auto-coder 0.1.225__py3-none-any.whl → 0.1.227__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of auto-coder might be problematic. Click here for more details.

autocoder/auto_coder.py CHANGED
@@ -41,6 +41,7 @@ from rich.markdown import Markdown
41
41
  from rich.live import Live
42
42
  from autocoder.auto_coder_lang import get_message
43
43
  from autocoder.common.memory_manager import save_to_memory_file
44
+ from autocoder import models as models_module
44
45
 
45
46
  console = Console()
46
47
 
@@ -249,72 +250,229 @@ def main(input_args: Optional[List[str]] = None):
249
250
  return
250
251
 
251
252
  if args.model:
253
+ if args.product_mode == "pro":
254
+ home = os.path.expanduser("~")
255
+ auto_coder_dir = os.path.join(home, ".auto-coder")
256
+ libs_dir = os.path.join(auto_coder_dir, "storage", "libs")
257
+ code_search_path = None
258
+ if os.path.exists(libs_dir):
259
+ retrieval_libs_dir = os.path.join(
260
+ libs_dir, get_latest_byzer_retrieval_lib(libs_dir)
261
+ )
262
+ if os.path.exists(retrieval_libs_dir):
263
+ code_search_path = [retrieval_libs_dir]
264
+
265
+ try:
266
+ init_options = {}
267
+ if raw_args.doc_command == "serve":
268
+ init_options["log_to_driver"] = True
269
+
270
+ byzerllm.connect_cluster(
271
+ address=args.ray_address,
272
+ code_search_path=code_search_path,
273
+ init_options=init_options,
274
+ )
275
+ except Exception as e:
276
+ logger.warning(
277
+ f"Detecting error when connecting to ray cluster: {e}, try to connect to ray cluster without storage support."
278
+ )
279
+ byzerllm.connect_cluster(address=args.ray_address)
252
280
 
253
- home = os.path.expanduser("~")
254
- auto_coder_dir = os.path.join(home, ".auto-coder")
255
- libs_dir = os.path.join(auto_coder_dir, "storage", "libs")
256
- code_search_path = None
257
- if os.path.exists(libs_dir):
258
- retrieval_libs_dir = os.path.join(
259
- libs_dir, get_latest_byzer_retrieval_lib(libs_dir)
281
+ llm = byzerllm.ByzerLLM(verbose=args.print_request)
282
+ if args.product_mode == "lite":
283
+ llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_chat")
284
+ api_key_dir = os.path.expanduser("~/.auto-coder/keys")
285
+ api_key_file = os.path.join(api_key_dir, "api.deepseek.com")
286
+
287
+ if not os.path.exists(api_key_file):
288
+ raise Exception(f"API key file not found: {api_key_file}")
289
+
290
+ with open(api_key_file, "r") as f:
291
+ api_key = f.read()
292
+
293
+ llm.deploy(
294
+ model_path="",
295
+ pretrained_model_type="saas/openai",
296
+ udf_name="deepseek_chat",
297
+ infer_params={
298
+ "saas.base_url": "https://api.deepseek.com/v1",
299
+ "saas.api_key": api_key,
300
+ "saas.model": "deepseek-chat"
301
+ }
260
302
  )
261
- if os.path.exists(retrieval_libs_dir):
262
- code_search_path = [retrieval_libs_dir]
263
-
264
- try:
265
- init_options = {}
266
- if raw_args.doc_command == "serve":
267
- init_options["log_to_driver"] = True
268
-
269
- byzerllm.connect_cluster(
270
- address=args.ray_address,
271
- code_search_path=code_search_path,
272
- init_options=init_options,
303
+
304
+ code_llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_chat")
305
+ code_llm.deploy(
306
+ model_path="",
307
+ pretrained_model_type="saas/openai",
308
+ udf_name="deepseek_chat",
309
+ infer_params={
310
+ "saas.base_url": "https://api.deepseek.com/v1",
311
+ "saas.api_key": api_key,
312
+ "saas.model": "deepseek-chat"
313
+ }
273
314
  )
274
- except Exception as e:
275
- logger.warning(
276
- f"Detecting error when connecting to ray cluster: {e}, try to connect to ray cluster without storage support."
315
+
316
+ chat_llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_r1_chat")
317
+ chat_llm.deploy(
318
+ model_path="",
319
+ pretrained_model_type="saas/openai",
320
+ udf_name="deepseek_r1_chat",
321
+ infer_params={
322
+ "saas.base_url": "https://api.deepseek.com/v1",
323
+ "saas.api_key": api_key,
324
+ "saas.model": "deepseek-reasoner"
325
+ }
277
326
  )
278
- byzerllm.connect_cluster(address=args.ray_address)
279
327
 
