auto-coder 0.1.225__py3-none-any.whl → 0.1.227__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of auto-coder might be problematic. Click here for more details.
- {auto_coder-0.1.225.dist-info → auto_coder-0.1.227.dist-info}/METADATA +2 -2
- {auto_coder-0.1.225.dist-info → auto_coder-0.1.227.dist-info}/RECORD +22 -20
- autocoder/auto_coder.py +424 -131
- autocoder/chat_auto_coder.py +267 -143
- autocoder/chat_auto_coder_lang.py +30 -1
- autocoder/common/__init__.py +2 -1
- autocoder/common/code_auto_generate.py +23 -9
- autocoder/common/code_auto_generate_diff.py +23 -9
- autocoder/common/code_auto_generate_editblock.py +23 -9
- autocoder/common/code_auto_generate_strict_diff.py +23 -9
- autocoder/common/command_completer.py +6 -0
- autocoder/common/types.py +1 -0
- autocoder/common/utils_code_auto_generate.py +38 -0
- autocoder/dispacher/actions/action.py +4 -4
- autocoder/dispacher/actions/plugins/action_regex_project.py +6 -2
- autocoder/index/index.py +1 -1
- autocoder/models.py +158 -0
- autocoder/version.py +1 -1
- {auto_coder-0.1.225.dist-info → auto_coder-0.1.227.dist-info}/LICENSE +0 -0
- {auto_coder-0.1.225.dist-info → auto_coder-0.1.227.dist-info}/WHEEL +0 -0
- {auto_coder-0.1.225.dist-info → auto_coder-0.1.227.dist-info}/entry_points.txt +0 -0
- {auto_coder-0.1.225.dist-info → auto_coder-0.1.227.dist-info}/top_level.txt +0 -0
autocoder/auto_coder.py
CHANGED
|
@@ -41,6 +41,7 @@ from rich.markdown import Markdown
|
|
|
41
41
|
from rich.live import Live
|
|
42
42
|
from autocoder.auto_coder_lang import get_message
|
|
43
43
|
from autocoder.common.memory_manager import save_to_memory_file
|
|
44
|
+
from autocoder import models as models_module
|
|
44
45
|
|
|
45
46
|
console = Console()
|
|
46
47
|
|
|
@@ -249,72 +250,229 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
249
250
|
return
|
|
250
251
|
|
|
251
252
|
if args.model:
|
|
253
|
+
if args.product_mode == "pro":
|
|
254
|
+
home = os.path.expanduser("~")
|
|
255
|
+
auto_coder_dir = os.path.join(home, ".auto-coder")
|
|
256
|
+
libs_dir = os.path.join(auto_coder_dir, "storage", "libs")
|
|
257
|
+
code_search_path = None
|
|
258
|
+
if os.path.exists(libs_dir):
|
|
259
|
+
retrieval_libs_dir = os.path.join(
|
|
260
|
+
libs_dir, get_latest_byzer_retrieval_lib(libs_dir)
|
|
261
|
+
)
|
|
262
|
+
if os.path.exists(retrieval_libs_dir):
|
|
263
|
+
code_search_path = [retrieval_libs_dir]
|
|
264
|
+
|
|
265
|
+
try:
|
|
266
|
+
init_options = {}
|
|
267
|
+
if raw_args.doc_command == "serve":
|
|
268
|
+
init_options["log_to_driver"] = True
|
|
269
|
+
|
|
270
|
+
byzerllm.connect_cluster(
|
|
271
|
+
address=args.ray_address,
|
|
272
|
+
code_search_path=code_search_path,
|
|
273
|
+
init_options=init_options,
|
|
274
|
+
)
|
|
275
|
+
except Exception as e:
|
|
276
|
+
logger.warning(
|
|
277
|
+
f"Detecting error when connecting to ray cluster: {e}, try to connect to ray cluster without storage support."
