audio-scribe 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
audio_scribe/__init__.py
ADDED
File without changes
|
audio_scribe/cli.py
ADDED
@@ -0,0 +1,567 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
"""
|
3
|
+
Audio Scribe
|
4
|
+
-----------------
|
5
|
+
A command-line script for transcribing audio files with speaker diarization
|
6
|
+
using Whisper and Pyannote. The script uses a Hugging Face token for
|
7
|
+
downloading Pyannote speaker-diarization models and displays a progress bar
|
8
|
+
with resource usage while transcribing.
|
9
|
+
"""
|
10
|
+
|
11
|
+
print("Initializing environment... Please wait while we load dependencies and models.")
|
12
|
+
import sys
|
13
|
+
sys.stdout.flush()
|
14
|
+
|
15
|
+
import os
|
16
|
+
import glob
|
17
|
+
import wave
|
18
|
+
import json
|
19
|
+
import logging
|
20
|
+
import warnings
|
21
|
+
import argparse
|
22
|
+
import readline # <--- For enabling tab-completion on Unix/Linux
|
23
|
+
from pathlib import Path
|
24
|
+
from datetime import datetime
|
25
|
+
from typing import Optional, Dict
|
26
|
+
from dataclasses import dataclass
|
27
|
+
import base64
|
28
|
+
|
29
|
+
from cryptography.fernet import Fernet
|
30
|
+
from cryptography.hazmat.primitives import hashes
|
31
|
+
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
32
|
+
|
33
|
+
import torch
|
34
|
+
import whisper
|
35
|
+
|
36
|
+
import importlib.metadata
|
37
|
+
from importlib.metadata import PackageNotFoundError
|
38
|
+
|
39
|
+
from pyannote.audio import Pipeline
|
40
|
+
|
41
|
+
# Attempt to import optional packages for progress bar and resource monitoring
|
42
|
+
try:
|
43
|
+
from alive_progress import alive_bar
|
44
|
+
import psutil
|
45
|
+
import GPUtil
|
46
|
+
HAVE_PROGRESS_SUPPORT = True
|
47
|
+
except ImportError:
|
48
|
+
HAVE_PROGRESS_SUPPORT = False
|
49
|
+
|
50
|
+
# Configure logging
|
51
|
+
LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"
|
52
|
+
logging.basicConfig(
|
53
|
+
level=logging.INFO,
|
54
|
+
format=LOG_FORMAT,
|
55
|
+
handlers=[
|
56
|
+
logging.StreamHandler(),
|
57
|
+
logging.FileHandler("transcription.log", mode="a", encoding="utf-8"),
|
58
|
+
],
|
59
|
+
)
|
60
|
+
logger = logging.getLogger(__name__)
|
61
|
+
|
62
|
+
# ---------- FILE PATH TAB-COMPLETION SNIPPET ----------
|
63
|
+
def complete_path(text, state):
|
64
|
+
"""
|
65
|
+
Return the 'state'-th completion for 'text'.
|
66
|
+
This function will be used by 'readline' to enable file path autocompletion.
|
67
|
+
"""
|
68
|
+
# If the user typed a glob pattern (with * or ?)
|
69
|
+
if '*' in text or '?' in text:
|
70
|
+
matches = glob.glob(text)
|
71
|
+
else:
|
72
|
+
# Split off the directory name and partial file/directory name
|
73
|
+
directory, partial = os.path.split(text)
|
74
|
+
if not directory:
|
75
|
+
directory = '.'
|
76
|
+
try:
|
77
|
+
# List everything in 'directory' that starts with 'partial'
|
78
|
+
entries = os.listdir(directory)
|
79
|
+
except OSError:
|
80
|
+
# If directory doesn't exist or we lack permission, no matches
|
81
|
+
entries = []
|
82
|
+
|
83
|
+
matches = []
|
84
|
+
for entry in entries:
|
85
|
+
if entry.startswith(partial):
|
86
|
+
full_path = os.path.join(directory, entry)
|
87
|
+
# If it's a directory, add a trailing slash to indicate that
|
88
|
+
if os.path.isdir(full_path) and not full_path.endswith(os.path.sep):
|
89
|
+
full_path += os.path.sep
|
90
|
+
matches.append(full_path)
|
91
|
+
|
92
|
+
# Sort matches to have a consistent order
|
93
|
+
matches.sort()
|
94
|
+
|
95
|
+
# If 'state' is beyond last match, return None
|
96
|
+
return matches[state] if state < len(matches) else None
|
97
|
+
|
98
|
+
|
99
|
+
@dataclass
|
100
|
+
class TranscriptionConfig:
|
101
|
+
"""
|
102
|
+
Configuration settings for the transcription pipeline.
|
103
|
+
"""
|
104
|
+
output_directory: Path
|
105
|
+
whisper_model: str = "base.en"
|
106
|
+
diarization_model: str = "pyannote/speaker-diarization-3.1"
|
107
|
+
temp_directory: Optional[Path] = None
|
108
|
+
device: Optional[str] = None
|
109
|
+
|
110
|
+
def __post_init__(self):
|
111
|
+
# Use CUDA if available, else fall back to CPU
|
112
|
+
self.device = self.device or ("cuda" if torch.cuda.is_available() else "cpu")
|
113
|
+
# Default temp directory inside the output directory
|
114
|
+
self.temp_directory = self.temp_directory or (self.output_directory / "temp")
|
115
|
+
# Ensure directories exist
|
116
|
+
self.temp_directory.mkdir(parents=True, exist_ok=True)
|
117
|
+
self.output_directory.mkdir(parents=True, exist_ok=True)
|
118
|
+
|
119
|
+
|
120
|
+
class TokenManager:
|
121
|
+
"""
|
122
|
+
Handles secure storage and retrieval of the Hugging Face authentication token.
