auto-coder 0.1.222__py3-none-any.whl → 0.1.223__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of auto-coder might be problematic. Click here for more details.
- {auto_coder-0.1.222.dist-info → auto_coder-0.1.223.dist-info}/METADATA +1 -1
- {auto_coder-0.1.222.dist-info → auto_coder-0.1.223.dist-info}/RECORD +9 -7
- autocoder/auto_coder_rag_client_mcp.py +170 -0
- autocoder/auto_coder_rag_mcp.py +193 -0
- autocoder/version.py +1 -1
- {auto_coder-0.1.222.dist-info → auto_coder-0.1.223.dist-info}/LICENSE +0 -0
- {auto_coder-0.1.222.dist-info → auto_coder-0.1.223.dist-info}/WHEEL +0 -0
- {auto_coder-0.1.222.dist-info → auto_coder-0.1.223.dist-info}/entry_points.txt +0 -0
- {auto_coder-0.1.222.dist-info → auto_coder-0.1.223.dist-info}/top_level.txt +0 -0
|
@@ -2,13 +2,15 @@ autocoder/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
|
2
2
|
autocoder/auto_coder.py,sha256=BQvCwOc-4XgOtpwQWHCTvcx97XEejdwRordyrCYSf0s,43554
|
|
3
3
|
autocoder/auto_coder_lang.py,sha256=Rtupq6N3_HT7JRhDKdgCBcwRaiAnyCOR_Gsp4jUomrI,3229
|
|
4
4
|
autocoder/auto_coder_rag.py,sha256=illKgzP2bv-Tq50ujsofJnOHdI4pzr0ALtfR8NHHWdQ,22351
|
|
5
|
+
autocoder/auto_coder_rag_client_mcp.py,sha256=WU8WzwuRbJE-W_r94S8PYKOQ32FEv2WPJzCgZII7dBc,6277
|
|
6
|
+
autocoder/auto_coder_rag_mcp.py,sha256=-RrjNwFaS2e5v8XDIrKR-zlUNUE8UBaeOtojffBrvJo,8521
|
|
5
7
|
autocoder/auto_coder_server.py,sha256=XU9b4SBH7zjPPXaTWWHV4_zJm-XYa6njuLQaplYJH_c,20290
|
|
6
8
|
autocoder/benchmark.py,sha256=Ypomkdzd1T3GE6dRICY3Hj547dZ6_inqJbBJIp5QMco,4423
|
|
7
9
|
autocoder/chat_auto_coder.py,sha256=x98afu7PCzYtf2545tIdJP13tI3lixFJg4sSSFtRjeM,95346
|
|
8
10
|
autocoder/chat_auto_coder_lang.py,sha256=ReWukXKVvuzVvpbYk5O9kc1ev7XNmAv3DnuQhmpLmnc,8717
|
|
9
11
|
autocoder/command_args.py,sha256=9aYJ-AmPxP1sQh6ciw04FWHjSn31f2W9afXFwo8wgx4,30441
|
|
10
12
|
autocoder/lang.py,sha256=U6AjVV8Rs1uLyjFCZ8sT6WWuNUxMBqkXXIOs4S120uk,14511
|
|
11
|
-
autocoder/version.py,sha256=
|
|
13
|
+
autocoder/version.py,sha256=hA-WuAig1V69eSYfuZJjxnT6-tLr5fGDFA1I86siMMg,24
|
|
12
14
|
autocoder/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
15
|
autocoder/agent/auto_demand_organizer.py,sha256=NWSAEsEk94vT3lGjfo25kKLMwYdPcpy9e-i21txPasQ,6942
|
|
14
16
|
autocoder/agent/auto_filegroup.py,sha256=CW7bqp0FW1GIEMnl-blyAc2UGT7O9Mom0q66ITz1ckM,6635
|
|
@@ -122,9 +124,9 @@ autocoder/utils/request_event_queue.py,sha256=r3lo5qGsB1dIjzVQ05dnr0z_9Z3zOkBdP1
|
|
|
122
124
|
autocoder/utils/request_queue.py,sha256=nwp6PMtgTCiuwJI24p8OLNZjUiprC-TsefQrhMI-yPE,3889
|
|
123
125
|
autocoder/utils/rest.py,sha256=HawagAap3wMIDROGhY1730zSZrJR_EycODAA5qOj83c,8807
|
|
124
126
|
autocoder/utils/tests.py,sha256=BqphrwyycGAvs-5mhH8pKtMZdObwhFtJ5MC_ZAOiLq8,1340
|
|
125
|
-
auto_coder-0.1.
