audio2midi 0.3.0__py2.py3-none-any.whl → 0.4.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,133 @@
1
+ from keras.layers import Input, Reshape, Conv2D, BatchNormalization
2
+ from keras.layers import MaxPool2D, Dropout, Permute, Flatten, Dense
3
+ from keras.models import Model
4
+ from keras.callbacks import Callback
5
+ from hmmlearn.hmm import CategoricalHMM
6
+ from math import ceil as math_ceil
7
+ from typing import Callable
8
+ from numpy.lib.stride_tricks import as_strided
9
+ from librosa import load as librosa_load
10
+ from pretty_midi_fix import PrettyMIDI , PitchBend , Note ,Instrument
11
+ import numpy as np
12
+ from huggingface_hub import hf_hub_download
13
+
14
+ class PredictProgressCallback(Callback):
15
+ def __init__(self, total_batches,progress_callback: Callable[[int, int], None] = None):
16
+ super().__init__()
17
+ self.total_batches = total_batches
18
+ self.progress_callback = progress_callback
19
+ def on_predict_begin(self, logs=None):
20
+ if self.progress_callback:
21
+ self.progress_callback(0,self.total_batches)
22
+ def on_predict_batch_end(self, batch, logs=None):
23
+ if self.progress_callback:
24
+ self.progress_callback(batch,self.total_batches)
25
+ def on_predict_end(self, logs=None):
26
+ if self.progress_callback:
27
+ self.progress_callback(self.total_batches,self.total_batches)
28
+
29
+
30
+ class CrepeTF():
31
+ def __init__(self,model_type="full",model_path=None):
32
+ if not model_path:
33
+ model_path = hf_hub_download("shethjenil/Audio2Midi_Models",f"crepe_{model_type}.h5")
34
+ model_type_importance = {'tiny': 4, 'small': 8, 'medium': 16, 'large': 24, 'full': 32}[model_type]
35
+ filters = [n * model_type_importance for n in [32, 4, 4, 4, 8, 16]]
36
+ widths = [512, 64, 64, 64, 64, 64]
37
+ strides = [(4, 1), (1, 1), (1, 1), (1, 1), (1, 1), (1, 1)]
38
+ x = Input(shape=(1024,), name='input', dtype='float32')
39
+ y = Reshape(target_shape=(1024, 1, 1), name='input-reshape')(x)
40
+ layers = [1, 2, 3, 4, 5, 6]
41
+ for l, f, w, s in zip(layers, filters, widths, strides):
42
+ y = Conv2D(f, (w, 1), strides=s, padding='same', activation='relu', name="conv%d" % l)(y)
43
+ y = BatchNormalization(name="conv%d-BN" % l)(y)
44
+ y = MaxPool2D(pool_size=(2, 1), strides=None, padding='valid', name="conv%d-maxpool" % l)(y)
45
+ y = Dropout(0.25, name="conv%d-dropout" % l)(y)
46
+ y = Permute((2, 1, 3), name="transpose")(y)
47
+ y = Flatten(name="flatten")(y)
48
+ y = Dense(360, activation='sigmoid', name="classifier")(y)
49
+ self.model = Model(inputs=x, outputs=y)
50
+ self.model.load_weights(model_path)
51
+ self.model.compile('adam', 'binary_crossentropy')
52
+ self.cents_mapping=(np.linspace(0, 7180, 360) + 1997.3794084376191)
53
+
54
+ def to_local_average_cents(self, salience, center=None):
55
+ if salience.ndim == 1:
56
+ if center is None:
57
+ center = int(np.argmax(salience))
58
+ start = max(0, center - 4)
59
+ end = min(len(salience), center + 5)
60
+ salience = salience[start:end]
61
+ product_sum = np.sum(salience * self.cents_mapping[start:end])
62
+ weight_sum = np.sum(salience)
63
+ return product_sum / weight_sum
64
+ if salience.ndim == 2:
65
+ return np.array([self.to_local_average_cents(salience[i, :]) for i in range(salience.shape[0])])
66
+ raise Exception("label should be either 1d or 2d ndarray")
67
+
68
+ def to_viterbi_cents(self,salience):
69
+ starting = np.ones(360) / 360
70
+ xx, yy = np.meshgrid(range(360), range(360))
71
+ transition = np.maximum(12 - abs(xx - yy), 0)
72