|
123
|
+
"""
|
124
|
+
def __init__(self):
|
125
|
+
# Store config in ~/.pyannote/config.json
|
126
|
+
self.config_dir = Path.home() / ".pyannote"
|
127
|
+
self.config_file = self.config_dir / "config.json"
|
128
|
+
self._initialize_config()
|
129
|
+
|
130
|
+
def _initialize_config(self) -> None:
|
131
|
+
"""
|
132
|
+
Initialize configuration directory and file with secure permissions.
|
133
|
+
"""
|
134
|
+
self.config_dir.mkdir(exist_ok=True)
|
135
|
+
if not self.config_file.exists():
|
136
|
+
self._save_config({})
|
137
|
+
|
138
|
+
# Set secure file and directory permissions on POSIX systems
|
139
|
+
if os.name == "posix":
|
140
|
+
os.chmod(self.config_dir, 0o700)
|
141
|
+
os.chmod(self.config_file, 0o600)
|
142
|
+
|
143
|
+
def _get_encryption_key(self) -> bytes:
|
144
|
+
"""
|
145
|
+
Generate an encryption key from system-specific data.
|
146
|
+
"""
|
147
|
+
salt = b"pyannote-audio-salt"
|
148
|
+
kdf = PBKDF2HMAC(
|
149
|
+
algorithm=hashes.SHA256(),
|
150
|
+
length=32,
|
151
|
+
salt=salt,
|
152
|
+
iterations=100000,
|
153
|
+
)
|
154
|
+
key = kdf.derive(str(Path.home()).encode())
|
155
|
+
return base64.urlsafe_b64encode(key)
|
156
|
+
|
157
|
+
def _save_config(self, config: dict) -> None:
|
158
|
+
"""
|
159
|
+
Securely save configuration to file.
|
160
|
+
"""
|
161
|
+
with open(self.config_file, "w", encoding="utf-8") as f:
|
162
|
+
json.dump(config, f)
|
163
|
+
|
164
|
+
def _load_config(self) -> dict:
|
165
|
+
"""
|
166
|
+
Load configuration from file.
|
167
|
+
"""
|
168
|
+
try:
|
169
|
+
with open(self.config_file, "r", encoding="utf-8") as f:
|
170
|
+
return json.load(f)
|
171
|
+
except Exception:
|
172
|
+
return {}
|
173
|
+
|
174
|
+
def store_token(self, token: str) -> bool:
|
175
|
+
"""
|
176
|
+
Securely store authentication token.
|
177
|
+
"""
|
178
|
+
try:
|
179
|
+
fernet = Fernet(self._get_encryption_key())
|
180
|
+
encrypted_token = fernet.encrypt(token.encode())
|
181
|
+
|
182
|
+
config = self._load_config()
|
183
|
+
config["token"] = encrypted_token.decode()
|
184
|
+
|
185
|
+
self._save_config(config)
|
186
|
+
return True
|
187
|
+
except Exception as e:
|
188
|
+
logger.error(f"Failed to store token: {e}")
|
189
|
+
return False
|
190
|
+
|
191
|
+
def retrieve_token(self) -> Optional[str]:
|
192
|
+
"""
|
193
|
+
Retrieve stored authentication token.
|
194
|
+
"""
|
195
|
+
try:
|
196
|
+
config = self._load_config()
|
197
|
+
if "token" in config:
|
198
|
+
fernet = Fernet(self._get_encryption_key())
|
199
|
+
return fernet.decrypt(config["token"].encode()).decode()
|
200
|
+
except Exception as e:
|
201
|
+
logger.error(f"Failed to retrieve token: {e}")
|
202
|
+
return None
|
203
|
+
|
204
|
+
def delete_token(self) -> bool:
|
205
|
+
"""
|
206
|
+
Delete stored authentication token.
|
207
|
+
"""
|
208
|
+
try:
|
209
|
+
config = self._load_config()
|
210
|
+
if "token" in config:
|
211
|
+
del config["token"]
|
212
|
+
self._save_config(config)
|
213
|
+
return True
|
214
|
+
except Exception as e:
|
215
|
+
logger.error(f"Failed to delete token: {e}")
|
216
|
+
return False
|
217
|
+
|
218
|
+
|
219
|
+
class DependencyManager:
|
220
|
+
"""
|
221
|
+
Manages and verifies system dependencies using importlib.metadata.
|
222
|
+
"""
|
223
|
+
REQUIRED_PACKAGES = {
|
224
|
+
"torch": None,
|
225
|
+
"pyannote.audio": None,
|
226
|
+
"openai-whisper": None,
|
227
|
+
"pytorch-lightning": None,
|
228
|
+
"keyring": None,
|
229
|
+
}
|
230
|
+
|
231
|
+
@classmethod
|
232
|
+
def verify_dependencies(cls) -> bool:
|
233
|
+
"""
|
234
|
+
Verify all required dependencies are installed with correct versions
|
235
|
+
(if specified). Returns True if all are installed and correct, False otherwise.