|
|
126
|
-
auto_coder-0.1.
|
|
127
|
-
auto_coder-0.1.
|
|
128
|
-
auto_coder-0.1.
|
|
129
|
-
auto_coder-0.1.
|
|
130
|
-
auto_coder-0.1.
|
|
127
|
+
auto_coder-0.1.223.dist-info/LICENSE,sha256=HrhfyXIkWY2tGFK11kg7vPCqhgh5DcxleloqdhrpyMY,11558
|
|
128
|
+
auto_coder-0.1.223.dist-info/METADATA,sha256=wma3ZSYec0V5FYUoLcbVDuWamEWG0ClOEoOInJkGnCQ,2615
|
|
129
|
+
auto_coder-0.1.223.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
130
|
+
auto_coder-0.1.223.dist-info/entry_points.txt,sha256=0nzHtHH4pNcM7xq4EBA2toS28Qelrvcbrr59GqD_0Ak,350
|
|
131
|
+
auto_coder-0.1.223.dist-info/top_level.txt,sha256=Jqc0_uJSw2GwoFQAa9iJxYns-2mWla-9ok_Y3Gcznjk,10
|
|
132
|
+
auto_coder-0.1.223.dist-info/RECORD,,
|
|
@@ -0,0 +1,170 @@
|
|
|
1
|
+
from typing import Any, List, Dict, Generator, Optional
|
|
2
|
+
import asyncio
|
|
3
|
+
import httpx
|
|
4
|
+
import argparse
|
|
5
|
+
from mcp.server.models import InitializationOptions
|
|
6
|
+
import mcp.types as types
|
|
7
|
+
from mcp.server import NotificationOptions, Server
|
|
8
|
+
import mcp.server.stdio
|
|
9
|
+
from autocoder.common import AutoCoderArgs
|
|
10
|
+
from byzerllm import ByzerLLM
|
|
11
|
+
from autocoder.lang import lang_desc
|
|
12
|
+
import locale
|
|
13
|
+
import pkg_resources
|
|
14
|
+
from openai import OpenAI
|
|
15
|
+
|
|
16
|
+
class AutoCoderRAGClientMCP:
|
|
17
|
+
def __init__(self, llm: ByzerLLM, args: AutoCoderArgs):
|
|
18
|
+
self.llm = llm
|
|
19
|
+
self.args = args
|
|
20
|
+
|
|
21
|
+
if not args.rag_url:
|
|
22
|
+
raise ValueError("rag_url is required for RAG client mode")
|
|
23
|
+
|
|
24
|
+
if not args.rag_url.startswith("http://"):
|
|
25
|
+
args.rag_url = f"http://{args.rag_url}"
|
|
26
|
+
|
|
27
|
+
if not args.rag_url.endswith("/v1"):
|
|
28
|
+
args.rag_url = args.rag_url.rstrip("/") + "/v1"
|
|
29
|
+
|
|
30
|
+
if not args.rag_token:
|
|
31
|
+
raise ValueError("rag_token is required for RAG client mode")
|
|
32
|
+
|
|
33
|
+
self.client = OpenAI(api_key=args.rag_token, base_url=args.rag_url)
|
|
34
|
+
|
|
35
|
+
self.server = Server("auto_coder_rag_client")
|
|
36
|
+
|
|
37
|
+
async def setup_server(self):
|
|
38
|
+
@self.server.list_tools()
|
|
39
|
+
async def handle_list_tools() -> List[types.Tool]:
|
|
40
|
+
return [
|
|
41
|
+
types.Tool(
|
|
42
|
+
name="rag-search",
|
|
43
|
+
description="Search documents using RAG",
|
|
44
|
+
inputSchema={
|
|
45
|
+
"type": "object",
|
|
46
|
+
"properties": {
|
|
47
|
+
"query": {
|
|
48
|
+
"type": "string",
|
|
49
|
+
"description": "Search query",
|
|
50
|
+
},
|
|
51
|
+
},
|
|
52
|
+
"required": ["query"],
|
|
53
|
+
},
|
|
54
|
+
),
|
|
55
|
+
types.Tool(
|
|
56
|
+
name="rag-chat",
|
|
57
|
+
description="Chat with documents using RAG",
|
|
58
|
+
inputSchema={
|
|
59
|
+
"type": "object",
|
|
60
|
+
"properties": {
|
|
61
|
+
"query": {
|
|
62
|
+
"type": "string",
|
|
63
|
+
"description": "Chat query",
|
|
64
|
+
},
|
|
65
|
+
},
|
|
66
|
+
"required": ["query"],
|
|
67
|
+
},
|
|
68
|
+
),
|
|
69
|
+
]
|
|
70
|
+
|
|
71
|
+
@self.server.call_tool()
|
|
72
|
+
async def handle_call_tool(
|
|
73
|
+
name: str, arguments: Dict[str, Any] | None
|
|
74
|
+