|
|
278
|
+
)
|
|
279
|
+
byzerllm.connect_cluster(address=args.ray_address)
|
|
252
280
|
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
281
|
+
llm = byzerllm.ByzerLLM(verbose=args.print_request)
|
|
282
|
+
if args.product_mode == "lite":
|
|
283
|
+
llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_chat")
|
|
284
|
+
api_key_dir = os.path.expanduser("~/.auto-coder/keys")
|
|
285
|
+
api_key_file = os.path.join(api_key_dir, "api.deepseek.com")
|
|
286
|
+
|
|
287
|
+
if not os.path.exists(api_key_file):
|
|
288
|
+
raise Exception(f"API key file not found: {api_key_file}")
|
|
289
|
+
|
|
290
|
+
with open(api_key_file, "r") as f:
|
|
291
|
+
api_key = f.read()
|
|
292
|
+
|
|
293
|
+
llm.deploy(
|
|
294
|
+
model_path="",
|
|
295
|
+
pretrained_model_type="saas/openai",
|
|
296
|
+
udf_name="deepseek_chat",
|
|
297
|
+
infer_params={
|
|
298
|
+
"saas.base_url": "https://api.deepseek.com/v1",
|
|
299
|
+
"saas.api_key": api_key,
|
|
300
|
+
"saas.model": "deepseek-chat"
|
|
301
|
+
}
|
|
260
302
|
)
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
init_options=init_options,
|
|
303
|
+
|
|
304
|
+
code_llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_chat")
|
|
305
|
+
code_llm.deploy(
|
|
306
|
+
model_path="",
|
|
307
|
+
pretrained_model_type="saas/openai",
|
|
308
|
+
udf_name="deepseek_chat",
|
|
309
|
+
infer_params={
|
|
310
|
+
"saas.base_url": "https://api.deepseek.com/v1",
|
|
311
|
+
"saas.api_key": api_key,
|
|
312
|
+
"saas.model": "deepseek-chat"
|
|
313
|
+
}
|
|
273
314
|
)
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
|
|
315
|
+
|
|
316
|
+
chat_llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_r1_chat")
|
|
317
|
+
chat_llm.deploy(
|
|
318
|
+
model_path="",
|
|
319
|
+
pretrained_model_type="saas/openai",
|
|
320
|
+
udf_name="deepseek_r1_chat",
|
|
321
|
+
infer_params={
|
|
322
|
+
"saas.base_url": "https://api.deepseek.com/v1",
|
|
323
|
+
"saas.api_key": api_key,
|
|
324
|
+
"saas.model": "deepseek-reasoner"
|
|
325
|
+
}
|
|
277
326
|
)
|
|
278
|
-
byzerllm.connect_cluster(address=args.ray_address)
|
|
279
327
|
|
|
280
|
-
|
|
328
|
+
generate_rerank_llm = byzerllm.SimpleByzerLLM(default_model_name="deepseek_r1_chat")
|
|
329
|
+
generate_rerank_llm.deploy(
|
|
330
|
+
model_path="",
|
|
331
|
+
pretrained_model_type="saas/openai",
|
|
332
|
+
udf_name="deepseek_r1_chat",
|
|
333
|
+
infer_params={
|
|
334
|
+
"saas.base_url": "https://api.deepseek.com/v1",
|
|
335
|
+
"saas.api_key": api_key,
|
|
336
|
+
"saas.model": "deepseek-reasoner"
|
|
337
|
+
}
|
|
338
|
+
)
|
|
281
339
|
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
340
|
+
llm.setup_sub_client("code_model", code_llm)
|
|
341
|
+
llm.setup_sub_client("chat_model", chat_llm)
|
|
342
|
+
llm.setup_sub_client("generate_rerank_model", generate_rerank_llm)
|
|
343
|
+
|
|
344
|
+
if args.product_mode == "lite":
|
|
345
|
+
# Set up default models based on configuration
|
|
346
|
+
if args.code_model:
|
|
347
|
+
if "," in args.code_model:
|
|
348
|
+
# Multiple code models specified
|
|
349
|
+
model_names = args.code_model.split(",")
|
|
350
|
+
models = []
|
|
351
|
+
for _, model_name in enumerate(model_names):
|
|
352
|
+
model_name = model_name.strip()
|
|
353
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
354
|
+
code_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
355
|
+
code_model.deploy(
|
|
356
|
+
model_path="",
|
|
357
|
+
pretrained_model_type=model_info["model_type"],