|
236
|
+
"""
|
237
|
+
missing = []
|
238
|
+
outdated = []
|
239
|
+
|
240
|
+
for package, required_version in cls.REQUIRED_PACKAGES.items():
|
241
|
+
try:
|
242
|
+
installed_version = importlib.metadata.version(package)
|
243
|
+
if required_version and installed_version != required_version:
|
244
|
+
outdated.append(
|
245
|
+
f"{package} (installed: {installed_version}, required: {required_version})"
|
246
|
+
)
|
247
|
+
except PackageNotFoundError:
|
248
|
+
missing.append(package)
|
249
|
+
|
250
|
+
if missing or outdated:
|
251
|
+
if missing:
|
252
|
+
logger.error("Missing packages: %s", ", ".join(missing))
|
253
|
+
if outdated:
|
254
|
+
logger.error("Outdated packages: %s", ", ".join(outdated))
|
255
|
+
logger.info(
|
256
|
+
"Install required packages: pip install %s",
|
257
|
+
" ".join(
|
258
|
+
f"{pkg}=={ver}" if ver else pkg
|
259
|
+
for pkg, ver in cls.REQUIRED_PACKAGES.items()
|
260
|
+
),
|
261
|
+
)
|
262
|
+
return False
|
263
|
+
return True
|
264
|
+
|
265
|
+
|
266
|
+
class AudioProcessor:
|
267
|
+
"""
|
268
|
+
Handles audio file processing and segmentation using the `wave` module.
|
269
|
+
"""
|
270
|
+
def __init__(self, config: TranscriptionConfig):
|
271
|
+
self.config = config
|
272
|
+
|
273
|
+
def load_audio_segment(
|
274
|
+
self,
|
275
|
+
audio_path: Path,
|
276
|
+
start_time: float,
|
277
|
+
end_time: float,
|
278
|
+
output_path: Path,
|
279
|
+
) -> bool:
|
280
|
+
"""
|
281
|
+
Extract and save the audio segment from `start_time` to `end_time`.
|
282
|
+
"""
|
283
|
+
try:
|
284
|
+
with wave.open(str(audio_path), "rb") as infile:
|
285
|
+
params = infile.getparams()
|
286
|
+
frame_rate = params.framerate
|
287
|
+
start_frame = int(start_time * frame_rate)
|
288
|
+
end_frame = min(int(end_time * frame_rate), infile.getnframes())
|
289
|
+
|
290
|
+
infile.setpos(start_frame)
|
291
|
+
frames = infile.readframes(end_frame - start_frame)
|
292
|
+
|
293
|
+
with wave.open(str(output_path), "wb") as outfile:
|
294
|
+
outfile.setparams(params)
|
295
|
+
outfile.writeframes(frames)
|
296
|
+
return True
|
297
|
+
except Exception as e:
|
298
|
+
logger.error(f"Failed to process audio segment: {e}")
|
299
|
+
return False
|
300
|
+
|
301
|
+
|
302
|
+
class TranscriptionPipeline:
|
303
|
+
"""
|
304
|
+
Main pipeline for audio transcription (Whisper) and speaker diarization (Pyannote).
|
305
|
+
"""
|
306
|
+
def __init__(self, config: TranscriptionConfig):
|
307
|
+
self.config = config
|
308
|
+
self.diarization_pipeline = None
|
309
|
+
self.whisper_model = None
|
310
|
+
self.token_manager = TokenManager()
|
311
|
+
self._running = False # used for resource monitor thread
|
312
|
+
|
313
|
+
def initialize_models(self, auth_token: str) -> bool:
|
314
|
+
"""
|
315
|
+
Initialize the Pyannote diarization pipeline and the Whisper model.
|
316
|
+
"""
|
317
|
+
try:
|
318
|
+
# Load Whisper model (set download root to avoid clutter in home directory)
|
319
|
+
self.whisper_model = whisper.load_model(
|
320
|
+
self.config.whisper_model,
|
321
|
+
device=self.config.device,
|
322
|
+
download_root=str(self.config.output_directory / "models"),
|
323
|
+
)
|
324
|
+
|
325
|
+
# Load Pyannote diarization pipeline
|
326
|
+
self.diarization_pipeline = Pipeline.from_pretrained(
|
327
|
+
self.config.diarization_model, use_auth_token=auth_token
|
328
|
+
)
|
329
|
+
self.diarization_pipeline.to(torch.device(self.config.device))
|
330
|
+
|
331
|
+
if self.config.device == "cpu":
|
332
|
+
warnings.warn("Running on CPU. GPU is recommended for better performance.")
|
333
|
+
|
334
|
+
return True
|
335
|
+
except Exception as e:
|
336
|
+
logger.error(f"Model initialization failed: {e}")
|
337
|
+
logger.error("Please ensure you have accepted the model conditions at:")
|
338
|
+
logger.error(" 1. https://huggingface.co/pyannote/segmentation-3.0")
|
339
|
+
logger.error(" 2. https://huggingface.co/pyannote/speaker-diarization-3.1")
|
340
|
+
return False
|
341
|
+
|
342
|
+
def _update_resources(self, bar):
|
343
|
+
"""
|
344
|
+
Continuously update progress bar text with CPU/MEM/GPU usage, until self._running is False.