+ transition = transition / np.sum(transition, axis=1)[:, None]
73
+ self_emission = 0.1
74
+ emission = (np.eye(360) * self_emission + np.ones(shape=(360, 360)) * ((1 - self_emission) / 360))
75
+ model = CategoricalHMM(360, starting, transition)
76
+ model.startprob_, model.transmat_, model.emissionprob_ = starting, transition, emission
77
+ observations = np.argmax(salience, axis=1)
78
+ path = model.predict(observations.reshape(-1, 1), [len(observations)])
79
+ return np.array([self.to_local_average_cents(salience[i, :], path[i]) for i in range(len(observations))])
80
+
81
+ def get_activation(self,audio:np.ndarray,center, step_size, progress_callback,batch_size):
82
+ if center:
83
+ audio = np.pad(audio, 512, mode='constant', constant_values=0)
84
+ hop_length = int(16000 * step_size / 1000)
85
+ n_frames = 1 + int((len(audio) - 1024) / hop_length)
86
+ frames = as_strided(audio, shape=(1024, n_frames),strides=(audio.itemsize, hop_length * audio.itemsize))
87
+ frames = frames.transpose().copy()
88
+ frames -= np.mean(frames, axis=1)[:, np.newaxis]
89
+ frames /= np.clip(np.std(frames, axis=1)[:, np.newaxis], 1e-8, None)
90
+ return self.model.predict(frames,batch_size,0,callbacks=[PredictProgressCallback(math_ceil(len(frames) / batch_size),progress_callback)])
91
+
92
+ def model_predict(self,audio:np.ndarray,viterbi, center, step_size,progress_callback,batch_size):
93
+ activation = self.get_activation(audio.astype(np.float32), center, step_size,progress_callback,batch_size)
94
+ confidence = activation.max(axis=1)
95
+ cents = self.to_viterbi_cents(activation) if viterbi else self.to_local_average_cents(activation)
96
+ frequency = 10 * 2 ** (cents / 1200)
97
+ frequency[np.isnan(frequency)] = 0
98
+ time = np.arange(confidence.shape[0]) * step_size / 1000.0
99
+ return time, frequency, confidence
100
+
101
+ def predict(self,audio_path,viterbi=False, center=True, step_size=10,min_confidence=0.8,batch_size=32,progress_callback: Callable[[int, int], None] = None,output_file= "output.mid"):
102
+ time, frequency, confidence = self.model_predict(librosa_load(audio_path, sr=16000, mono=True)[0],viterbi,center,step_size,progress_callback,batch_size)
103
+ mask = confidence > min_confidence
104
+ times = time[mask]
105
+ frequencies = frequency[mask]
106
+ midi_floats = 69 + 12 * np.log2(frequencies / 440.0)
107
+ midi_notes = np.round(midi_floats).astype(int)
108
+ pitch_offsets = midi_floats - midi_notes # in semitones
109
+ midi = PrettyMIDI()
110
+ instrument = Instrument(program=40) # e.g., Violin for pitch bend demo
111
+ if len(times) > 0:
112
+ current_note = midi_notes[0]
113
+ note_start = times[0]
114
+ for i in range(1, len(times)):
115
+ if midi_notes[i] != current_note or i == len(times) - 1:
116
+ note_end = times[i]
117
+ if 0 <= current_note <= 127:
118
+ note = Note(velocity=100,pitch=int(current_note),start=note_start,end=note_end)
119
+ instrument.notes.append(note)
120
+ seg_mask = (times >= note_start) & (times <= note_end)
121
+ seg_times = times[seg_mask]
122
+ seg_offsets = pitch_offsets[seg_mask]
123
+ for t, offset in zip(seg_times, seg_offsets):
124
+ # Assuming pitch bend range is +/- 2 semitones
125
+ bend_value = int(offset / 2.0 * 8192) # Scale to -8192 to +8191
126
+ bend_value = np.clip(bend_value, -8192, 8191)
127
+ pb = PitchBend(pitch=bend_value, time=t)
128
+ instrument.pitch_bends.append(pb)
129
+ current_note = midi_notes[i]
130
+ note_start = times[i]
131
+ midi.instruments.append(instrument)
132
+ midi.write(output_file)
133
+ return output_file