) -> List[types.TextContent | types.ImageContent | types.EmbeddedResource]:
|
|
75
|
+
if not arguments:
|
|
76
|
+
raise ValueError("Missing arguments")
|
|
77
|
+
|
|
78
|
+
if name == "rag-search":
|
|
79
|
+
query = arguments.get("query")
|
|
80
|
+
if not query:
|
|
81
|
+
raise ValueError("Missing query parameter")
|
|
82
|
+
|
|
83
|
+
response = self.client.chat.completions.create(
|
|
84
|
+
messages=[{"role": "user", "content": json.dumps({
|
|
85
|
+
"query": query,
|
|
86
|
+
"only_contexts": False
|
|
87
|
+
})}],
|
|
88
|
+
model=self.args.model,
|
|
89
|
+
max_tokens=self.args.rag_params_max_tokens,
|
|
90
|
+
)
|
|
91
|
+
result = response.choices[0].message.content
|
|
92
|
+
|
|
93
|
+
return [
|
|
94
|
+
types.TextContent(
|
|
95
|
+
type="text",
|
|
96
|
+
text=f"Search results for '{query}':\n\n{result}"
|
|
97
|
+
)
|
|
98
|
+
]
|
|
99
|
+
|
|
100
|
+
elif name == "rag-chat":
|
|
101
|
+
query = arguments.get("query")
|
|
102
|
+
if not query:
|
|
103
|
+
raise ValueError("Missing query parameter")
|
|
104
|
+
|
|
105
|
+
response = self.client.chat.completions.create(
|
|
106
|
+
messages=[{"role": "user", "content": query}],
|
|
107
|
+
model=self.args.model,
|
|
108
|
+
stream=True,
|
|
109
|
+
max_tokens=self.args.rag_params_max_tokens
|
|
110
|
+
)
|
|
111
|
+
|
|
112
|
+
full_response = ""
|
|
113
|
+
for chunk in response:
|
|
114
|
+
if chunk.choices[0].delta.content is not None:
|
|
115
|
+
full_response += chunk.choices[0].delta.content
|
|
116
|
+
|
|
117
|
+
return [
|
|
118
|
+
types.TextContent(
|
|
119
|
+
type="text",
|
|
120
|
+
text=f"Chat response for '{query}':\n\n{full_response}"
|
|
121
|
+
)
|
|
122
|
+
]
|
|
123
|
+
|
|
124
|
+
else:
|
|
125
|
+
raise ValueError(f"Unknown tool: {name}")
|
|
126
|
+
|
|
127
|
+
async def run(self):
|
|
128
|
+
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
|
|
129
|
+
await self.server.run(
|
|
130
|
+
read_stream,
|
|
131
|
+
write_stream,
|
|
132
|
+
InitializationOptions(
|
|
133
|
+
server_name="auto_coder_rag_client",
|
|
134
|
+
server_version="0.1.0",
|
|
135
|
+
capabilities=self.server.get_capabilities(
|
|
136
|
+
notification_options=NotificationOptions(),
|
|
137
|
+
experimental_capabilities={},
|
|
138
|
+
),
|
|
139
|
+
),
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
def parse_args(input_args: Optional[List[str]] = None) -> AutoCoderArgs:
|
|
143
|
+
system_lang, _ = locale.getdefaultlocale()
|
|
144
|
+
lang = "zh" if system_lang and system_lang.startswith("zh") else "en"
|
|
145
|
+
desc = lang_desc[lang]
|
|
146
|
+
|
|
147
|
+
parser = argparse.ArgumentParser(description="Auto Coder RAG Client MCP Server")
|
|
148
|
+
parser.add_argument("--rag_url", required=True, help="RAG server URL")
|
|
149
|
+
parser.add_argument("--rag_token", required=True, help="RAG server token")
|
|
150
|
+
parser.add_argument("--model", default="deepseek_chat", help=desc["model"])
|
|
151
|
+
parser.add_argument("--rag_params_max_tokens", type=int, default=4096, help="Max tokens for RAG response")
|
|
152
|
+
|
|
153
|
+
args = parser.parse_args(input_args)
|
|
154
|
+
return AutoCoderArgs(**vars(args))
|
|
155
|
+
|
|
156
|
+