|
345
|
+
"""
|
346
|
+
while self._running:
|
347
|
+
try:
|
348
|
+
import time
|
349
|
+
time.sleep(0.5)
|
350
|
+
|
351
|
+
cpu_usage = psutil.cpu_percent(interval=None) if HAVE_PROGRESS_SUPPORT else 0
|
352
|
+
memory_usage = psutil.virtual_memory().percent if HAVE_PROGRESS_SUPPORT else 0
|
353
|
+
|
354
|
+
if HAVE_PROGRESS_SUPPORT and GPUtil.getGPUs():
|
355
|
+
gpus = GPUtil.getGPUs()
|
356
|
+
gpu_mem_used = f"{gpus[0].memoryUsed:.0f}"
|
357
|
+
gpu_mem_total = f"{gpus[0].memoryTotal:.0f}"
|
358
|
+
gpu_usage_text = f"{gpu_mem_used}/{gpu_mem_total} MB"
|
359
|
+
else:
|
360
|
+
gpu_usage_text = "N/A"
|
361
|
+
|
362
|
+
resource_text = f"CPU: {cpu_usage}%, MEM: {memory_usage}%, GPU Mem: {gpu_usage_text}"
|
363
|
+
bar.text(resource_text)
|
364
|
+
except Exception as e:
|
365
|
+
logger.error(f"Resource monitoring error: {e}")
|
366
|
+
|
367
|
+
def process_file(self, audio_path: Path) -> bool:
|
368
|
+
"""
|
369
|
+
Diarize, segment, and transcribe using Whisper + Pyannote with progress feedback.
|
370
|
+
"""
|
371
|
+
try:
|
372
|
+
logger.info("Starting audio processing...")
|
373
|
+
diarization = self.diarization_pipeline(str(audio_path))
|
374
|
+
segments = list(diarization.itertracks(yield_label=True))
|
375
|
+
total_segments = len(segments)
|
376
|
+
|
377
|
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
378
|
+
output_file = self.config.output_directory / f"transcript_{timestamp}.txt"
|
379
|
+
audio_processor = AudioProcessor(self.config)
|
380
|
+
|
381
|
+
if not HAVE_PROGRESS_SUPPORT:
|
382
|
+
# No alive_progress, psutil, or GPUtil installed
|
383
|
+
logger.info("Processing audio without progress bar (missing optional packages).")
|
384
|
+
with output_file.open("w", encoding="utf-8") as f:
|
385
|
+
for turn, _, speaker in segments:
|
386
|
+
segment_path = (
|
387
|
+
self.config.temp_directory
|
388
|
+
/ f"segment_{speaker}_{turn.start:.2f}_{turn.end:.2f}.wav"
|
389
|
+
)
|
390
|
+
if audio_processor.load_audio_segment(audio_path, turn.start, turn.end, segment_path):
|
391
|
+
transcription = self.whisper_model.transcribe(str(segment_path))["text"]
|
392
|
+
segment_path.unlink(missing_ok=True)
|
393
|
+
|
394
|
+
line = f"[{turn.start:.2f}s - {turn.end:.2f}s] Speaker {speaker}: {transcription.strip()}\n"
|
395
|
+
f.write(line)
|
396
|
+
logger.info(line.strip())
|
397
|
+
else:
|
398
|
+
# Use a progress bar to track segment transcription
|
399
|
+
from alive_progress import alive_bar
|
400
|
+
import threading
|
401
|
+
|
402
|
+
self._running = True
|
403
|
+
with output_file.open("w", encoding="utf-8") as f, alive_bar(
|
404
|
+
total_segments,
|
405
|
+
title="Transcribing Audio",
|
406
|
+
spinner="pulse",
|
407
|
+
theme="classic",
|
408
|
+
stats=False,
|
409
|
+
elapsed=True,
|
410
|
+
monitor=True,
|
411
|
+
) as bar:
|
412
|
+
|
413
|
+
# Start a background thread for resource monitoring
|
414
|
+
resource_thread = threading.Thread(target=self._update_resources, args=(bar,))
|
415
|
+
resource_thread.start()
|
416
|
+
|
417
|
+
for turn, _, speaker in segments:
|
418
|
+
segment_path = (
|
419
|
+
self.config.temp_directory
|
420
|
+
/ f"segment_{speaker}_{turn.start:.2f}_{turn.end:.2f}.wav"
|
421
|
+
)
|
422
|
+
if audio_processor.load_audio_segment(audio_path, turn.start, turn.end, segment_path):
|
423
|
+
transcription = self.whisper_model.transcribe(str(segment_path))["text"]
|
424
|
+
segment_path.unlink(missing_ok=True)
|
425
|
+
|
426
|
+
line = f"[{turn.start:.2f}s - {turn.end:.2f}s] Speaker {speaker}: {transcription.strip()}\n"
|
427
|
+
f.write(line)
|
428
|
+
logger.info(line.strip())
|
429
|
+
|
430
|
+
# Update the progress bar
|
431
|
+
bar()
|
432
|
+
|
433
|
+
# Stop resource monitoring
|
434
|
+
self._running = False
|
435
|
+
resource_thread.join()
|
436
|
+
|
437
|
+
logger.info(f"Transcription completed. Output saved to: {output_file}")
|
438
|
+
return True
|
439
|
+
|
440
|
+
except Exception as e:
|
441
|
+
logger.error(f"Processing failed: {e}")
|
442
|
+
return False
|
443
|
+
|
444
|
+
|
445
|
+
def get_token(token_manager: TokenManager) -> Optional[str]:
|
446
|
+
"""
|
447
|
+
Get authentication token from storage or user input.