@@ -40,7 +40,7 @@ class Normal_Pitch_Det:
40
40
  midi_sequence = self.clean_midi_sequence(self.smooth_pitch_sequence(pitches, magnitudes,threshold),min_note_length)
41
41
  time_per_frame = audio_duration / len(midi_sequence)
42
42
  pm = PrettyMIDI(initial_tempo=tempo_bpm)
43
- instrument = Instrument(program=0) # Acoustic Grand Piano
43
+ instrument = Instrument(program=40)
44
44
  last_note = None
45
45
  start_time = 0
46
46
  for i, note in enumerate(midi_sequence):
@@ -135,13 +135,13 @@ class Guitar_Pitch_Det:
135
135
  # Process all segments
136
136
  notes_data = [self.estimate_segment_note(cqt_db, boundaries, i, sr, tempo_bpm, threshold_db,round_to_sixteenth) for i in range(len(boundaries) - 1)]
137
137
  pm = PrettyMIDI(initial_tempo=tempo_bpm)
138
- piano = Instrument(program=40)
138
+ instrument = Instrument(program=40)
139
139
  note_time = 0.0
140
140
  for (pitch, duration, velocity) in notes_data:
141
141
  if pitch is not None:
142
142
  # Convert duration in beats to duration in seconds for PrettyMIDI
143
143
  duration_sec = duration * (60 / tempo_bpm)
144
- piano.notes.append(Note(velocity, pitch, note_time, note_time + duration_sec))
144
+ instrument.notes.append(Note(velocity, pitch, note_time, note_time + duration_sec))
145
145
  note_time += duration_sec # Increment note_time by duration in seconds
146
146
  else:
147
147
  # If it's a rest, just advance the time
@@ -0,0 +1,207 @@
1
+ Metadata-Version: 2.4
2
+ Name: audio2midi
3
+ Version: 0.4.0
4
+ Summary: Audio To Midi
5
+ Author-email: dummyjenil <dummyjenil@gmail.com>
6
+ Provides-Extra: all
7
+ Requires-Dist: essentia; extra == 'all'
8
+ Requires-Dist: hmmlearn; extra == 'all'
9
+ Requires-Dist: huggingface-hub; extra == 'all'
10
+ Requires-Dist: keras; extra == 'all'
11
+ Requires-Dist: librosa; extra == 'all'
12
+ Requires-Dist: mir-eval; extra == 'all'
13
+ Requires-Dist: nnaudio; extra == 'all'
14
+ Requires-Dist: numpy==1.26.4; extra == 'all'
15
+ Requires-Dist: pretty-midi; extra == 'all'
16
+ Requires-Dist: pretty-midi-fix; extra == 'all'
17
+ Requires-Dist: resampy; extra == 'all'
18
+ Requires-Dist: scipy; extra == 'all'
19
+ Requires-Dist: tensorflow; extra == 'all'
20
+ Requires-Dist: torch; extra == 'all'
21
+ Requires-Dist: torchaudio; extra == 'all'
22
+ Requires-Dist: transformers; extra == 'all'
23
+ Requires-Dist: vamp; extra == 'all'
24
+ Provides-Extra: basic-pitch-pitch-detector
25
+ Requires-Dist: huggingface-hub; extra == 'basic-pitch-pitch-detector'
26
+ Requires-Dist: librosa; extra == 'basic-pitch-pitch-detector'
27
+ Requires-Dist: nnaudio; extra == 'basic-pitch-pitch-detector'
28
+ Requires-Dist: numpy; extra == 'basic-pitch-pitch-detector'
29
+ Requires-Dist: pretty-midi-fix; extra == 'basic-pitch-pitch-detector'
30
+ Requires-Dist: scipy; extra == 'basic-pitch-pitch-detector'
31
+ Requires-Dist: torch; extra == 'basic-pitch-pitch-detector'
32
+ Provides-Extra: crepe-pitch-detector
33
+ Requires-Dist: hmmlearn; extra == 'crepe-pitch-detector'
34
+ Requires-Dist: huggingface-hub; extra == 'crepe-pitch-detector'
35
+ Requires-Dist: librosa; extra == 'crepe-pitch-detector'
36
+ Requires-Dist: numpy; extra == 'crepe-pitch-detector'
37
+ Requires-Dist: pretty-midi-fix; extra == 'crepe-pitch-detector'
38
+ Requires-Dist: tensorflow; extra == 'crepe-pitch-detector'
39
+ Requires-Dist: torch; extra == 'crepe-pitch-detector'
40
+ Requires-Dist: tqdm; extra == 'crepe-pitch-detector'
41
+ Provides-Extra: crepe-pitch-detector-tf
42
+ Requires-Dist: hmmlearn; extra == 'crepe-pitch-detector-tf'