|
|
358
|
+
udf_name=model_name,
|
|
359
|
+
infer_params={
|
|
360
|
+
"saas.base_url": model_info["base_url"],
|
|
361
|
+
"saas.api_key": model_info["api_key"],
|
|
362
|
+
"saas.model": model_info["model_name"]
|
|
363
|
+
}
|
|
364
|
+
)
|
|
365
|
+
models.append(code_model)
|
|
366
|
+
llm.setup_sub_client("code_model", models)
|
|
367
|
+
else:
|
|
368
|
+
# Single code model
|
|
369
|
+
model_info = models_module.get_model_by_name(args.code_model)
|
|
370
|
+
model_name = args.code_model
|
|
371
|
+
code_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
372
|
+
code_model.deploy(
|
|
373
|
+
model_path="",
|
|
374
|
+
pretrained_model_type=model_info["model_type"],
|
|
375
|
+
udf_name=model_name,
|
|
376
|
+
infer_params={
|
|
377
|
+
"saas.base_url": model_info["base_url"],
|
|
378
|
+
"saas.api_key": model_info["api_key"],
|
|
379
|
+
"saas.model": model_info["model_name"]
|
|
380
|
+
}
|
|
381
|
+
)
|
|
382
|
+
llm.setup_sub_client("code_model", code_model)
|
|
383
|
+
|
|
384
|
+
if args.generate_rerank_model:
|
|
385
|
+
if "," in args.generate_rerank_model:
|
|
386
|
+
# Multiple rerank models specified
|
|
387
|
+
model_names = args.generate_rerank_model.split(",")
|
|
388
|
+
models = []
|
|
389
|
+
for _, model_name in enumerate(model_names):
|
|
390
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
391
|
+
rerank_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
392
|
+
rerank_model.deploy(
|
|
393
|
+
model_path="",
|
|
394
|
+
pretrained_model_type=model_info["model_type"],
|
|
395
|
+
udf_name=model_name,
|
|
396
|
+
infer_params={
|
|
397
|
+
"saas.base_url": model_info["base_url"],
|
|
398
|
+
"saas.api_key": model_info["api_key"],
|
|
399
|
+
"saas.model": model_info["model_name"]
|
|
400
|
+
}
|
|
401
|
+
)
|
|
402
|
+
models.append(rerank_model)
|
|
403
|
+
llm.setup_sub_client("generate_rerank_model", models)
|
|
404
|
+
else:
|
|
405
|
+
# Single rerank model
|
|
406
|
+
model_info = models_module.get_model_by_name(args.generate_rerank_model)
|
|
407
|
+
model_name = args.generate_rerank_model
|
|
408
|
+
rerank_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
409
|
+
rerank_model.deploy(
|
|
410
|
+
model_path="",
|
|
411
|
+
pretrained_model_type=model_info["model_type"],
|
|
412
|
+
udf_name=model_name,
|
|
413
|
+
infer_params={
|
|
414
|
+
"saas.base_url": model_info["base_url"],
|
|
415
|
+
"saas.api_key": model_info["api_key"],
|
|
416
|
+
"saas.model": model_info["model_name"]
|
|
417
|
+
}
|
|
418
|
+
)
|
|
419
|
+
llm.setup_sub_client("generate_rerank_model", rerank_model)
|
|
420
|
+
|
|
421
|
+
if args.inference_model:
|
|
422
|
+
model_info = models_module.get_model_by_name(args.inference_model)
|
|
423
|
+
model_name = args.inference_model
|
|
424
|
+
inference_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
425
|
+
inference_model.deploy(
|
|
426
|
+
model_path="",
|
|
427
|
+
pretrained_model_type=model_info["model_type"],
|
|
428
|
+
udf_name=model_name,
|
|
429
|
+
infer_params={
|
|
430
|
+
"saas.base_url": model_info["base_url"],
|
|
431
|
+
"saas.api_key": model_info["api_key"],
|
|
432
|
+
"saas.model": model_info["model_name"]
|
|
433
|
+
}
|
|
434
|
+
)
|
|
435
|
+
llm.setup_sub_client("inference_model", inference_model)
|
|
436
|
+
|
|
437
|
+
|
|
438
|
+
if args.product_mode == "pro":
|
|
439
|
+
if args.code_model:
|
|
440
|
+
if "," in args.code_model:
|
|
441
|
+
# Multiple code models specified
|
|
442
|
+
model_names = args.code_model.split(",")
