应时间
|
|
84
|
+
- first_token_time: 首token时间
|
|
85
|
+
- success: 是否测试成功
|
|
86
|
+
- error: 错误信息(如果有)
|
|
87
|
+
"""
|
|
88
|
+
try:
|
|
89
|
+
llm = get_single_llm(model_name, product_mode)
|
|
90
|
+
model_info = get_model_by_name(model_name)
|
|
91
|
+
|
|
92
|
+
times = []
|
|
93
|
+
first_token_times = []
|
|
94
|
+
tokens_per_seconds = []
|
|
95
|
+
input_tokens_counts = []
|
|
96
|
+
generated_tokens_counts = []
|
|
97
|
+
|
|
98
|
+
input_tokens_costs = []
|
|
99
|
+
generated_tokens_costs = []
|
|
100
|
+
|
|
101
|
+
input_tokens_cost_per_m = model_info.get("input_price", 0.0) / 1000000
|
|
102
|
+
output_tokens_cost_per_m = model_info.get("output_price", 0.0) / 1000000
|
|
103
|
+
|
|
104
|
+
test_query = short_context_prompt.prompt()
|
|
105
|
+
if enable_long_context:
|
|
106
|
+
test_query = long_context_prompt.prompt()
|
|
107
|
+
|
|
108
|
+
content = ""
|
|
109
|
+
for _ in range(test_rounds):
|
|
110
|
+
start_time = time.time()
|
|
111
|
+
first_token_received = False
|
|
112
|
+
first_token_time = None
|
|
113
|
+
last_meta = None
|
|
114
|
+
input_tokens_count = 0
|
|
115
|
+
generated_tokens_count = 0
|
|
116
|
+
input_tokens_cost = 0
|
|
117
|
+
generated_tokens_cost = 0
|
|
118
|
+
for chunk,meta in llm.stream_chat_oai(conversations=[{
|
|
119
|
+
"role": "user",
|
|
120
|
+
"content": test_query
|
|
121
|
+
}],delta_mode=True):
|
|
122
|
+
content += chunk
|
|
123
|
+
last_meta = meta
|
|
124
|
+
current_time = time.time()
|
|
125
|
+
if not first_token_received:
|
|
126
|
+
first_token_time = current_time - start_time
|
|
127
|
+
first_token_received = True
|
|
128
|
+
first_token_times.append(first_token_time)
|
|
129
|
+
|
|
130
|
+
end_time = time.time()
|
|
131
|
+
generated_tokens_count = 0
|
|
132
|
+
if last_meta:
|
|
133
|
+
generated_tokens_count = last_meta.generated_tokens_count
|
|
134
|
+
input_tokens_count = last_meta.input_tokens_count
|
|
135
|
+
input_tokens_cost = input_tokens_count * input_tokens_cost_per_m
|
|
136
|
+
generated_tokens_cost = generated_tokens_count * output_tokens_cost_per_m
|
|
137
|
+
|
|
138
|
+
input_tokens_costs.append(input_tokens_cost)
|
|
139
|
+
generated_tokens_costs.append(generated_tokens_cost)
|
|
140
|
+
generated_tokens_counts.append(generated_tokens_count)
|
|
141
|
+
input_tokens_counts.append(input_tokens_count)
|
|
142
|
+
|
|
143
|
+
tokens_per_seconds.append(generated_tokens_count / (end_time - start_time))
|
|
144
|
+
times.append(end_time - start_time)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
avg_time = sum(times) / len(times)
|
|
148
|
+
return {
|
|
149
|
+
"tokens_per_second": sum(tokens_per_seconds) / len(tokens_per_seconds),
|
|
150
|
+
"avg_time": avg_time,
|
|
151
|
+
"min_time": min(times),
|
|
152
|
+
"max_time": max(times),
|
|
153
|
+
"first_token_time": sum(first_token_times) / len(first_token_times),
|
|
154
|
+
"input_tokens_count": sum(input_tokens_counts) / len(input_tokens_counts),
|
|
155
|
+
"generated_tokens_count": sum(generated_tokens_counts) / len(generated_tokens_counts),
|
|
156
|
+