43
+ Requires-Dist: huggingface-hub; extra == 'crepe-pitch-detector-tf'
44
+ Requires-Dist: keras; extra == 'crepe-pitch-detector-tf'
45
+ Requires-Dist: librosa; extra == 'crepe-pitch-detector-tf'
46
+ Requires-Dist: numpy; extra == 'crepe-pitch-detector-tf'
47
+ Requires-Dist: pretty-midi-fix; extra == 'crepe-pitch-detector-tf'
48
+ Requires-Dist: tensorflow; extra == 'crepe-pitch-detector-tf'
49
+ Provides-Extra: librosa-pitch-detector
50
+ Requires-Dist: librosa; extra == 'librosa-pitch-detector'
51
+ Requires-Dist: numpy; extra == 'librosa-pitch-detector'
52
+ Requires-Dist: pretty-midi-fix; extra == 'librosa-pitch-detector'
53
+ Provides-Extra: melodia-pitch-detector
54
+ Requires-Dist: huggingface-hub; extra == 'melodia-pitch-detector'
55
+ Requires-Dist: librosa; extra == 'melodia-pitch-detector'
56
+ Requires-Dist: numpy; extra == 'melodia-pitch-detector'
57
+ Requires-Dist: pretty-midi-fix; extra == 'melodia-pitch-detector'
58
+ Requires-Dist: scipy; extra == 'melodia-pitch-detector'
59
+ Requires-Dist: vamp; extra == 'melodia-pitch-detector'
60
+ Provides-Extra: pop2piano
61
+ Requires-Dist: essentia; extra == 'pop2piano'
62
+ Requires-Dist: huggingface-hub; extra == 'pop2piano'
63
+ Requires-Dist: librosa; extra == 'pop2piano'
64
+ Requires-Dist: numpy==1.26.4; extra == 'pop2piano'
65
+ Requires-Dist: pretty-midi; extra == 'pop2piano'
66
+ Requires-Dist: pretty-midi-fix; extra == 'pop2piano'
67
+ Requires-Dist: resampy; extra == 'pop2piano'
68
+ Requires-Dist: scipy; extra == 'pop2piano'
69
+ Requires-Dist: torch; extra == 'pop2piano'
70
+ Requires-Dist: transformers; extra == 'pop2piano'
71
+ Provides-Extra: violin-pitch-detector
72
+ Requires-Dist: huggingface-hub; extra == 'violin-pitch-detector'
73
+ Requires-Dist: librosa; extra == 'violin-pitch-detector'
74
+ Requires-Dist: mir-eval; extra == 'violin-pitch-detector'
75
+ Requires-Dist: numpy; extra == 'violin-pitch-detector'
76
+ Requires-Dist: pretty-midi-fix; extra == 'violin-pitch-detector'
77
+ Requires-Dist: scipy; extra == 'violin-pitch-detector'
78
+ Requires-Dist: torch; extra == 'violin-pitch-detector'
79
+ Requires-Dist: torchaudio; extra == 'violin-pitch-detector'
80
+ Description-Content-Type: text/markdown
81
+
82
+ [Audio2Midi Demo](https://huggingface.co/spaces/shethjenil/Audio2Midi)
83
+ ---
84
+
85
+ [Github](https://github.com/dummyjenil/audio2midi)
86
+ ---
87
+
88
+ ```bash
89
+ pip install audio2midi[all] audio2midi[pop2piano] audio2midi[violin_pitch_detector] audio2midi[crepe_pitch_detector] audio2midi[crepe_pitch_detector_tf] audio2midi[melodia_pitch_detector] audio2midi[basic_pitch_pitch_detector] audio2midi[librosa_pitch_detector]
90
+ ```
91
+ ---
92
+
93
+ violin_model_capacity crepe_model_capacity
94
+
95
+ * tiny
96
+ * small
97
+ * medium
98
+ * large
99
+ * full
100
+ ---
101
+
102
+ ``` python
103
+ from audio2midi.librosa_pitch_detector import Normal_Pitch_Det , Guitar_Pitch_Det
104
+
105
+ audio_path = "audio.mp3"
106
+ Normal_Pitch_Det().predict(audio_path)
107
+ Guitar_Pitch_Det().predict(audio_path)
108
+ ```
109
+
110
+ ---
111
+
112
+ ``` python
113
+ from os import environ
114
+ from huggingface_hub import hf_hub_download
115
+ from shutil import unpack_archive
116
+ from pathlib import Path
117
+ from audio2midi.melodia_pitch_detector import Melodia
118
+ from platform import system as platform_system , architecture as platform_architecture
119
+
120