|
|
443
|
+
models = []
|
|
444
|
+
for _, model_name in enumerate(model_names):
|
|
445
|
+
code_model = byzerllm.ByzerLLM()
|
|
446
|
+
code_model.setup_default_model_name(model_name.strip())
|
|
447
|
+
models.append(code_model)
|
|
448
|
+
llm.setup_sub_client("code_model", models)
|
|
449
|
+
else:
|
|
450
|
+
# Single code model
|
|
288
451
|
code_model = byzerllm.ByzerLLM()
|
|
289
|
-
code_model.setup_default_model_name(
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
|
|
295
|
-
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
|
|
452
|
+
code_model.setup_default_model_name(args.code_model)
|
|
453
|
+
llm.setup_sub_client("code_model", code_model)
|
|
454
|
+
|
|
455
|
+
if args.generate_rerank_model:
|
|
456
|
+
if "," in args.generate_rerank_model:
|
|
457
|
+
# Multiple rerank models specified
|
|
458
|
+
model_names = args.generate_rerank_model.split(",")
|
|
459
|
+
models = []
|
|
460
|
+
for _, model_name in enumerate(model_names):
|
|
461
|
+
rerank_model = byzerllm.ByzerLLM()
|
|
462
|
+
rerank_model.setup_default_model_name(model_name.strip())
|
|
463
|
+
models.append(rerank_model)
|
|
464
|
+
llm.setup_sub_client("generate_rerank_model", models)
|
|
465
|
+
else:
|
|
466
|
+
# Single rerank model
|
|
304
467
|
rerank_model = byzerllm.ByzerLLM()
|
|
305
|
-
rerank_model.setup_default_model_name(
|
|
306
|
-
|
|
307
|
-
llm.setup_sub_client("generate_rerank_model", models)
|
|
308
|
-
else:
|
|
309
|
-
# Single rerank model
|
|
310
|
-
rerank_model = byzerllm.ByzerLLM()
|
|
311
|
-
rerank_model.setup_default_model_name(args.generate_rerank_model)
|
|
312
|
-
llm.setup_sub_client("generate_rerank_model", rerank_model)
|
|
468
|
+
rerank_model.setup_default_model_name(args.generate_rerank_model)
|
|
469
|
+
llm.setup_sub_client("generate_rerank_model", rerank_model)
|
|
313
470
|
|
|
314
|
-
|
|
315
|
-
|
|
316
|
-
|
|
317
|
-
|
|
471
|
+
if args.inference_model:
|
|
472
|
+
inference_model = byzerllm.ByzerLLM()
|
|
473
|
+
inference_model.setup_default_model_name(args.inference_model)
|
|
474
|
+
llm.setup_sub_client("inference_model", inference_model)
|
|
475
|
+
|
|
318
476
|
|
|
319
477
|
if args.human_as_model:
|
|
320
478
|
|
|
@@ -430,7 +588,7 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
430
588
|
EventName.BEFORE_CALL_MODEL, intercept_callback
|
|
431
589
|
)
|
|
432
590
|
# llm.add_event_callback(EventName.AFTER_CALL_MODEL, token_counter_interceptor)
|
|
433
|
-
|
|
591
|
+
|
|
434
592
|
code_models = llm.get_sub_client("code_model")
|
|
435
593
|
if code_models:
|
|
436
594
|
if not isinstance(code_models, list):
|
|
@@ -439,81 +597,210 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
439
597
|
model.add_event_callback(
|
|
440
598
|
EventName.AFTER_CALL_MODEL, token_counter_interceptor
|
|
441
599
|
)
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
|
|
464
|
-
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
|
|
600
|
+
if args.product_mode == "lite":
|
|
601
|
+
if args.chat_model:
|
|
602
|
+
model_name = args.chat_model.strip()
|
|
603
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
604
|
+
chat_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
605
|
+
chat_model.deploy(
|
|
606
|
+
model_path="",
|
|
607
|
+
pretrained_model_type=model_info["model_type"],
|
|
608
|
+
udf_name=model_name,
|
|
609
|
+
infer_params={
|
|
610
|
+
"saas.base_url": model_info["base_url"],
|
|
611
|
+
"saas.api_key": model_info["api_key"],
|
|
612