"success": True,
|
|
157
|
+
"error": None,
|
|
158
|
+
"input_tokens_cost": sum(input_tokens_costs) / len(input_tokens_costs),
|
|
159
|
+
"generated_tokens_cost": sum(generated_tokens_costs) / len(generated_tokens_costs)
|
|
160
|
+
}
|
|
161
|
+
except Exception as e:
|
|
162
|
+
return {
|
|
163
|
+
"tokens_per_second": 0,
|
|
164
|
+
"avg_time": 0,
|
|
165
|
+
"min_time": 0,
|
|
166
|
+
"max_time": 0,
|
|
167
|
+
"first_token_time": 0,
|
|
168
|
+
"input_tokens_count": 0,
|
|
169
|
+
"generated_tokens_count": 0,
|
|
170
|
+
"success": False,
|
|
171
|
+
"error": str(e),
|
|
172
|
+
"input_tokens_cost": 0.0,
|
|
173
|
+
"generated_tokens_cost": 0.0
|
|
174
|
+
}
|
|
175
|
+
|
|
176
|
+
def test_model_speed_wrapper(args: Tuple[str, str, int, bool]) -> Tuple[str, Dict[str, Any]]:
|
|
177
|
+
"""
|
|
178
|
+
包装测试函数以适应线程池调用
|
|
179
|
+
|
|
180
|
+
Args:
|
|
181
|
+
args: (model_name, product_mode, test_rounds)的元组
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
(model_name, test_results)的元组
|
|
185
|
+
"""
|
|
186
|
+
model_name, product_mode, test_rounds,enable_long_context = args
|
|
187
|
+
results = test_model_speed(model_name, product_mode, test_rounds,enable_long_context)
|
|
188
|
+
return (model_name, results)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def run_speed_test(product_mode: str, test_rounds: int = 3, max_workers: Optional[int] = None, enable_long_context: bool = False) -> SpeedTestResults:
|
|
192
|
+
"""
|
|
193
|
+
运行所有已激活模型的速度测试
|
|
194
|
+
|
|
195
|
+
Args:
|
|
196
|
+
product_mode: 产品模式 (lite/pro)
|
|
197
|
+
test_rounds: 每个模型测试的轮数
|
|
198
|
+
max_workers: 最大线程数,默认为None(ThreadPoolExecutor会自动设置)
|
|
199
|
+
enable_long_context: 是否启用长文本上下文测试
|
|
200
|
+
|
|
201
|
+
Returns:
|
|
202
|
+
SpeedTestResults: 包含所有模型测试结果的pydantic模型
|
|
203
|
+
"""
|
|
204
|
+
# 获取所有模型
|
|
205
|
+
models_data = models_module.load_models()
|
|
206
|
+
active_models = [m for m in models_data if "api_key" in m] if product_mode == "lite" else models_data
|
|
207
|
+
|
|
208
|
+
if not active_models:
|
|
209
|
+
return SpeedTestResults(results=[])
|
|
210
|
+
|
|
211
|
+
# 准备测试参数
|
|
212
|
+
test_args = [(model["name"], product_mode, test_rounds, enable_long_context) for model in active_models]
|
|
213
|
+
|
|
214
|
+
# 存储结果用于排序
|
|
215
|
+
results_list = []
|
|
216
|
+
|
|
217
|
+
# 使用线程池并发测试
|
|
218
|
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
219
|
+
# 提交所有测试任务并获取future对象
|
|
220
|
+
future_to_model = {executor.submit(test_model_speed_wrapper, args): args[0]
|
|
221
|
+
for args in test_args}
|
|
222
|
+
|
|
223
|
+
# 收集结果
|
|
224
|
+
for future in future_to_model:
|
|
225
|
+
model_name = future_to_model[future]
|
|
226
|
+
|
|
227
|
+
try:
|
|
228
|
+
_, results = future.result()
|
|
229
|
+
|
|
230
|
+
if results["success"]:
|
|
231
|
+
status = "✓"
|
|
232
|
+
results_list.append((
|
|
233
|
+
results['tokens_per_second'],
|
|
234
|
+
ModelSpeedTestResult(
|
|
235
|
+
model_name=model_name,
|
|
236
|
+
tokens_per_second=results['tokens_per_second'],
|
|
237
|
+
first_token_time=results['first_token_time'],
