audio-scribe 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
File without changes
audio_scribe/cli.py ADDED
@@ -0,0 +1,567 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ Audio Scribe
4
+ -----------------
5
+ A command-line script for transcribing audio files with speaker diarization
6
+ using Whisper and Pyannote. The script uses a Hugging Face token for
7
+ downloading Pyannote speaker-diarization models and displays a progress bar
8
+ with resource usage while transcribing.
9
+ """
10
+
11
+ print("Initializing environment... Please wait while we load dependencies and models.")
12
+ import sys
13
+ sys.stdout.flush()
14
+
15
+ import os
16
+ import glob
17
+ import wave
18
+ import json
19
+ import logging
20
+ import warnings
21
+ import argparse
22
+ import readline # <--- For enabling tab-completion on Unix/Linux
23
+ from pathlib import Path
24
+ from datetime import datetime
25
+ from typing import Optional, Dict
26
+ from dataclasses import dataclass
27
+ import base64
28
+
29
+ from cryptography.fernet import Fernet
30
+ from cryptography.hazmat.primitives import hashes
31
+ from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
32
+
33
+ import torch
34
+ import whisper
35
+
36
+ import importlib.metadata
37
+ from importlib.metadata import PackageNotFoundError
38
+
39
+ from pyannote.audio import Pipeline
40
+
41
+ # Attempt to import optional packages for progress bar and resource monitoring
42
+ try:
43
+ from alive_progress import alive_bar
44
+ import psutil
45
+ import GPUtil
46
+ HAVE_PROGRESS_SUPPORT = True
47
+ except ImportError:
48
+ HAVE_PROGRESS_SUPPORT = False
49
+
50
+ # Configure logging
51
+ LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s"
52
+ logging.basicConfig(
53
+ level=logging.INFO,
54
+ format=LOG_FORMAT,
55
+ handlers=[
56
+ logging.StreamHandler(),
57
+ logging.FileHandler("transcription.log", mode="a", encoding="utf-8"),
58
+ ],
59
+ )
60
+ logger = logging.getLogger(__name__)
61
+
62
+ # ---------- FILE PATH TAB-COMPLETION SNIPPET ----------
63
+ def complete_path(text, state):
64
+ """
65
+ Return the 'state'-th completion for 'text'.
66
+ This function will be used by 'readline' to enable file path autocompletion.
67
+ """
68
+ # If the user typed a glob pattern (with * or ?)
69
+ if '*' in text or '?' in text:
70
+ matches = glob.glob(text)
71
+ else:
72
+ # Split off the directory name and partial file/directory name
73
+ directory, partial = os.path.split(text)
74
+ if not directory:
75
+ directory = '.'
76
+ try:
77
+ # List everything in 'directory' that starts with 'partial'
78
+ entries = os.listdir(directory)
79
+ except OSError:
80
+ # If directory doesn't exist or we lack permission, no matches
81
+ entries = []
82
+
83
+ matches = []
84
+ for entry in entries:
85
+ if entry.startswith(partial):
86
+ full_path = os.path.join(directory, entry)
87
+ # If it's a directory, add a trailing slash to indicate that
88
+ if os.path.isdir(full_path) and not full_path.endswith(os.path.sep):
89
+ full_path += os.path.sep
90
+ matches.append(full_path)
91
+
92
+ # Sort matches to have a consistent order
93
+ matches.sort()
94
+
95
+ # If 'state' is beyond last match, return None
96
+ return matches[state] if state < len(matches) else None
97
+
98
+
99
+ @dataclass
100
+ class TranscriptionConfig:
101
+ """
102
+ Configuration settings for the transcription pipeline.
103
+ """
104
+ output_directory: Path
105
+ whisper_model: str = "base.en"
106
+ diarization_model: str = "pyannote/speaker-diarization-3.1"
107
+ temp_directory: Optional[Path] = None
108
+ device: Optional[str] = None
109
+
110
+ def __post_init__(self):
111
+ # Use CUDA if available, else fall back to CPU
112
+ self.device = self.device or ("cuda" if torch.cuda.is_available() else "cpu")
113
+ # Default temp directory inside the output directory
114
+ self.temp_directory = self.temp_directory or (self.output_directory / "temp")
115
+ # Ensure directories exist
116
+ self.temp_directory.mkdir(parents=True, exist_ok=True)
117
+ self.output_directory.mkdir(parents=True, exist_ok=True)
118
+
119
+
120
+ class TokenManager:
121
+ """
122
+ Handles secure storage and retrieval of the Hugging Face authentication token.