|
448
|
+
"""
|
449
|
+
stored_token = token_manager.retrieve_token()
|
450
|
+
if stored_token:
|
451
|
+
choice = input("\nUse the stored Hugging Face token? (y/n): ").lower().strip()
|
452
|
+
if choice == "y":
|
453
|
+
return stored_token
|
454
|
+
|
455
|
+
print("\nA HuggingFace token is required for speaker diarization.")
|
456
|
+
print("Get your token at: https://huggingface.co/settings/tokens")
|
457
|
+
print("\nEnsure you have accepted:")
|
458
|
+
print(" 1. pyannote/segmentation-3.0 conditions")
|
459
|
+
print(" 2. pyannote/speaker-diarization-3.1 conditions")
|
460
|
+
|
461
|
+
token = input("\nEnter HuggingFace token: ").strip()
|
462
|
+
if token:
|
463
|
+
choice = input("Save token for future use? (y/n): ").lower().strip()
|
464
|
+
if choice == "y":
|
465
|
+
if token_manager.store_token(token):
|
466
|
+
print("Token saved successfully.")
|
467
|
+
else:
|
468
|
+
print("Failed to save token. It will be used for this session only.")
|
469
|
+
return token if token else None
|
470
|
+
|
471
|
+
|
472
|
+
def main():
|
473
|
+
parser = argparse.ArgumentParser(
|
474
|
+
description="Audio Transcription Pipeline using Whisper + Pyannote, with optional progress bar."
|
475
|
+
)
|
476
|
+
parser.add_argument(
|
477
|
+
"--audio",
|
478
|
+
type=Path,
|
479
|
+
help="Path to the audio file to transcribe."
|
480
|
+
)
|
481
|
+
parser.add_argument(
|
482
|
+
"--token",
|
483
|
+
help="HuggingFace API token. Overrides any saved token."
|
484
|
+
)
|
485
|
+
parser.add_argument(
|
486
|
+
"--output",
|
487
|
+
type=Path,
|
488
|
+
help="Path to the output directory for transcripts and temporary files.",
|
489
|
+
)
|
490
|
+
parser.add_argument(
|
491
|
+
"--delete-token",
|
492
|
+
action="store_true",
|
493
|
+
help="Delete any stored Hugging Face token and exit.",
|
494
|
+
)
|
495
|
+
parser.add_argument(
|
496
|
+
"--show-warnings",
|
497
|
+
action="store_true",
|
498
|
+
help="Enable user warnings (e.g., from pyannote.audio). Disabled by default.",
|
499
|
+
)
|
500
|
+
parser.add_argument(
|
501
|
+
"--whisper-model",
|
502
|
+
default="base.en",
|
503
|
+
help="Specify the Whisper model to use (default: 'base.en').",
|
504
|
+
)
|
505
|
+
args = parser.parse_args()
|
506
|
+
|
507
|
+
# Manage user warnings
|
508
|
+
if not args.show_warnings:
|
509
|
+
warnings.filterwarnings("ignore", category=UserWarning, module=r"pyannote\.audio")
|
510
|
+
warnings.filterwarnings("ignore", category=FutureWarning, module="whisper")
|
511
|
+
else:
|
512
|
+
warnings.resetwarnings()
|
513
|
+
|
514
|
+
# Check dependencies
|
515
|
+
if not DependencyManager.verify_dependencies():
|
516
|
+
sys.exit(1)
|
517
|
+
|
518
|
+
# Initialize tab-completion for file paths (Unix-like only, or with pyreadline on Windows)
|
519
|
+
readline.set_completer_delims(' \t\n;')
|
520
|
+
readline.set_completer(complete_path)
|
521
|
+
readline.parse_and_bind("tab: complete")
|
522
|
+
|
523
|
+
# Initialize the token manager
|
524
|
+
token_manager = TokenManager()
|
525
|
+
|
526
|
+
# If user wants to delete the stored token, do so and exit
|
527
|
+
if args.delete_token:
|
528
|
+
success = token_manager.delete_token()
|
529
|
+
sys.exit(0 if success else 1)
|
530
|
+
|
531
|
+
# Prepare configuration
|
532
|
+
output_dir = args.output or (Path("transcripts") / datetime.now().strftime("%Y%m%d"))
|
533
|
+
config = TranscriptionConfig(
|
534
|
+
output_directory=output_dir,
|
535
|
+
whisper_model=args.whisper_model
|
536
|
+
)
|
537
|
+
|
538
|
+
# Initialize pipeline
|
539
|
+
pipeline = TranscriptionPipeline(config)
|
540
|
+
hf_token = args.token or get_token(token_manager)
|
541
|
+
if not hf_token:
|
542
|
+
logger.error("No Hugging Face token provided. Exiting.")
|
543
|
+
sys.exit(1)
|
544
|
+
|
545
|
+
# Initialize models
|
546
|
+
if not pipeline.initialize_models(hf_token):
|
547
|
+
logger.error("Failed to initialize pipeline. Exiting.")