280
- llm = byzerllm.ByzerLLM(verbose=args.print_request)
328
+ generate_rerank_llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_r1_chat")
329
+ generate_rerank_llm.deploy(
330
+ model_path="",
331
+ pretrained_model_type="saas/openai",
332
+ udf_name="deepseek_r1_chat",
333
+ infer_params={
334
+ "saas.base_url": "https://api.deepseek.com/v1",
335
+ "saas.api_key": api_key,
336
+ "saas.model": "deepseek-reasoner"
337
+ }
338
+ )
281
339
 
282
- if args.code_model:
283
- if "," in args.code_model:
284
- # Multiple code models specified
285
- model_names = args.code_model.split(",")
286
- models = []
287
- for _, model_name in enumerate(model_names):
340
+ llm.setup_sub_client("code_model", code_llm)
341
+ llm.setup_sub_client("chat_model", chat_llm)
342
+ llm.setup_sub_client("generate_rerank_model", generate_rerank_llm)
343
+
344
+ if args.product_mode == "lite":
345
+ # Set up default models based on configuration
346
+ if args.code_model:
347
+ if "," in args.code_model:
348
+ # Multiple code models specified
349
+ model_names = args.code_model.split(",")
350
+ models = []
351
+ for _, model_name in enumerate(model_names):
352
+ model_name = model_name.strip()
353
+ model_info = models_module.get_model_by_name(model_name)
354
+ code_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
355
+ code_model.deploy(
356
+ model_path="",
357
+ pretrained_model_type=model_info["model_type"],
358
+ udf_name=model_name,
359
+ infer_params={
360
+ "saas.base_url": model_info["base_url"],
361
+ "saas.api_key": model_info["api_key"],
362
+ "saas.model": model_info["model_name"]
363
+ }
364
+ )
365
+ models.append(code_model)
366
+ llm.setup_sub_client("code_model", models)
367
+ else:
368
+ # Single code model
369
+ model_info = models_module.get_model_by_name(args.code_model)
370
+ model_name = args.code_model
371
+ code_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
372
+ code_model.deploy(
373
+ model_path="",
374
+ pretrained_model_type=model_info["model_type"],
375
+ udf_name=model_name,
376
+ infer_params={
377
+ "saas.base_url": model_info["base_url"],
378
+ "saas.api_key": model_info["api_key"],
379
+ "saas.model": model_info["model_name"]
380
+ }
381
+ )
382
+ llm.setup_sub_client("code_model", code_model)
383
+
384
+ if args.generate_rerank_model:
385
+ if "," in args.generate_rerank_model:
386
+ # Multiple rerank models specified
387
+ model_names = args.generate_rerank_model.split(",")
388
+ models = []
389
+ for _, model_name in enumerate(model_names):
390
+ model_info = models_module.get_model_by_name(model_name)
391
+ rerank_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
392
+ rerank_model.deploy(
393
+ model_path="",
394
+ pretrained_model_type=model_info["model_type"],
395
+ udf_name=model_name,
396
+ infer_params={
397
+ "saas.base_url": model_info["base_url"],
398
+ "saas.api_key": model_info["api_key"],
399
+ "saas.model": model_info["model_name"]
400
+ }
401
+ )
402
+ models.append(rerank_model)
403
+ llm.setup_sub_client("generate_rerank_model", models)
404
+ else:
405
+ # Single rerank model
406
+ model_info = models_module.get_model_by_name(args.generate_rerank_model)
407
+ model_name = args.generate_rerank_model
408
+ rerank_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
409
+ rerank_model.deploy(
410
+ model_path="",
411
+ pretrained_model_type=model_info["model_type"],
412
+ udf_name=model_name,
413
+ infer_params={
414
+ "saas.base_url": model_info["base_url"],
415
+ "saas.api_key": model_info["api_key"],
416
+ "saas.model": model_info["model_name"]
417
+ }
418
+ )
419
+ llm.setup_sub_client("generate_rerank_model", rerank_model)
420
+
421
+ if args.inference_model:
422
+ model_info = models_module.get_model_by_name(args.inference_model)
423
+ model_name = args.inference_model
424
+ inference_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
425
+ inference_model.deploy(
426
+ model_path="",
427
+ pretrained_model_type=model_info["model_type"],
428
+ udf_name=model_name,
429
+ infer_params={
430
+ "saas.base_url": model_info["base_url"],
431
+ "saas.api_key": model_info["api_key"],
432
+ "saas.model": model_info["model_name"]
433
+ }
434
+ )
435
+ llm.setup_sub_client("inference_model", inference_model)
436
+
437
+
438
+ if args.product_mode == "pro":
439
+ if args.code_model:
440
+ if "," in args.code_model:
441
+ # Multiple code models specified
442
+ model_names = args.code_model.split(",")
443
+ models = []
444
+ for _, model_name in enumerate(model_names):
445
+ code_model = byzerllm.ByzerLLM()
446
+ code_model.setup_default_model_name(model_name.strip())
447
+ models.append(code_model)
448
+ llm.setup_sub_client("code_model", models)
449
+ else:
450
+ # Single code model
288
451
  code_model = byzerllm.ByzerLLM()
289
- code_model.setup_default_model_name(model_name.strip())
290
- models.append(code_model)
291
- llm.setup_sub_client("code_model", models)
292
- else:
293
- # Single code model
294
- code_model = byzerllm.ByzerLLM()
295
- code_model.setup_default_model_name(args.code_model)
296
- llm.setup_sub_client("code_model", code_model)
297
-
298
- if args.generate_rerank_model:
299
- if "," in args.generate_rerank_model:
300
- # Multiple rerank models specified
301
- model_names = args.generate_rerank_model.split(",")
302
- models = []
303
- for _, model_name in enumerate(model_names):
452
+ code_model.setup_default_model_name(args.code_model)
453
+ llm.setup_sub_client("code_model", code_model)
454
+
455
+ if args.generate_rerank_model:
456
+ if "," in args.generate_rerank_model:
457
+ # Multiple rerank models specified
458
+ model_names = args.generate_rerank_model.split(",")
459
+ models = []
460
+ for _, model_name in enumerate(model_names):
461
+ rerank_model = byzerllm.ByzerLLM()
462
+ rerank_model.setup_default_model_name(model_name.strip())
463
+ models.append(rerank_model)
464
+ llm.setup_sub_client("generate_rerank_model", models)
465
+ else:
466
+ # Single rerank model
304
467
  rerank_model = byzerllm.ByzerLLM()
305
- rerank_model.setup_default_model_name(model_name.strip())
306
- models.append(rerank_model)
307
- llm.setup_sub_client("generate_rerank_model", models)
308
- else:
309
- # Single rerank model
310
- rerank_model = byzerllm.ByzerLLM()
311
- rerank_model.setup_default_model_name(args.generate_rerank_model)
312
- llm.setup_sub_client("generate_rerank_model", rerank_model)
468
+ rerank_model.setup_default_model_name(args.generate_rerank_model)
469
+ llm.setup_sub_client("generate_rerank_model", rerank_model)
313
470
 