|
|
238
|
+
input_tokens_count=results['input_tokens_count'],
|
|
239
|
+
generated_tokens_count=results['generated_tokens_count'],
|
|
240
|
+
status=status,
|
|
241
|
+
input_tokens_cost=results['input_tokens_cost'],
|
|
242
|
+
generated_tokens_cost=results['generated_tokens_cost'],
|
|
243
|
+
)
|
|
244
|
+
))
|
|
245
|
+
try:
|
|
246
|
+
# 更新模型的平均速度
|
|
247
|
+
models_module.update_model_speed(model_name, results['tokens_per_second'])
|
|
248
|
+
except Exception:
|
|
249
|
+
pass
|
|
250
|
+
else:
|
|
251
|
+
results_list.append((
|
|
252
|
+
0,
|
|
253
|
+
ModelSpeedTestResult(
|
|
254
|
+
model_name=model_name,
|
|
255
|
+
tokens_per_second=0,
|
|
256
|
+
first_token_time=0,
|
|
257
|
+
input_tokens_count=0,
|
|
258
|
+
generated_tokens_count=0,
|
|
259
|
+
status=f"✗ {results['error']}",
|
|
260
|
+
error=results['error'],
|
|
261
|
+
input_tokens_cost=0.0,
|
|
262
|
+
generated_tokens_cost=0.0
|
|
263
|
+
)
|
|
264
|
+
))
|
|
265
|
+
except Exception as e:
|
|
266
|
+
results_list.append((
|
|
267
|
+
0,
|
|
268
|
+
ModelSpeedTestResult(
|
|
269
|
+
model_name=model_name,
|
|
270
|
+
tokens_per_second=0,
|
|
271
|
+
first_token_time=0,
|
|
272
|
+
input_tokens_count=0,
|
|
273
|
+
generated_tokens_count=0,
|
|
274
|
+
status=f"✗ {str(e)}",
|
|
275
|
+
error=str(e),
|
|
276
|
+
input_tokens_cost=0.0,
|
|
277
|
+
generated_tokens_cost=0.0
|
|
278
|
+
)
|
|
279
|
+
))
|
|
280
|
+
|
|
281
|
+
# 按速度排序
|
|
282
|
+
results_list.sort(key=lambda x: x[0], reverse=True)
|
|
283
|
+
|
|
284
|
+
return SpeedTestResults(results=[result[1] for result in results_list])
|
|
285
|
+
|
|
286
|
+
def render_speed_test_in_terminal(product_mode: str, test_rounds: int = 3, max_workers: Optional[int] = None,enable_long_context: bool = False) -> None:
|
|
287
|
+
"""
|
|
288
|
+
运行所有已激活模型的速度测试
|
|
289
|
+
|
|
290
|
+
Args:
|
|
291
|
+
product_mode: 产品模式 (lite/pro)
|
|
292
|
+
test_rounds: 每个模型测试的轮数
|
|
293
|
+
max_workers: 最大线程数,默认为None(ThreadPoolExecutor会自动设置)
|
|
294
|
+
"""
|
|
295
|
+
printer = Printer()
|
|
296
|
+
console = Console()
|
|
297
|
+
|
|
298
|
+
# 获取所有模型
|
|
299
|
+
models_data = models_module.load_models()
|
|
300
|
+
active_models = [m for m in models_data if "api_key" in m] if product_mode == "lite" else models_data
|
|
301
|
+
|
|
302
|
+
if not active_models:
|
|
303
|
+
printer.print_in_terminal("models_no_active", style="yellow")
|
|
304
|
+
return
|
|
305
|
+
|
|
306
|
+
# 创建结果表格
|
|
307
|
+
table = Table(
|
|
308
|
+
title=printer.get_message_from_key("models_speed_test_results"),
|
|
309
|
+
show_header=True,
|
|
310
|
+
header_style="bold magenta",
|
|
311
|
+
show_lines=True
|
|
312
|
+
)
|
|
313
|
+
|
|
314
|
+
table.add_column("Model", style="cyan", width=30)
|
|
315
|
+
table.add_column("Tokens/s", style="green", width=15)
|
|
316
|
+
table.add_column("First Token(s)", style="magenta", width=15)
|
|
317
|
+
table.add_column("Input Tokens", style="magenta", width=15)
|
|
318
|
+
table.add_column("Generated Tokens", style="magenta", width=15)
|
|
319
|
+