+ unpack_archive(hf_hub_download("shethjenil/Audio2Midi_Models",f"melodia_vamp_plugin_{'win' if (system := platform_system()) == 'Windows' else 'mac' if system == 'Darwin' else 'linux64' if (arch := platform_architecture()[0]) == '64bit' else 'linux32' if arch == '32bit' else None}.zip"),"vamp_melodia",format="zip")
121
+ environ['VAMP_PATH'] = str(Path("vamp_melodia").absolute())
122
+ Melodia().predict(audio_path)
123
+ ```
124
+
125
+ ---
126
+
127
+ ```python
128
+ from audio2midi.basic_pitch_pitch_detector import BasicPitch
129
+ from audio2midi.crepe_pitch_detector import Crepe
130
+ from audio2midi.violin_pitch_detector import Violin_Pitch_Det
131
+ from audio2midi.pop2piano import Pop2Piano
132
+ from torch import device as Device
133
+ from torch.cuda import is_available as cuda_is_available
134
+ device = Device("cuda" if cuda_is_available() else "cpu")
135
+ Crepe().predict(audio_path)
136
+ Pop2Piano(device=device).predict(audio_path)
137
+ Violin_Pitch_Det(device=device).predict(audio_path)
138
+ BasicPitch(device=device).predict(audio_path)
139
+ ```
140
+
141
+ ---
142
+
143
+ ```python
144
+ from audio2midi.basic_pitch_pitch_detector import BasicPitch
145
+ from audio2midi.crepe_pitch_detector_tf import CrepeTF
146
+ from audio2midi.crepe_pitch_detector import Crepe
147
+ from audio2midi.librosa_pitch_detector import Normal_Pitch_Det , Guitar_Pitch_Det
148
+ from audio2midi.melodia_pitch_detector import Melodia
149
+ from audio2midi.pop2piano import Pop2Piano
150
+ from audio2midi.violin_pitch_detector import Violin_Pitch_Det
151
+
152
+ from os import environ
153
+ from huggingface_hub import hf_hub_download
154
+ from shutil import unpack_archive
155
+ from pathlib import Path
156
+ from platform import system as platform_system , architecture as platform_architecture
157
+ unpack_archive(hf_hub_download("shethjenil/Audio2Midi_Models",f"melodia_vamp_plugin_{'win' if (system := platform_system()) == 'Windows' else 'mac' if system == 'Darwin' else 'linux64' if (arch := platform_architecture()[0]) == '64bit' else 'linux32' if arch == '32bit' else None}.zip"),"vamp_melodia",format="zip")
158
+ environ['VAMP_PATH'] = str(Path("vamp_melodia").absolute())
159
+
160
+ from os import getenv
161
+ from torch import device as Device
162
+ from torch.cuda import is_available as cuda_is_available
163
+ device = Device("cuda" if cuda_is_available() else "cpu")
164
+
165
+ import gradio as gr
166
+ with gr.Blocks() as midi_viz_ui:
167
+ midi = gr.File(label="Upload MIDI")
168
+ sf = gr.File(label="Upload SoundFont")
169
+ output_html = gr.HTML(f'''
170
+ <div style="display: flex; justify-content: center; align-items: center;">
171
+ <iframe style="width: 100%; height: 500px;" src="https://shethjenil-midivizsf2.static.hf.space/index_single_file.html" id="midiviz"></iframe>
172
+ </div>''')
173
+ midi.upload(None, inputs=midi, js="""
174
+ async (file) => {
175
+ if (!file || !file.url || !file.orig_name) return;
176
+ const iframe = document.getElementById("midiviz");
177
+ iframe.contentWindow.postMessage({
178
+ type: "load-midi",
179
+ url: file.url,
180
+ name: file.orig_name
181
+ }, "*");
182
+ }
183
+ """)
184
+ sf.upload(None, inputs=sf, js="""
185
+ async (file) => {
186
+ if (!file || !file.url || !file.orig_name) return;
187
+ const iframe = document.getElementById("midiviz");
188
+ iframe.contentWindow.postMessage({
189
+ type: "load-sf",
190
+ url: file.url,
191
+ name: file.orig_name
192
+ }, "*");
193
+ }
194
+ """)
195
+
196
+ gr.TabbedInterface([
197