314
- if args.inference_model:
315
- inference_model = byzerllm.ByzerLLM()
316
- inference_model.setup_default_model_name(args.inference_model)
317
- llm.setup_sub_client("inference_model", inference_model)
471
+ if args.inference_model:
472
+ inference_model = byzerllm.ByzerLLM()
473
+ inference_model.setup_default_model_name(args.inference_model)
474
+ llm.setup_sub_client("inference_model", inference_model)
475
+
318
476
 
319
477
  if args.human_as_model:
320
478
 
@@ -430,7 +588,7 @@ def main(input_args: Optional[List[str]] = None):
430
588
  EventName.BEFORE_CALL_MODEL, intercept_callback
431
589
  )
432
590
  # llm.add_event_callback(EventName.AFTER_CALL_MODEL, token_counter_interceptor)
433
-
591
+
434
592
  code_models = llm.get_sub_client("code_model")
435
593
  if code_models:
436
594
  if not isinstance(code_models, list):
@@ -439,81 +597,210 @@ def main(input_args: Optional[List[str]] = None):
439
597
  model.add_event_callback(
440
598
  EventName.AFTER_CALL_MODEL, token_counter_interceptor
441
599
  )
442
-
443
- llm.setup_template(model=args.model, template="auto")
444
- llm.setup_default_model_name(args.model)
445
-
446
- llm.setup_max_output_length(args.model, args.model_max_length)
447
- llm.setup_max_input_length(args.model, args.model_max_input_length)
448
- llm.setup_extra_generation_params(
449
- args.model, {"max_length": args.model_max_length}
450
- )
451
-
452
- if args.chat_model:
453
- chat_model = byzerllm.ByzerLLM()
454
- chat_model.setup_default_model_name(args.chat_model)
455
- llm.setup_sub_client("chat_model", chat_model)
456
-
457
- if args.vl_model:
458
- vl_model = byzerllm.ByzerLLM()
459
- vl_model.setup_default_model_name(args.vl_model)
460
- vl_model.setup_template(model=args.vl_model, template="auto")
461
- llm.setup_sub_client("vl_model", vl_model)
462
-
463
- if args.sd_model:
464
- sd_model = byzerllm.ByzerLLM()
465
- sd_model.setup_default_model_name(args.sd_model)
466
- sd_model.setup_template(model=args.sd_model, template="auto")
467
- llm.setup_sub_client("sd_model", sd_model)
468
-
469
- if args.text2voice_model:
470
- text2voice_model = byzerllm.ByzerLLM()
471
- text2voice_model.setup_default_model_name(args.text2voice_model)
472
- text2voice_model.setup_template(
473
- model=args.text2voice_model, template="auto"
600
+ if args.product_mode == "lite":
601
+ if args.chat_model:
602
+ model_name = args.chat_model.strip()
603
+ model_info = models_module.get_model_by_name(model_name)
604
+ chat_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
605
+ chat_model.deploy(
606
+ model_path="",
607
+ pretrained_model_type=model_info["model_type"],
608
+ udf_name=model_name,
609
+ infer_params={
610
+ "saas.base_url": model_info["base_url"],
611
+ "saas.api_key": model_info["api_key"],
612
+ "saas.model": model_info["model_name"]
613
+ }
614
+ )
615
+ llm.setup_sub_client("chat_model", chat_model)
616
+
617
+ if args.vl_model:
618
+ model_name = args.vl_model.strip()
619
+ model_info = models_module.get_model_by_name(model_name)
620
+ vl_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
621
+ vl_model.deploy(
622
+ model_path="",
623
+ pretrained_model_type="saas/openai",
624
+ udf_name=model_name,
625
+ infer_params={
626
+ "saas.base_url": model_info["base_url"],
627
+ "saas.api_key": model_info["api_key"],
628
+ "saas.model": model_info["model_name"]
629
+ }
630
+ )
631
+ llm.setup_sub_client("vl_model", vl_model)
632
+
633
+ if args.sd_model:
634
+ model_name = args.sd_model.strip()
635
+ model_info = models_module.get_model_by_name(model_name)
636
+ sd_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
637
+ sd_model.deploy(
638
+ model_path="",
639