async def main():
|
|
157
|
+
# Parse command line arguments
|
|
158
|
+
args = parse_args()
|
|
159
|
+
|
|
160
|
+
# Initialize LLM
|
|
161
|
+
llm = ByzerLLM()
|
|
162
|
+
llm.setup_default_model_name(args.model)
|
|
163
|
+
|
|
164
|
+
# Initialize and run server
|
|
165
|
+
server = AutoCoderRAGClientMCP(llm=llm, args=args)
|
|
166
|
+
await server.setup_server()
|
|
167
|
+
await server.run()
|
|
168
|
+
|
|
169
|
+
if __name__ == "__main__":
|
|
170
|
+
asyncio.run(main())
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
from typing import Any, List, Dict, Generator, Optional
|
|
2
|
+
import asyncio
|
|
3
|
+
import httpx
|
|
4
|
+
import argparse
|
|
5
|
+
from mcp.server.models import InitializationOptions
|
|
6
|
+
import mcp.types as types
|
|
7
|
+
from mcp.server import NotificationOptions, Server
|
|
8
|
+
import mcp.server.stdio
|
|
9
|
+
from autocoder.rag.long_context_rag import LongContextRAG
|
|
10
|
+
from autocoder.common import AutoCoderArgs
|
|
11
|
+
from byzerllm import ByzerLLM
|
|
12
|
+
from autocoder.lang import lang_desc
|
|
13
|
+
import locale
|
|
14
|
+
import pkg_resources
|
|
15
|
+
|
|
16
|
+
class AutoCoderRAGMCP:
|
|
17
|
+
def __init__(self, llm: ByzerLLM, args: AutoCoderArgs):
|
|
18
|
+
self.llm = llm
|
|
19
|
+
self.args = args
|
|
20
|
+
self.rag = LongContextRAG(
|
|
21
|
+
llm=llm,
|
|
22
|
+
args=args,
|
|
23
|
+
path=args.source_dir,
|
|
24
|
+
tokenizer_path=args.tokenizer_path
|
|
25
|
+
)
|
|
26
|
+
self.server = Server("auto_coder_rag")
|
|
27
|
+
|
|
28
|
+
async def setup_server(self):
|
|
29
|
+
@self.server.list_tools()
|
|
30
|
+
async def handle_list_tools() -> List[types.Tool]:
|
|
31
|
+
return [
|
|
32
|
+
types.Tool(
|
|
33
|
+
name="rag-search",
|
|
34
|
+
description="Search documents using RAG",
|
|
35
|
+
inputSchema={
|
|
36
|
+
"type": "object",
|
|
37
|
+
"properties": {
|
|
38
|
+
"query": {
|
|
39
|
+
"type": "string",
|
|
40
|
+
"description": "Search query",
|
|
41
|
+
},
|
|
42
|
+
},
|
|
43
|
+
"required": ["query"],
|
|
44
|
+
},
|
|
45
|
+
),
|
|
46
|
+
types.Tool(
|
|
47
|
+
name="rag-chat",
|
|
48
|
+
description="Chat with documents using RAG",
|
|
49
|
+
inputSchema={
|
|
50
|
+
"type": "object",
|
|
51
|
+
"properties": {
|
|
52
|
+
"query": {
|
|
53
|
+
"type": "string",
|
|
54
|
+
"description": "Chat query",
|
|
55
|
+
},
|
|
56
|
+
},
|
|
57
|
+
"required": ["query"],
|
|
58
|
+
},
|
|
59
|
+
),
|
|
60
|
+
]
|
|
61
|
+
|
|
62
|
+
@self.server.call_tool()
|
|
63
|
+
async def handle_call_tool(
|
|
64
|
+
name: str, arguments: Dict[str, Any] | None
|
|
65
|
+
) -> List[types.TextContent | types.ImageContent | types.EmbeddedResource]:
|
|
66
|
+
if not arguments:
|
|
67
|
+
raise ValueError("Missing arguments")
|
|
68
|
+
|
|
69
|
+
if name == "rag-search":
|
|
70
|
+
query = arguments.get("query")
|
|
71
|
+
if not query:
|
|
72
|
+
raise ValueError("Missing query parameter")
|
|
73
|
+
|
|
74
|
+
results = self.rag.search(query)
|
|
75
|
+
return [
|
|
76
|
+
types.TextContent(
|
|
77
|
+
type="text",
|
|
78
|
+
text=f"Search results for '{query}':\n\n" +
|
|
79
|
+
"\n".join([f"- {result.module_name}: {result.source_code[:200]}..."