+ gr.Interface(Normal_Pitch_Det().predict,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(120,label="BPM"),gr.Number(512,label="HOP Len"),gr.Number(2,label="minimum note length"),gr.Number(0.1,label="threshold")],gr.File(label="Midi File")),
198
+ gr.Interface(Guitar_Pitch_Det().predict,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(4,label="mag_exp"),gr.Number(-61,label="Threshold"),gr.Number(6,label="Pre_post_max"),gr.Checkbox(False,label="backtrack"),gr.Checkbox(False,label="round_to_sixteenth"),gr.Number(1024,label="hop_length"),gr.Number(72,label="n_bins"),gr.Number(12,label="bins_per_octave")],gr.File(label="Midi File")),
199
+ gr.Interface(Melodia().predict,[gr.Audio(type="filepath",label="Input Audio"),gr.Number(120,label="BPM",step=30),gr.Number(0.25,label="smoothness",step=0.05,info="Smooth the pitch sequence with a median filter of the provided duration (in seconds)."),gr.Number(0.1,label="minimum duration",step=0.1,info="Minimum allowed duration for note (in seconds). Shorter notes will be removed."),gr.Number(128,label="HOP")],gr.File(label="Midi File")),
200
+ gr.Interface(BasicPitch(device=device).predict,[gr.Audio(type="filepath", label="Upload Audio"),gr.Number(0.5,label="onset_thresh",info="Minimum amplitude of an onset activation to be considered an onset."),gr.Number(0.3,label="frame_thresh",info="Minimum energy requirement for a frame to be considered present."),gr.Number(127.70,label="min_note_len",info="The minimum allowed note length in milliseconds."),gr.Number(120,label="midi_tempo"),gr.Checkbox(True,label="infer_onsets",info="add additional onsets when there are large differences in frame amplitudes."),gr.Checkbox(True,label="include_pitch_bends",info="include pitch bends."),gr.Checkbox(False,label="multiple_pitch_bends",info="allow overlapping notes in midi file to have pitch bends."),gr.Checkbox(True,label="melodia_trick",info="Use the melodia post-processing step.")],gr.File(label="Download Midi File")),
201
+ gr.Interface(Violin_Pitch_Det(device=device,model_capacity=getenv("violin_model_capacity","full")).predict, [gr.Audio(label="Upload your Audio file",type="filepath"),gr.Number(32,label="Batch size"),gr.Radio(["spotify","tiktok"],value="spotify",label="Post Processing"),gr.Checkbox(True,label="include_pitch_bends")],gr.File(label="Download MIDI file")),
202
+ gr.Interface(Crepe(getenv("crepe_model_capacity","full")).predict,[gr.Audio(type="filepath",label="Input Audio"),gr.Checkbox(False,label="viterbi",info="Apply viterbi smoothing to the estimated pitch curve"),gr.Checkbox(True,label="center"),gr.Number(10,label="step size",info="The step size in milliseconds for running pitch estimation."),gr.Number(0.8,label="minimum confidence"),gr.Number(32,label="batch size")],gr.File(label="Midi File")),
203
+ gr.Interface(CrepeTF(getenv("crepe_model_capacity","full")).predict,[gr.Audio(type="filepath",label="Input Audio"),gr.Checkbox(False,label="viterbi",info="Apply viterbi smoothing to the estimated pitch curve"),gr.Checkbox(True,label="center"),gr.Number(10,label="step size",info="The step size in milliseconds for running pitch estimation."),gr.Number(0.8,label="minimum confidence"),gr.Number(32,label="batch size")],gr.File(label="Midi File")),
204
+ gr.Interface(Pop2Piano(device).predict,[gr.Audio(label="Input Audio",type="filepath"),gr.Number(1, minimum=1, maximum=21, label="Composer"),gr.Number(2,label="Details in Piano"),gr.Number(1,label="Efficiency of Piano"),gr.Radio([1,2,4],label="steps per beat",value=2)],gr.File(label="MIDI File")),
205
+ midi_viz_ui
206