|
+
"saas.model": model_info["model_name"]
|
|
613
|
+
}
|
|
614
|
+
)
|
|
615
|
+
llm.setup_sub_client("chat_model", chat_model)
|
|
616
|
+
|
|
617
|
+
if args.vl_model:
|
|
618
|
+
model_name = args.vl_model.strip()
|
|
619
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
620
|
+
vl_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
621
|
+
vl_model.deploy(
|
|
622
|
+
model_path="",
|
|
623
|
+
pretrained_model_type="saas/openai",
|
|
624
|
+
udf_name=model_name,
|
|
625
|
+
infer_params={
|
|
626
|
+
"saas.base_url": model_info["base_url"],
|
|
627
|
+
"saas.api_key": model_info["api_key"],
|
|
628
|
+
"saas.model": model_info["model_name"]
|
|
629
|
+
}
|
|
630
|
+
)
|
|
631
|
+
llm.setup_sub_client("vl_model", vl_model)
|
|
632
|
+
|
|
633
|
+
if args.sd_model:
|
|
634
|
+
model_name = args.sd_model.strip()
|
|
635
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
636
|
+
sd_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
637
|
+
sd_model.deploy(
|
|
638
|
+
model_path="",
|
|
639
|
+
pretrained_model_type=model_info["model_type"],
|
|
640
|
+
udf_name=model_name,
|
|
641
|
+
infer_params={
|
|
642
|
+
"saas.base_url": model_info["base_url"],
|
|
643
|
+
"saas.api_key": model_info["api_key"],
|
|
644
|
+
"saas.model": model_info["model_name"]
|
|
645
|
+
}
|
|
646
|
+
)
|
|
647
|
+
llm.setup_sub_client("sd_model", sd_model)
|
|
648
|
+
|
|
649
|
+
if args.text2voice_model:
|
|
650
|
+
model_name = args.text2voice_model.strip()
|
|
651
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
652
|
+
text2voice_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
653
|
+
text2voice_model.deploy(
|
|
654
|
+
model_path="",
|
|
655
|
+
pretrained_model_type=model_info["model_type"],
|
|
656
|
+
udf_name=model_name,
|
|
657
|
+
infer_params={
|
|
658
|
+
"saas.base_url": model_info["base_url"],
|
|
659
|
+
"saas.api_key": model_info["api_key"],
|
|
660
|
+
"saas.model": model_info["model_name"]
|
|
661
|
+
}
|
|
662
|
+
)
|
|
663
|
+
llm.setup_sub_client("text2voice_model", text2voice_model)
|
|
664
|
+
|
|
665
|
+
if args.voice2text_model:
|
|
666
|
+
model_name = args.voice2text_model.strip()
|
|
667
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
668
|
+
voice2text_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
669
|
+
voice2text_model.deploy(
|
|
670
|
+
model_path="",
|
|
671
|
+
pretrained_model_type=model_info["model_type"],
|
|
672
|
+
udf_name=model_name,
|
|
673
|
+
infer_params={
|
|
674
|
+
"saas.base_url": model_info["base_url"],
|
|
675
|
+
"saas.api_key": model_info["api_key"],
|
|
676
|
+
"saas.model": model_info["model_name"]
|
|
677
|
+
}
|
|
678
|
+
)
|
|
679
|
+
llm.setup_sub_client("voice2text_model", voice2text_model)
|
|
680
|
+
|
|
681
|
+
if args.planner_model:
|
|
682
|
+
model_name = args.planner_model.strip()
|
|
683
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
684
|
+
planner_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
685
|
+
planner_model.deploy(
|
|
686
|
+
model_path="",
|
|
687
|
+
pretrained_model_type=model_info["model_type"],
|
|
688
|
+
udf_name=model_name,
|
|
689
|
+
infer_params={
|
|
690
|
+
"saas.base_url": model_info["base_url"],
|
|
691
|
+
"saas.api_key": model_info["api_key"],
|
|
692
|
+
"saas.model": model_info["model_name"]
|
|
693
|
+
}
|
|
694
|
+
)
|
|
695
|
+
llm.setup_sub_client("planner_model", planner_model)
|
|
696
|
+
|
|
697
|
+
if args.designer_model:
|
|
698
|
+
model_name = args.designer_model.strip()
|
|
699