+ pretrained_model_type=model_info["model_type"],
640
+ udf_name=model_name,
641
+ infer_params={
642
+ "saas.base_url": model_info["base_url"],
643
+ "saas.api_key": model_info["api_key"],
644
+ "saas.model": model_info["model_name"]
645
+ }
646
+ )
647
+ llm.setup_sub_client("sd_model", sd_model)
648
+
649
+ if args.text2voice_model:
650
+ model_name = args.text2voice_model.strip()
651
+ model_info = models_module.get_model_by_name(model_name)
652
+ text2voice_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
653
+ text2voice_model.deploy(
654
+ model_path="",
655
+ pretrained_model_type=model_info["model_type"],
656
+ udf_name=model_name,
657
+ infer_params={
658
+ "saas.base_url": model_info["base_url"],
659
+ "saas.api_key": model_info["api_key"],
660
+ "saas.model": model_info["model_name"]
661
+ }
662
+ )
663
+ llm.setup_sub_client("text2voice_model", text2voice_model)
664
+
665
+ if args.voice2text_model:
666
+ model_name = args.voice2text_model.strip()
667
+ model_info = models_module.get_model_by_name(model_name)
668
+ voice2text_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
669
+ voice2text_model.deploy(
670
+ model_path="",
671
+ pretrained_model_type=model_info["model_type"],
672
+ udf_name=model_name,
673
+ infer_params={
674
+ "saas.base_url": model_info["base_url"],
675
+ "saas.api_key": model_info["api_key"],
676
+ "saas.model": model_info["model_name"]
677
+ }
678
+ )
679
+ llm.setup_sub_client("voice2text_model", voice2text_model)
680
+
681
+ if args.planner_model:
682
+ model_name = args.planner_model.strip()
683
+ model_info = models_module.get_model_by_name(model_name)
684
+ planner_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
685
+ planner_model.deploy(
686
+ model_path="",
687
+ pretrained_model_type=model_info["model_type"],
688
+ udf_name=model_name,
689
+ infer_params={
690
+ "saas.base_url": model_info["base_url"],
691
+ "saas.api_key": model_info["api_key"],
692
+ "saas.model": model_info["model_name"]
693
+ }
694
+ )
695
+ llm.setup_sub_client("planner_model", planner_model)
696
+
697
+ if args.designer_model:
698
+ model_name = args.designer_model.strip()
699
+ model_info = models_module.get_model_by_name(model_name)
700
+ designer_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
701
+ designer_model.deploy(
702
+ model_path="",
703
+ pretrained_model_type=model_info["model_type"],
704
+ udf_name=model_name,
705
+ infer_params={
706
+ "saas.base_url": model_info["base_url"],
707
+ "saas.api_key": model_info["api_key"],
708
+ "saas.model": model_info["model_name"]
709
+ }
710
+ )
711
+ llm.setup_sub_client("designer_model", designer_model)
712
+
713
+ if args.emb_model:
714
+ model_name = args.emb_model.strip()
715
+ model_info = models_module.get_model_by_name(model_name)
716
+ emb_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
717
+ emb_model.deploy(
718
+ model_path="",
719
+ pretrained_model_type=model_info["model_type"],
720
+ udf_name=model_name,
721
+ infer_params={
722
+ "saas.base_url": model_info["base_url"],
723
+ "saas.api_key": model_info["api_key"],
724
+ "saas.model": model_info["model_name"]
725
+ }
726
+ )
727
+ llm.setup_sub_client("emb_model", emb_model)
728
+
729
+ if args.product_mode == "pro":
730
+ llm.setup_template(model=args.model, template="auto")
731
+ llm.setup_default_model_name(args.model)
732
+
733
+ llm.setup_max_output_length(args.model, args.model_max_length)
734
+ llm.setup_max_input_length(args.model, args.model_max_input_length)
735
+ llm.setup_extra_generation_params(
736
+ args.model, {"max_length": args.model_max_length}
474
737
  )
475
- llm.setup_sub_client("text2voice_model", text2voice_model)
476
738
 