+ ],["Normal Pitch Detection","Guitar Based Pitch Detection","Melodia","Spotify Pitch Detection","Violin Based Pitch Detection","Crepe Pitch Detection","Crepe Pitch Detection TF","Pop2Piano","Midi Vizulizer"]).launch()
207
+ ```
@@ -1,11 +1,12 @@
1
1
  audio2midi/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  audio2midi/basic_pitch_pitch_detector.py,sha256=6ZH4SKL9qAj6ODSr84qr_QmNvDYOuZRUrbVCOB9430E,30663
3
- audio2midi/crepe_pitch_detector.py,sha256=UgyN9oJOrRsWrbtsyD1r4OiX8StRg5o_HrMq0JDKj4o,7605
4
- audio2midi/librosa_pitch_detector.py,sha256=CdPDt72zYRjr3u7dVBdq3wrGoi96i2PV-LLvqWvHmpI,7790
3
+ audio2midi/crepe_pitch_detector.py,sha256=63PLW5pQ_WSlIr_bOSAv7wjIujA06Iy-pTQab3InPR4,34675
4
+ audio2midi/crepe_pitch_detector_tf.py,sha256=obOK9zWeAFWKhVuZAXG-SM2Cn-vVBjQMU08hwwjDvKA,7607
5
+ audio2midi/librosa_pitch_detector.py,sha256=btwYkNqVgkf9rdkBtH2Q5DqdNVKtO9iZ88SvcbQK1jk,7777
5
6
  audio2midi/melodia_pitch_detector.py,sha256=YFt9NKyZ_Dyt_3ltInUz6QZgovmmPK6gR9EPlL_aV5Y,2402
6
7
  audio2midi/pop2piano.py,sha256=kBAF1kY-5Ctu92etNLo4Clr1hkW1B5OCvd-XT7SrI8g,125685
7
8
  audio2midi/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
9
  audio2midi/violin_pitch_detector.py,sha256=C0--R0NaYcIyAFELGgebbs3yjAnQeVdtpk4iZ2NbUIA,61650
9
- audio2midi-0.3.0.dist-info/METADATA,sha256=kgJtW1RMkRqLbO3Do2XNVNaTs0CvRjWii6R2trW6Afg,4887
10
- audio2midi-0.3.0.dist-info/WHEEL,sha256=tkmg4JIqwd9H8mL30xA7crRmoStyCtGp0VWshokd1Jc,105
11
- audio2midi-0.3.0.dist-info/RECORD,,
10
+ audio2midi-0.4.0.dist-info/METADATA,sha256=n3x7UbE3N0APhY1HhqyU6QKbOgRTcl5sY6h2_ZTVU6M,12003
11
+ audio2midi-0.4.0.dist-info/WHEEL,sha256=tkmg4JIqwd9H8mL30xA7crRmoStyCtGp0VWshokd1Jc,105
12
+ audio2midi-0.4.0.dist-info/RECORD,,
@@ -1,106 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: audio2midi
3
- Version: 0.3.0
4
- Summary: Audio To Midi
5
- Author-email: dummyjenil <dummyjenil@gmail.com>
6
- Provides-Extra: all
7
- Requires-Dist: essentia; extra == 'all'
8
- Requires-Dist: hmmlearn; extra == 'all'
9
- Requires-Dist: huggingface-hub; extra == 'all'
10
- Requires-Dist: keras; extra == 'all'
11
- Requires-Dist: librosa; extra == 'all'
12
- Requires-Dist: mir-eval; extra == 'all'
13
- Requires-Dist: nnaudio; extra == 'all'
14
- Requires-Dist: numpy==1.26.4; extra == 'all'
15
- Requires-Dist: pretty-midi; extra == 'all'
16
- Requires-Dist: pretty-midi-fix; extra == 'all'
17
- Requires-Dist: resampy; extra == 'all'
18
- Requires-Dist: scipy; extra == 'all'
19
- Requires-Dist: tensorflow; extra == 'all'
20
- Requires-Dist: torch; extra == 'all'
21
- Requires-Dist: torchaudio; extra == 'all'
22
- Requires-Dist: transformers; extra == 'all'
23
- Requires-Dist: vamp; extra == 'all'
24
- Provides-Extra: basic-pitch-pitch-detector
25
- Requires-Dist: huggingface-hub; extra == 'basic-pitch-pitch-detector'
26
- Requires-Dist: librosa; extra == 'basic-pitch-pitch-detector'
27
- Requires-Dist: nnaudio; extra == 'basic-pitch-pitch-detector'
28
- Requires-Dist: numpy; extra == 'basic-pitch-pitch-detector'
29
- Requires-Dist: pretty-midi-fix; extra == 'basic-pitch-pitch-detector'
30
- Requires-Dist: scipy; extra == 'basic-pitch-pitch-detector'
31
- Requires-Dist: torch; extra == 'basic-pitch-pitch-detector'
32
- Provides-Extra: crepe-pitch-detector
33
- Requires-Dist: hmmlearn; extra == 'crepe-pitch-detector'
34
- Requires-Dist: huggingface-hub; extra == 'crepe-pitch-detector'
35
- Requires-Dist: keras; extra == 'crepe-pitch-detector'
36
- Requires-Dist: librosa; extra == 'crepe-pitch-detector'
37
- Requires-Dist: numpy; extra == 'crepe-pitch-detector'
38
- Requires-Dist: pretty-midi-fix; extra == 'crepe-pitch-detector'