|
548
|
+
sys.exit(1)
|
549
|
+
|
550
|
+
# Prompt user for audio file path if not passed in
|
551
|
+
audio_path = args.audio
|
552
|
+
while not audio_path or not audio_path.exists():
|
553
|
+
audio_path_str = input("\nEnter path to audio file (Tab for autocomplete): ").strip()
|
554
|
+
audio_path = Path(audio_path_str)
|
555
|
+
if not audio_path.exists():
|
556
|
+
print(f"File '{audio_path}' not found. Please try again.")
|
557
|
+
|
558
|
+
print("Audio file path accepted. Preparing to process the audio...")
|
559
|
+
sys.stdout.flush()
|
560
|
+
|
561
|
+
# Process the audio file
|
562
|
+
if not pipeline.process_file(audio_path):
|
563
|
+
sys.exit(1)
|
564
|
+
|
565
|
+
|
566
|
+
if __name__ == "__main__":
|
567
|
+
main()
|
@@ -0,0 +1,273 @@
|
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: audio_scribe
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: A command-line tool for audio transcription with Whisper and Pyannote.
|
5
|
+
Home-page: https://gitlab.genomicops.cloud/genomicops/audio-scribe
|
6
|
+
Author: Gurasis Osahan
|
7
|
+
Author-email: contact@genomicops.com
|
8
|
+
License: Apache-2.0
|
9
|
+
Project-URL: Source, https://gitlab.genomicops.cloud/genomicops/audio-scribe
|
10
|
+
Project-URL: Tracker, https://gitlab.genomicops.cloud/genomicops/audio-scribe/-/issues
|
11
|
+
Keywords: whisper pyannote transcription audio diarization
|
12
|
+
Classifier: Development Status :: 3 - Alpha
|
13
|
+
Classifier: Intended Audience :: Developers
|
14
|
+
Classifier: Intended Audience :: Science/Research
|
15
|
+
Classifier: Topic :: Multimedia :: Sound/Audio
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
17
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
18
|
+
Classifier: Programming Language :: Python :: 3
|
19
|
+
Classifier: Programming Language :: Python :: 3.8
|
20
|
+
Classifier: Programming Language :: Python :: 3.9
|
21
|
+
Classifier: Programming Language :: Python :: 3.10
|
22
|
+
Classifier: Operating System :: OS Independent
|
23
|
+
Requires-Python: >=3.8
|
24
|
+
Description-Content-Type: text/markdown
|
25
|
+
Requires-Dist: torch
|
26
|
+
Requires-Dist: openai-whisper
|
27
|
+
Requires-Dist: pyannote.audio
|
28
|
+
Requires-Dist: pytorch-lightning
|
29
|
+
Requires-Dist: keyring
|
30
|
+
Requires-Dist: cryptography
|
31
|
+
Requires-Dist: alive-progress
|
32
|
+
Requires-Dist: psutil
|
33
|
+
Requires-Dist: GPUtil
|
34
|
+
Dynamic: author
|
35
|
+
Dynamic: author-email
|
36
|
+
Dynamic: classifier
|
37
|
+
Dynamic: description
|
38
|
+
Dynamic: description-content-type
|
39
|
+
Dynamic: home-page
|
40
|
+
Dynamic: keywords
|
41
|
+
Dynamic: license
|
42
|
+
Dynamic: project-url
|
43
|
+
Dynamic: requires-dist
|
44
|
+
Dynamic: requires-python
|
45
|
+
Dynamic: summary
|
46
|
+
|
47
|
+
# Audio Scribe
|
48
|
+
|
49
|
+
**A Command-Line Tool for Audio Transcription (Audio Scribe) and Speaker Diarization Using OpenAI Whisper and Pyannote**
|
50
|
+
|
51
|
+
[](LICENSE)
|
52
|
+
|
53
|
+
## Overview
|
54
|
+
|
55
|
+
**Audio Scribe** is a command-line tool that transcribes audio files with speaker diarization. Leveraging [OpenAI Whisper](https://github.com/openai/whisper) for transcription and [Pyannote Audio](https://github.com/pyannote/pyannote-audio) for speaker diarization, this solution converts audio into segmented text files, identifying each speaker turn. Key features include:
|
56
|
+
|
57
|
+
- **Progress Bar & Resource Monitoring**: See real-time CPU, memory, and GPU usage with a live progress bar.
|
58
|
+
- **Speaker Diarization**: Automatically separates speaker turns using Pyannote’s state-of-the-art models.
|
59
|
+
- **Tab-Completion for File Paths**: Easily navigate your file system when prompted for the audio path.
|
60
|
+
- **Secure Token Storage**: Encrypts and stores your Hugging Face token for private model downloads.
|
61
|
+
- **Customizable Whisper Models**: Default to `base.en`, or specify `tiny`, `small`, `medium`, `large`, etc.
|
62
|
+
|
63
|
+
This repository is licensed under the [Apache License 2.0](#license).
|
64
|
+
|
65
|
+
---
|
66
|
+
|
67
|
+
## Table of Contents
|
68
|
+
|
69
|
+
- [Audio Scribe](#audio-scribe)
|
70
|
+
- [Overview](#overview)
|
71
|
+
- [Table of Contents](#table-of-contents)
|
72
|
+
- [Features](#features)
|
73
|
+
- [Installation](#installation)
|
74
|
+
- [Installing from PyPI](#installing-from-pypi)
|
75
|
+
- [Installing from GitHub](#installing-from-github)
|
76
|
+
- [Quick Start](#quick-start)
|
77
|
+
- [Usage](#usage)
|
78
|
+
- [Dependencies](#dependencies)
|
79
|
+
- [Sample `requirements.txt`](#sample-requirementstxt)
|
80
|
+
- [Contributing](#contributing)
|
81
|
+
- [License](#license)
|
82
|
+
|
83
|
+
---
|
84
|
+
|
85
|
+
## Features
|
86
|
+
|
87
|
+
- **Whisper Transcription**
|
88
|
+
Utilizes [OpenAI Whisper](https://github.com/openai/whisper) to convert speech to text in multiple languages.