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
700
|
+
designer_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
701
|
+
designer_model.deploy(
|
|
702
|
+
model_path="",
|
|
703
|
+
pretrained_model_type=model_info["model_type"],
|
|
704
|
+
udf_name=model_name,
|
|
705
|
+
infer_params={
|
|
706
|
+
"saas.base_url": model_info["base_url"],
|
|
707
|
+
"saas.api_key": model_info["api_key"],
|
|
708
|
+
"saas.model": model_info["model_name"]
|
|
709
|
+
}
|
|
710
|
+
)
|
|
711
|
+
llm.setup_sub_client("designer_model", designer_model)
|
|
712
|
+
|
|
713
|
+
if args.emb_model:
|
|
714
|
+
model_name = args.emb_model.strip()
|
|
715
|
+
model_info = models_module.get_model_by_name(model_name)
|
|
716
|
+
emb_model = byzerllm.SimpleByzerLLM(default_model_name=model_name)
|
|
717
|
+
emb_model.deploy(
|
|
718
|
+
model_path="",
|
|
719
|
+
pretrained_model_type=model_info["model_type"],
|
|
720
|
+
udf_name=model_name,
|
|
721
|
+
infer_params={
|
|
722
|
+
"saas.base_url": model_info["base_url"],
|
|
723
|
+
"saas.api_key": model_info["api_key"],
|
|
724
|
+
"saas.model": model_info["model_name"]
|
|
725
|
+
}
|
|
726
|
+
)
|
|
727
|
+
llm.setup_sub_client("emb_model", emb_model)
|
|
728
|
+
|
|
729
|
+
if args.product_mode == "pro":
|
|
730
|
+
llm.setup_template(model=args.model, template="auto")
|
|
731
|
+
llm.setup_default_model_name(args.model)
|
|
732
|
+
|
|
733
|
+
llm.setup_max_output_length(args.model, args.model_max_length)
|
|
734
|
+
llm.setup_max_input_length(args.model, args.model_max_input_length)
|
|
735
|
+
llm.setup_extra_generation_params(
|
|
736
|
+
args.model, {"max_length": args.model_max_length}
|
|
474
737
|
)
|
|
475
|
-
llm.setup_sub_client("text2voice_model", text2voice_model)
|
|
476
738
|
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
|
|
739
|
+
if args.chat_model:
|
|
740
|
+
chat_model = byzerllm.ByzerLLM()
|
|
741
|
+
chat_model.setup_default_model_name(args.chat_model)
|
|
742
|
+
llm.setup_sub_client("chat_model", chat_model)
|
|
743
|
+
|
|
744
|
+
if args.vl_model:
|
|
745
|
+
vl_model = byzerllm.ByzerLLM()
|
|
746
|
+
vl_model.setup_default_model_name(args.vl_model)
|
|
747
|
+
vl_model.setup_template(model=args.vl_model, template="auto")
|
|
748
|
+
llm.setup_sub_client("vl_model", vl_model)
|
|
749
|
+
|
|
750
|
+
if args.sd_model:
|
|
751
|
+
sd_model = byzerllm.ByzerLLM()
|
|
752
|
+
sd_model.setup_default_model_name(args.sd_model)
|
|
753
|
+
sd_model.setup_template(model=args.sd_model, template="auto")
|
|
754
|
+
llm.setup_sub_client("sd_model", sd_model)
|
|
755
|
+
|
|
756
|
+
if args.text2voice_model:
|
|
757
|
+
text2voice_model = byzerllm.ByzerLLM()
|
|
758
|
+
text2voice_model.setup_default_model_name(args.text2voice_model)
|
|
759
|
+
text2voice_model.setup_template(
|
|
760
|
+
model=args.text2voice_model, template="auto"
|
|
761
|
+
)
|
|
762
|
+
llm.setup_sub_client("text2voice_model", text2voice_model)
|
|
484
763
|
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
args.index_model,
|
|
493
|
-
args.index_model_max_input_length or args.model_max_input_length,
|
|
494
|
-
)
|
|
495
|
-
index_model.setup_extra_generation_params(
|
|
496
|
-
args.index_model,
|
|
497
|
-
{"max_length": args.index_model_max_length or args.model_max_length},
|
|
498
|
-
)
|
|
499
|
-
llm.setup_sub_client("index_model", index_model)
|
|
764
|
+
if args.voice2text_model:
|
|
765
|
+
voice2text_model = byzerllm.ByzerLLM()
|
|
766
|
+