477
- if args.voice2text_model:
478
- voice2text_model = byzerllm.ByzerLLM()
479
- voice2text_model.setup_default_model_name(args.voice2text_model)
480
- voice2text_model.setup_template(
481
- model=args.voice2text_model, template="auto"
482
- )
483
- llm.setup_sub_client("voice2text_model", voice2text_model)
739
+ if args.chat_model:
740
+ chat_model = byzerllm.ByzerLLM()
741
+ chat_model.setup_default_model_name(args.chat_model)
742
+ llm.setup_sub_client("chat_model", chat_model)
743
+
744
+ if args.vl_model:
745
+ vl_model = byzerllm.ByzerLLM()
746
+ vl_model.setup_default_model_name(args.vl_model)
747
+ vl_model.setup_template(model=args.vl_model, template="auto")
748
+ llm.setup_sub_client("vl_model", vl_model)
749
+
750
+ if args.sd_model:
751
+ sd_model = byzerllm.ByzerLLM()
752
+ sd_model.setup_default_model_name(args.sd_model)
753
+ sd_model.setup_template(model=args.sd_model, template="auto")
754
+ llm.setup_sub_client("sd_model", sd_model)
755
+
756
+ if args.text2voice_model:
757
+ text2voice_model = byzerllm.ByzerLLM()
758
+ text2voice_model.setup_default_model_name(args.text2voice_model)
759
+ text2voice_model.setup_template(
760
+ model=args.text2voice_model, template="auto"
761
+ )
762
+ llm.setup_sub_client("text2voice_model", text2voice_model)
484
763
 
485
- if args.index_model:
486
- index_model = byzerllm.ByzerLLM()
487
- index_model.setup_default_model_name(args.index_model)
488
- index_model.setup_max_output_length(
489
- args.index_model, args.index_model_max_length or args.model_max_length
490
- )
491
- index_model.setup_max_input_length(
492
- args.index_model,
493
- args.index_model_max_input_length or args.model_max_input_length,
494
- )
495
- index_model.setup_extra_generation_params(
496
- args.index_model,
497
- {"max_length": args.index_model_max_length or args.model_max_length},
498
- )
499
- llm.setup_sub_client("index_model", index_model)
764
+ if args.voice2text_model:
765
+ voice2text_model = byzerllm.ByzerLLM()
766
+ voice2text_model.setup_default_model_name(args.voice2text_model)
767
+ voice2text_model.setup_template(
768
+ model=args.voice2text_model, template="auto"
769
+ )
770
+ llm.setup_sub_client("voice2text_model", voice2text_model)
500
771
 