|
|
80
|
+
for result in results])
|
|
81
|
+
)
|
|
82
|
+
]
|
|
83
|
+
|
|
84
|
+
elif name == "rag-chat":
|
|
85
|
+
query = arguments.get("query")
|
|
86
|
+
if not query:
|
|
87
|
+
raise ValueError("Missing query parameter")
|
|
88
|
+
|
|
89
|
+
response, _ = self.rag.stream_chat_oai(
|
|
90
|
+
conversations=[{"role": "user", "content": query}]
|
|
91
|
+
)
|
|
92
|
+
full_response = "".join([chunk for chunk in response])
|
|
93
|
+
|
|
94
|
+
return [
|
|
95
|
+
types.TextContent(
|
|
96
|
+
type="text",
|
|
97
|
+
text=f"Chat response for '{query}':\n\n{full_response}"
|
|
98
|
+
)
|
|
99
|
+
]
|
|
100
|
+
|
|
101
|
+
else:
|
|
102
|
+
raise ValueError(f"Unknown tool: {name}")
|
|
103
|
+
|
|
104
|
+
async def run(self):
|
|
105
|
+
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
|
|
106
|
+
await self.server.run(
|
|
107
|
+
read_stream,
|
|
108
|
+
write_stream,
|
|
109
|
+
InitializationOptions(
|
|
110
|
+
server_name="auto_coder_rag",
|
|
111
|
+
server_version="0.1.0",
|
|
112
|
+
capabilities=self.server.get_capabilities(
|
|
113
|
+
notification_options=NotificationOptions(),
|
|
114
|
+
experimental_capabilities={},
|
|
115
|
+
),
|
|
116
|
+
),
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
def parse_args(input_args: Optional[List[str]] = None) -> AutoCoderArgs:
|
|
120
|
+
try:
|
|
121
|
+
tokenizer_path = pkg_resources.resource_filename(
|
|
122
|
+
"autocoder", "data/tokenizer.json"
|
|
123
|
+
)
|
|
124
|
+
except FileNotFoundError:
|
|
125
|
+
tokenizer_path = None
|
|
126
|
+
|
|
127
|
+
system_lang, _ = locale.getdefaultlocale()
|
|
128
|
+
lang = "zh" if system_lang and system_lang.startswith("zh") else "en"
|
|
129
|
+
desc = lang_desc[lang]
|
|
130
|
+
|
|
131
|
+
parser = argparse.ArgumentParser(description="Auto Coder RAG MCP Server")
|
|
132
|
+
parser.add_argument("--source_dir", default=".", help="Source directory path")
|
|
133
|
+
parser.add_argument("--tokenizer_path", default=tokenizer_path, help="Path to tokenizer file")
|
|
134
|
+
parser.add_argument("--model", default="deepseek_chat", help=desc["model"])
|
|
135
|
+
parser.add_argument("--index_model", default="", help=desc["index_model"])
|
|
136
|
+
parser.add_argument("--emb_model", default="", help=desc["emb_model"])
|
|
137
|
+
parser.add_argument("--ray_address", default="auto", help=desc["ray_address"])
|
|
138
|
+
parser.add_argument("--required_exts", default="", help=desc["doc_build_parse_required_exts"])
|
|
139
|
+
parser.add_argument("--rag_doc_filter_relevance", type=int, default=5, help="Relevance score threshold for document filtering")
|
|
140
|
+
parser.add_argument("--rag_context_window_limit", type=int, default=56000, help="Context window limit for RAG")
|
|
141
|
+
parser.add_argument("--full_text_ratio", type=float, default=0.7, help="Ratio of full text area in context window")
|
|
142
|
+
parser.add_argument("--segment_ratio", type=float, default=0.2, help="Ratio of segment area in context window")
|
|
143
|
+
parser.add_argument("--index_filter_workers", type=int, default=5, help="Number of workers for document filtering")
|
|
144
|
+