|
89
|
+
- **Pyannote Speaker Diarization**
|
90
|
+
Identifies different speakers and segments your audio output accordingly.
|
91
|
+
- **Progress Bar & Resource Usage**
|
92
|
+
Displays a live progress bar with CPU, memory, and GPU stats through [alive-progress](https://github.com/rsalmei/alive-progress), [psutil](https://pypi.org/project/psutil/), and [GPUtil](https://pypi.org/project/GPUtil/).
|
93
|
+
- **Tab-Completion**
|
94
|
+
Press **Tab** to autocomplete file paths on Unix-like systems (and on Windows with [pyreadline3](https://pypi.org/project/pyreadline3/)).
|
95
|
+
- **Secure Token Storage**
|
96
|
+
Saves your Hugging Face token via [cryptography](https://pypi.org/project/cryptography/) for model downloads (e.g., `pyannote/speaker-diarization-3.1`).
|
97
|
+
- **Configurable Models**
|
98
|
+
Default is `base.en` but you can specify any other Whisper model using `--whisper-model`.
|
99
|
+
|
100
|
+
---
|
101
|
+
|
102
|
+
## Installation
|
103
|
+
|
104
|
+
### Installing from PyPI
|
105
|
+
|
106
|
+
**Audio Scribe** is available on PyPI. You can install it with:
|
107
|
+
|
108
|
+
```bash
|
109
|
+
pip install audio-scribe
|
110
|
+
```
|
111
|
+
|
112
|
+
After installation, the **`audio-scribe`** command should be available in your terminal (depending on how your PATH is configured). If you prefer to run via Python module, you can also do:
|
113
|
+
|
114
|
+
```bash
|
115
|
+
python -m audio-scribe --audio path/to/yourfile.wav
|
116
|
+
```
|
117
|
+
|
118
|
+
### Installing from GitHub
|
119
|
+
|
120
|
+
To install the latest development version directly from GitHub:
|
121
|
+
|
122
|
+
```bash
|
123
|
+
git clone https://gitlab.genomicops.cloud/genomicops/audio-scribe.git
|
124
|
+
cd audio-scribe
|
125
|
+
pip install -r requirements.txt
|
126
|
+
```
|
127
|
+
|
128
|
+
This approach is particularly useful if you want the newest changes or plan to contribute.
|
129
|
+
|
130
|
+
---
|
131
|
+
|
132
|
+
## Quick Start
|
133
|
+
|
134
|
+
1. **Obtain a Hugging Face Token**
|
135
|
+
- Create a token at [Hugging Face Settings](https://huggingface.co/settings/tokens).
|
136
|
+
- Accept the model conditions for `pyannote/segmentation-3.0` and `pyannote/speaker-diarization-3.1`.
|
137
|
+
|
138
|
+
2. **Run the Command-Line Tool**
|
139
|
+
```bash
|
140
|
+
audio-scribe --audio path/to/audio.wav
|
141
|
+
```
|
142
|
+
> On the first run, you’ll be prompted for your Hugging Face token if you haven’t stored one yet.
|
143
|
+
|
144
|
+
3. **Watch the Progress Bar**
|
145
|
+
- The tool displays a progress bar for each diarized speaker turn, along with real-time CPU, GPU, and memory usage.
|
146
|
+
|
147
|
+
---
|
148
|
+
|
149
|
+
## Usage
|
150
|
+
|
151
|
+
Below is a summary of the main command-line options:
|
152
|
+
|
153
|
+
```
|
154
|
+
usage: audio-scribe [options]
|
155
|
+
|
156
|
+
Audio Transcription (Audio Scribe) Pipeline using Whisper + Pyannote, with optional progress bar.
|
157
|
+
|
158
|
+
optional arguments:
|
159
|
+
--audio PATH Path to the audio file to transcribe.
|
160
|
+
--token TOKEN HuggingFace API token. Overrides any saved token.
|
161
|
+
--output PATH Path to the output directory for transcripts and temporary files.
|
162
|
+
--delete-token Delete any stored Hugging Face token and exit.
|
163
|
+
--show-warnings Enable user warnings (e.g., from pyannote.audio). Disabled by default.
|
164
|
+
--whisper-model MODEL Specify the Whisper model to use (default: 'base.en').