voice2text_model.setup_default_model_name(args.voice2text_model)
|
|
767
|
+
voice2text_model.setup_template(
|
|
768
|
+
model=args.voice2text_model, template="auto"
|
|
769
|
+
)
|
|
770
|
+
llm.setup_sub_client("voice2text_model", voice2text_model)
|
|
500
771
|
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
772
|
+
if args.index_model:
|
|
773
|
+
index_model = byzerllm.ByzerLLM()
|
|
774
|
+
index_model.setup_default_model_name(args.index_model)
|
|
775
|
+
index_model.setup_max_output_length(
|
|
776
|
+
args.index_model, args.index_model_max_length or args.model_max_length
|
|
777
|
+
)
|
|
778
|
+
index_model.setup_max_input_length(
|
|
779
|
+
args.index_model,
|
|
780
|
+
args.index_model_max_input_length or args.model_max_input_length,
|
|
781
|
+
)
|
|
782
|
+
index_model.setup_extra_generation_params(
|
|
783
|
+
args.index_model,
|
|
784
|
+
{"max_length": args.index_model_max_length or args.model_max_length},
|
|
785
|
+
)
|
|
786
|
+
llm.setup_sub_client("index_model", index_model)
|
|
787
|
+
|
|
788
|
+
if args.emb_model:
|
|
789
|
+
llm.setup_default_emb_model_name(args.emb_model)
|
|
790
|
+
emb_model = byzerllm.ByzerLLM()
|
|
791
|
+
emb_model.setup_default_emb_model_name(args.emb_model)
|
|
792
|
+
# emb_model.setup_template(model=args.emb_model, template="auto")
|
|
793
|
+
llm.setup_sub_client("emb_model", emb_model)
|
|
507
794
|
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
795
|
+
if args.planner_model:
|
|
796
|
+
planner_model = byzerllm.ByzerLLM()
|
|
797
|
+
planner_model.setup_default_model_name(args.planner_model)
|
|
798
|
+
llm.setup_sub_client("planner_model", planner_model)
|
|
512
799
|
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
800
|
+
if args.designer_model:
|
|
801
|
+
designer_model = byzerllm.ByzerLLM()
|
|
802
|
+
designer_model.setup_default_model_name(args.designer_model)
|
|
803
|
+
llm.setup_sub_client("designer_model", designer_model)
|
|
517
804
|
|
|
518
805
|
else:
|
|
519
806
|
llm = None
|
|
@@ -780,7 +1067,7 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
780
1067
|
)
|
|
781
1068
|
|
|
782
1069
|
if llm.get_sub_client("chat_model"):
|
|
783
|
-
chat_llm = llm.get_sub_client("chat_model")
|
|
1070
|
+
chat_llm = llm.get_sub_client("chat_model")
|
|
784
1071
|
else:
|
|
785
1072
|
chat_llm = llm
|
|
786
1073
|
|
|
@@ -947,7 +1234,7 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
947
1234
|
response=result)
|
|
948
1235
|
print("Saved to your memory")
|
|
949
1236
|
return {}
|
|
950
|
-
|
|
1237
|
+
|
|
951
1238
|
if "rag" in args.action:
|
|
952
1239
|
args.enable_rag_search = True
|
|
953
1240
|
args.enable_rag_context = False
|
|
@@ -966,10 +1253,10 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
966
1253
|
)
|
|
967
1254
|
)
|
|
968
1255
|
v = [[response.result,None]]
|
|
969
|
-
else:
|
|
1256
|
+
else:
|
|
970
1257
|
v = chat_llm.stream_chat_oai(
|
|
971
1258
|
conversations=loaded_conversations, delta_mode=True
|
|
972
|
-
)
|
|
1259
|
+
)
|
|
973
1260
|
|
|
974
1261
|
assistant_response = ""
|
|
975
1262
|
markdown_content = ""
|
|
@@ -1010,6 +1297,12 @@ def main(input_args: Optional[List[str]] = None):
|
|
|
1010
1297
|
)
|
|
1011
1298
|
)
|
|
1012
1299
|
except Exception as e:
|
|
1300
|
+
##MARK
|
|
1301
|
+
console.print(Panel(
|
|
1302
|
+
f"Error: {str(e)}",
|
|
1303
|
+
title="Error",
|
|
1304
|
+
border_style="red"
|
|
1305
|
+
))
|
|
1013
1306
|
request_queue.add_request(
|
|
1014
1307
|
args.request_id,
|
|
1015
1308
|
RequestValue(
|