table.add_column("Input Tokens Cost", style="yellow", width=15)
|
|
320
|
+
table.add_column("Generated Tokens Cost", style="yellow", width=15)
|
|
321
|
+
table.add_column("Status", style="red", width=20)
|
|
322
|
+
|
|
323
|
+
# 准备测试参数
|
|
324
|
+
test_args = [(model["name"], product_mode, test_rounds, enable_long_context) for model in active_models]
|
|
325
|
+
|
|
326
|
+
# 存储结果用于排序
|
|
327
|
+
results_list = []
|
|
328
|
+
|
|
329
|
+
# 使用线程池并发测试
|
|
330
|
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
|
331
|
+
printer.print_in_terminal("models_testing_start", style="yellow")
|
|
332
|
+
|
|
333
|
+
# 提交所有测试任务并获取future对象
|
|
334
|
+
future_to_model = {executor.submit(test_model_speed_wrapper, args): args[0]
|
|
335
|
+
for args in test_args}
|
|
336
|
+
|
|
337
|
+
# 收集结果
|
|
338
|
+
completed = 0
|
|
339
|
+
total = len(future_to_model)
|
|
340
|
+
for future in future_to_model:
|
|
341
|
+
completed += 1
|
|
342
|
+
printer.print_in_terminal("models_testing_progress", style="yellow", completed=completed, total=total)
|
|
343
|
+
model_name = future_to_model[future]
|
|
344
|
+
printer.print_in_terminal("models_testing", style="yellow", name=model_name)
|
|
345
|
+
|
|
346
|
+
try:
|
|
347
|
+
_, results = future.result()
|
|
348
|
+
|
|
349
|
+
if results["success"]:
|
|
350
|
+
status = "✓"
|
|
351
|
+
results['status'] = status
|
|
352
|
+
results_list.append((
|
|
353
|
+
results['tokens_per_second'],
|
|
354
|
+
model_name,
|
|
355
|
+
results
|
|
356
|
+
))
|
|
357
|
+
try:
|
|
358
|
+
# 更新模型的平均速度
|
|
359
|
+
models_module.update_model_speed(model_name, results['tokens_per_second'])
|
|
360
|
+
except Exception as e:
|
|
361
|
+
pass
|
|
362
|
+
else:
|
|
363
|
+
status = f"✗ ({results['error']})"
|
|
364
|
+
results_list.append((
|
|
365
|
+
0,
|
|
366
|
+
model_name,
|
|
367
|
+
{"tokens_per_second":0,"avg_time": 0, "input_tokens_count":0, "generated_tokens_count":0, "min_time": 0, "max_time": 0, "first_token_time": 0, "input_tokens_cost": 0.0, "generated_tokens_cost": 0.0, "status": status}
|
|
368
|
+
))
|
|
369
|
+
except Exception as e:
|
|
370
|
+
results_list.append((
|
|
371
|
+
0,
|
|
372
|
+
model_name,
|
|
373
|
+
{"tokens_per_second":0,"avg_time": 0, "input_tokens_count":0, "generated_tokens_count":0, "min_time": 0, "max_time": 0, "first_token_time": 0, "input_tokens_cost": 0.0, "generated_tokens_cost": 0.0, "status": f"✗ ({str(e)})"}
|
|
374
|
+
))
|
|
375
|
+
|
|
376
|
+
# 按速度排序
|
|
377
|
+
results_list.sort(key=lambda x: x[0], reverse=True)
|
|
378
|
+
|
|
379
|
+
# 添加排序后的结果到表格
|
|
380
|
+
for tokens_per_second, model_name, results in results_list:
|
|
381
|
+
table.add_row(
|
|
382
|
+
model_name,
|
|
383
|
+
f"{tokens_per_second:.2f}",
|
|
384
|
+
f"{results['first_token_time']:.2f}",
|
|
385
|
+
f"{results['input_tokens_count']}",
|
|
386
|
+
f"{results['generated_tokens_count']}",
|
|
387
|
+
f"{results['input_tokens_cost']:.4f}",
|
|
388
|
+
f"{results['generated_tokens_cost']:.4f}",
|
|
389
|
+
results['status']
|
|
390
|
+
)
|
|
391
|
+
|
|
392
|
+
console.print(Panel(table, border_style="blue"))
|