501
- if args.emb_model:
502
- llm.setup_default_emb_model_name(args.emb_model)
503
- emb_model = byzerllm.ByzerLLM()
504
- emb_model.setup_default_emb_model_name(args.emb_model)
505
- # emb_model.setup_template(model=args.emb_model, template="auto")
506
- llm.setup_sub_client("emb_model", emb_model)
772
+ if args.index_model:
773
+ index_model = byzerllm.ByzerLLM()
774
+ index_model.setup_default_model_name(args.index_model)
775
+ index_model.setup_max_output_length(
776
+ args.index_model, args.index_model_max_length or args.model_max_length
777
+ )
778
+ index_model.setup_max_input_length(
779
+ args.index_model,
780
+ args.index_model_max_input_length or args.model_max_input_length,
781
+ )
782
+ index_model.setup_extra_generation_params(
783
+ args.index_model,
784
+ {"max_length": args.index_model_max_length or args.model_max_length},
785
+ )
786
+ llm.setup_sub_client("index_model", index_model)
787
+
788
+ if args.emb_model:
789
+ llm.setup_default_emb_model_name(args.emb_model)
790
+ emb_model = byzerllm.ByzerLLM()
791
+ emb_model.setup_default_emb_model_name(args.emb_model)
792
+ # emb_model.setup_template(model=args.emb_model, template="auto")
793
+ llm.setup_sub_client("emb_model", emb_model)
507
794
 
508
- if args.planner_model:
509
- planner_model = byzerllm.ByzerLLM()
510
- planner_model.setup_default_model_name(args.planner_model)
511
- llm.setup_sub_client("planner_model", planner_model)
795
+ if args.planner_model:
796
+ planner_model = byzerllm.ByzerLLM()
797
+ planner_model.setup_default_model_name(args.planner_model)
798
+ llm.setup_sub_client("planner_model", planner_model)
512
799
 
513
- if args.designer_model:
514
- designer_model = byzerllm.ByzerLLM()
515
- designer_model.setup_default_model_name(args.designer_model)
516
- llm.setup_sub_client("designer_model", designer_model)
800
+ if args.designer_model:
801
+ designer_model = byzerllm.ByzerLLM()
802
+ designer_model.setup_default_model_name(args.designer_model)
803
+ llm.setup_sub_client("designer_model", designer_model)
517
804
 
518
805
  else:
519
806
  llm = None
@@ -780,7 +1067,7 @@ def main(input_args: Optional[List[str]] = None):
780
1067
  )
781
1068
 
782
1069
  if llm.get_sub_client("chat_model"):
783
- chat_llm = llm.get_sub_client("chat_model")
1070
+ chat_llm = llm.get_sub_client("chat_model")
784
1071
  else:
785
1072
  chat_llm = llm
786
1073
 
@@ -947,7 +1234,7 @@ def main(input_args: Optional[List[str]] = None):
947
1234
  response=result)
948
1235
  print("Saved to your memory")
949
1236
  return {}
950
-
1237
+
951
1238
  if "rag" in args.action:
952
1239
  args.enable_rag_search = True
953
1240
  args.enable_rag_context = False
@@ -966,10 +1253,10 @@ def main(input_args: Optional[List[str]] = None):
966
1253
  )
967
1254
  )
968
1255
  v = [[response.result,None]]
969
- else:
1256
+ else:
970
1257
  v = chat_llm.stream_chat_oai(
971
1258
  conversations=loaded_conversations, delta_mode=True
972
- )
1259
+ )
973
1260
 
974
1261
  assistant_response = ""
975
1262
  markdown_content = ""
@@ -1010,6 +1297,12 @@ def main(input_args: Optional[List[str]] = None):
1010
1297
  )
1011
1298
  )
1012
1299
  except Exception as e:
1300
+ ##MARK
1301
+ console.print(Panel(
1302
+ f"Error: {str(e)}",
1303
+ title="Error",
1304
+ border_style="red"
1305
+ ))
1013
1306
  request_queue.add_request(
1014
1307
  args.request_id,
1015
1308
  RequestValue(