39
- Requires-Dist: tensorflow; extra == 'crepe-pitch-detector'
40
- Provides-Extra: librosa-pitch-detector
41
- Requires-Dist: librosa; extra == 'librosa-pitch-detector'
42
- Requires-Dist: numpy; extra == 'librosa-pitch-detector'
43
- Requires-Dist: pretty-midi-fix; extra == 'librosa-pitch-detector'
44
- Provides-Extra: melodia-pitch-detector
45
- Requires-Dist: huggingface-hub; extra == 'melodia-pitch-detector'
46
- Requires-Dist: librosa; extra == 'melodia-pitch-detector'
47
- Requires-Dist: numpy; extra == 'melodia-pitch-detector'
48
- Requires-Dist: pretty-midi-fix; extra == 'melodia-pitch-detector'
49
- Requires-Dist: scipy; extra == 'melodia-pitch-detector'
50
- Requires-Dist: vamp; extra == 'melodia-pitch-detector'
51
- Provides-Extra: pop2piano
52
- Requires-Dist: essentia; extra == 'pop2piano'
53
- Requires-Dist: huggingface-hub; extra == 'pop2piano'
54
- Requires-Dist: librosa; extra == 'pop2piano'
55
- Requires-Dist: numpy==1.26.4; extra == 'pop2piano'
56
- Requires-Dist: pretty-midi; extra == 'pop2piano'
57
- Requires-Dist: pretty-midi-fix; extra == 'pop2piano'
58
- Requires-Dist: resampy; extra == 'pop2piano'
59
- Requires-Dist: scipy; extra == 'pop2piano'
60
- Requires-Dist: torch; extra == 'pop2piano'
61
- Requires-Dist: transformers; extra == 'pop2piano'
62
- Provides-Extra: violin-pitch-detector
63
- Requires-Dist: huggingface-hub; extra == 'violin-pitch-detector'
64
- Requires-Dist: librosa; extra == 'violin-pitch-detector'
65
- Requires-Dist: mir-eval; extra == 'violin-pitch-detector'
66
- Requires-Dist: numpy; extra == 'violin-pitch-detector'
67
- Requires-Dist: pretty-midi-fix; extra == 'violin-pitch-detector'
68
- Requires-Dist: scipy; extra == 'violin-pitch-detector'
69
- Requires-Dist: torch; extra == 'violin-pitch-detector'
70
- Requires-Dist: torchaudio; extra == 'violin-pitch-detector'
71
- Description-Content-Type: text/markdown
72
-
73
- ``` python
74
- from audio2midi.librosa_pitch_detector import Normal_Pitch_Det , Guitar_Pitch_Det
75
-
76
- audio_path = "audio.mp3"
77
- Normal_Pitch_Det().predict(audio_path)
78
- Guitar_Pitch_Det().predict(audio_path)
79
- ```
80
- ---
81
- ``` python
82
- from os import environ
83
- from huggingface_hub import hf_hub_download
84
- from shutil import unpack_archive
85
- from pathlib import Path
86
- from audio2midi.melodia_pitch_detector import Melodia
87
- from platform import system as platform_system , architecture as platform_architecture
88
-
89
- unpack_archive(hf_hub_download("shethjenil/Audio2Midi_Models",f"melodia_vamp_plugin_{'win' if (system := platform_system()) == 'Windows' else 'mac' if system == 'Darwin' else 'linux64' if (arch := platform_architecture()[0]) == '64bit' else 'linux32' if arch == '32bit' else None}.zip"),"vamp_melodia",format="zip")
90
- environ['VAMP_PATH'] = str(Path("vamp_melodia").absolute())
91
- Melodia().predict(audio_path)
92
- ```
93
- ---
94
- ```python
95
- from audio2midi.basic_pitch_pitch_detector import BasicPitch
96
- from audio2midi.crepe_pitch_detector import Crepe
97
- from audio2midi.violin_pitch_detector import Violin_Pitch_Det
98
- from audio2midi.pop2piano import Pop2Piano
99
- from torch import device as Device
100
- from torch.cuda import is_available as cuda_is_available
101
- device = Device("cuda" if cuda_is_available() else "cpu")
102
- Crepe().predict(audio_path)
103
- Pop2Piano(device=device).predict(audio_path)
104
- Violin_Pitch_Det(device=device).predict(audio_path)
105
- BasicPitch(device=device).predict(audio_path)
106
- ```