parser.add_argument("--index_filter_file_num", type=int, default=3, help="Maximum number of files to filter")
|
|
145
|
+
parser.add_argument("--host", default="", help="Server host address")
|
|
146
|
+
parser.add_argument("--port", type=int, default=8000, help="Server port")
|
|
147
|
+
parser.add_argument("--monitor_mode", action="store_true", help="Enable document monitoring mode")
|
|
148
|
+
parser.add_argument("--enable_hybrid_index", action="store_true", help="Enable hybrid index")
|
|
149
|
+
parser.add_argument("--disable_auto_window", action="store_true", help="Disable automatic window adaptation")
|
|
150
|
+
parser.add_argument("--disable_segment_reorder", action="store_true", help="Disable segment reordering")
|
|
151
|
+
parser.add_argument("--disable_inference_enhance", action="store_true", help="Disable inference enhancement")
|
|
152
|
+
parser.add_argument("--inference_deep_thought", action="store_true", help="Enable deep thought in inference")
|
|
153
|
+
parser.add_argument("--inference_slow_without_deep_thought", action="store_true", help="Enable slow inference without deep thought")
|
|
154
|
+
parser.add_argument("--inference_compute_precision", type=int, default=64, help="Inference compute precision")
|
|
155
|
+
parser.add_argument("--data_cells_max_num", type=int, default=2000, help="Maximum number of data cells to process")
|
|
156
|
+
parser.add_argument("--recall_model", default="", help="Model used for document recall")
|
|
157
|
+
parser.add_argument("--chunk_model", default="", help="Model used for document chunking")
|
|
158
|
+
parser.add_argument("--qa_model", default="", help="Model used for question answering")
|
|
159
|
+
|
|
160
|
+
args = parser.parse_args(input_args)
|
|
161
|
+
return AutoCoderArgs(**vars(args)),args
|
|
162
|
+
|
|
163
|
+
async def main():
|
|
164
|
+
# Parse command line arguments
|
|
165
|
+
args,raw_rags = parse_args()
|
|
166
|
+
|
|
167
|
+
# Initialize LLM
|
|
168
|
+
llm = ByzerLLM()
|
|
169
|
+
llm.setup_default_model_name(args.model)
|
|
170
|
+
|
|
171
|
+
# Setup sub models if specified
|
|
172
|
+
if raw_rags.recall_model:
|
|
173
|
+
recall_model = ByzerLLM()
|
|
174
|
+
recall_model.setup_default_model_name(args.recall_model)
|
|
175
|
+
llm.setup_sub_client("recall_model", recall_model)
|
|
176
|
+
|
|
177
|
+
if raw_rags.chunk_model:
|
|
178
|
+
chunk_model = ByzerLLM()
|
|
179
|
+
chunk_model.setup_default_model_name(args.chunk_model)
|
|
180
|
+
llm.setup_sub_client("chunk_model", chunk_model)
|
|
181
|
+
|
|
182
|
+
if raw_rags.qa_model:
|
|
183
|
+
qa_model = ByzerLLM()
|
|
184
|
+
qa_model.setup_default_model_name(args.qa_model)
|
|
185
|
+
llm.setup_sub_client("qa_model", qa_model)
|
|
186
|
+
|
|
187
|
+
# Initialize and run server
|
|
188
|
+
server = AutoCoderRAGMCP(llm=llm, args=args)
|
|
189
|
+
await server.setup_server()
|
|
190
|
+
await server.run()
|
|
191
|
+
|
|
192
|
+
if __name__ == "__main__":
|
|
193
|
+
asyncio.run(main())
|
autocoder/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "0.1.
|
|
1
|
+
__version__ = "0.1.223"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|