|
165
|
+
```
|
166
|
+
|
167
|
+
**Examples:**
|
168
|
+
|
169
|
+
- **Basic Transcription**
|
170
|
+
```bash
|
171
|
+
audio-scribe --audio meeting.wav
|
172
|
+
```
|
173
|
+
|
174
|
+
- **Specify a Different Whisper Model**
|
175
|
+
```bash
|
176
|
+
audio-scribe --audio webinar.mp3 --whisper-model small
|
177
|
+
```
|
178
|
+
|
179
|
+
- **Delete a Stored Token**
|
180
|
+
```bash
|
181
|
+
audio-scribe --delete-token
|
182
|
+
```
|
183
|
+
|
184
|
+
- **Show Internal Warnings**
|
185
|
+
```bash
|
186
|
+
audio-scribe --audio session.wav --show-warnings
|
187
|
+
```
|
188
|
+
|
189
|
+
- **Tab-Completion**
|
190
|
+
```bash
|
191
|
+
audio-scribe
|
192
|
+
# When prompted for an audio file path, press Tab to autocomplete
|
193
|
+
```
|
194
|
+
|
195
|
+
---
|
196
|
+
|
197
|
+
## Dependencies
|
198
|
+
|
199
|
+
**Core Libraries**
|
200
|
+
- **Python 3.8+**
|
201
|
+
- [PyTorch](https://pytorch.org/)
|
202
|
+
- [openai-whisper](https://github.com/openai/whisper)
|
203
|
+
- [pyannote.audio](https://github.com/pyannote/pyannote-audio)
|
204
|
+
- [pytorch-lightning](https://pypi.org/project/pytorch-lightning/)
|
205
|
+
- [cryptography](https://pypi.org/project/cryptography/)
|
206
|
+
- [keyring](https://pypi.org/project/keyring/)
|
207
|
+
|
208
|
+
**Optional for Extended Functionality**
|
209
|
+
- [alive-progress](https://pypi.org/project/alive-progress/) – Real-time progress bar
|
210
|
+
- [psutil](https://pypi.org/project/psutil/) – CPU/memory usage
|
211
|
+
- [GPUtil](https://pypi.org/project/GPUtil/) – GPU usage
|
212
|
+
- [pyreadline3](https://pypi.org/project/pyreadline3/) (for Windows tab-completion)
|
213
|
+
|
214
|
+
### Sample `requirements.txt`
|
215
|
+
|
216
|
+
Below is a typical `requirements.txt` you can place in your repository:
|
217
|
+
|
218
|
+
```
|
219
|
+
torch>=1.9
|
220
|
+
openai-whisper
|
221
|
+
pyannote.audio
|
222
|
+
pytorch-lightning
|
223
|
+
cryptography
|
224
|
+
keyring
|
225
|
+
alive-progress
|
226
|
+
psutil
|
227
|
+
GPUtil
|
228
|
+
pyreadline3; sys_platform == "win32"
|
229
|
+
```
|
230
|
+
|
231
|
+
> Note:
|
232
|
+
> - `pyreadline3` is appended with a [PEP 508 marker](https://peps.python.org/pep-0508/) (`; sys_platform == "win32"`) so it only installs on Windows.
|
233
|
+
> - For GPU support, ensure you install a compatible PyTorch version with CUDA.
|
234
|
+
|
235
|
+
---
|
236
|
+
|
237
|
+
## Contributing
|
238
|
+
|
239
|
+
We welcome contributions to **Audio Scribe**!
|
240
|
+
|
241
|
+
1. **Fork** the repository and clone your fork.
|
242
|
+
2. **Create a new branch** for your feature or bugfix.
|
243
|
+
3. **Implement your changes**, ensuring code is well-documented and follows best practices.
|
244
|
+
4. **Open a pull request**, detailing the changes you’ve made.
|
245
|
+
|
246
|
+
Please read any available guidelines or templates in our repository (such as `CONTRIBUTING.md` or `CODE_OF_CONDUCT.md`) before submitting.
|
247
|
+
|
248
|
+
---
|
249
|
+
|
250
|
+
## License
|
251
|
+
|
252
|
+
This project is licensed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
|
253
|
+
|
254
|
+
```
|
255
|
+
Copyright 2025 Gurasis Osahan
|
256
|
+
|
257
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
258
|
+
you may not use this file except in compliance with the License.
|
259
|
+
You may obtain a copy of the License at
|
260
|
+
|
261
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
262
|
+
|
263
|
+
Unless required by applicable law or agreed to in writing, software
|
264
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
265
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
266
|
+
See the License for the specific language governing permissions and
|
267
|
+
limitations under the License.
|
268
|
+
```
|
269
|
+
|
270
|
+
---
|
271
|
+
|
272
|
+
**Thank you for using Audio Scribe!**
|
273
|
+
For questions or feedback, please open a [GitHub issue](https://gitlab.genomicops.cloud/genomicops/audio-scribe/issues) or contact the maintainers.
|
@@ -0,0 +1,7 @@
|
|
1
|
+
audio_scribe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
audio_scribe/cli.py,sha256=dabh7fe9wAEORwVIBd-V8FAzHBBzbkjnfMSR-wOywO8,20286
|
3
|
+
audio_scribe-0.1.0.dist-info/METADATA,sha256=BBx81TI9DPCYgsdKyBn2PWEJ9pJsnhqTUb8ZsWoS1Ps,9503
|
4
|
+
audio_scribe-0.1.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
5
|
+
audio_scribe-0.1.0.dist-info/entry_points.txt,sha256=eaO9r_zAFnrWseKyJcBpGUHQq-P7NXBw5er8sZaPfFU,55
|
6
|
+
audio_scribe-0.1.0.dist-info/top_level.txt,sha256=L1mltKt-5HrbTXPpAXwht8SXQCgcCceoqpCq4OCZRsk,13
|
7
|
+
audio_scribe-0.1.0.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
audio_scribe
|