123
+ """
124
+ def __init__(self):
125
+ # Store config in ~/.pyannote/config.json
126
+ self.config_dir = Path.home() / ".pyannote"
127
+ self.config_file = self.config_dir / "config.json"
128
+ self._initialize_config()
129
+
130
+ def _initialize_config(self) -> None:
131
+ """
132
+ Initialize configuration directory and file with secure permissions.
133
+ """
134
+ self.config_dir.mkdir(exist_ok=True)
135
+ if not self.config_file.exists():
136
+ self._save_config({})
137
+
138
+ # Set secure file and directory permissions on POSIX systems
139
+ if os.name == "posix":
140
+ os.chmod(self.config_dir, 0o700)
141
+ os.chmod(self.config_file, 0o600)
142
+
143
+ def _get_encryption_key(self) -> bytes:
144
+ """
145
+ Generate an encryption key from system-specific data.
146
+ """
147
+ salt = b"pyannote-audio-salt"
148
+ kdf = PBKDF2HMAC(
149
+ algorithm=hashes.SHA256(),
150
+ length=32,
151
+ salt=salt,
152
+ iterations=100000,
153
+ )
154
+ key = kdf.derive(str(Path.home()).encode())
155
+ return base64.urlsafe_b64encode(key)
156
+
157
+ def _save_config(self, config: dict) -> None:
158
+ """
159
+ Securely save configuration to file.
160
+ """
161
+ with open(self.config_file, "w", encoding="utf-8") as f:
162
+ json.dump(config, f)
163
+
164
+ def _load_config(self) -> dict:
165
+ """
166
+ Load configuration from file.
167
+ """
168
+ try:
169
+ with open(self.config_file, "r", encoding="utf-8") as f:
170
+ return json.load(f)
171
+ except Exception:
172
+ return {}
173
+
174
+ def store_token(self, token: str) -> bool:
175
+ """
176
+ Securely store authentication token.
177
+ """
178
+ try:
179
+ fernet = Fernet(self._get_encryption_key())
180
+ encrypted_token = fernet.encrypt(token.encode())
181
+
182
+ config = self._load_config()
183
+ config["token"] = encrypted_token.decode()
184
+
185
+ self._save_config(config)
186
+ return True
187
+ except Exception as e:
188
+ logger.error(f"Failed to store token: {e}")
189
+ return False
190
+
191
+ def retrieve_token(self) -> Optional[str]:
192
+ """
193
+ Retrieve stored authentication token.
194
+ """
195
+ try:
196
+ config = self._load_config()
197
+ if "token" in config:
198
+ fernet = Fernet(self._get_encryption_key())
199
+ return fernet.decrypt(config["token"].encode()).decode()
200
+ except Exception as e:
201
+ logger.error(f"Failed to retrieve token: {e}")
202
+ return None
203
+
204
+ def delete_token(self) -> bool:
205
+ """
206
+ Delete stored authentication token.
207
+ """
208
+ try:
209
+ config = self._load_config()
210
+ if "token" in config:
211
+ del config["token"]
212
+ self._save_config(config)
213
+ return True
214
+ except Exception as e:
215
+ logger.error(f"Failed to delete token: {e}")
216
+ return False
217
+
218
+
219
+ class DependencyManager:
220
+ """
221
+ Manages and verifies system dependencies using importlib.metadata.
222
+ """
223
+ REQUIRED_PACKAGES = {
224
+ "torch": None,
225
+ "pyannote.audio": None,
226
+ "openai-whisper": None,
227
+ "pytorch-lightning": None,
228
+ "keyring": None,
229
+ }
230
+
231
+ @classmethod
232
+ def verify_dependencies(cls) -> bool:
233
+ """
234
+ Verify all required dependencies are installed with correct versions
235
+ (if specified). Returns True if all are installed and correct, False otherwise.
236
+ """
237
+ missing = []
238
+ outdated = []
239
+
240
+ for package, required_version in cls.REQUIRED_PACKAGES.items():
241
+ try:
242
+ installed_version = importlib.metadata.version(package)
243
+ if required_version and installed_version != required_version:
244
+ outdated.append(
245
+ f"{package} (installed: {installed_version}, required: {required_version})"
246
+ )
247
+ except PackageNotFoundError:
248
+ missing.append(package)
249
+
250
+ if missing or outdated:
251
+ if missing:
252
+ logger.error("Missing packages: %s", ", ".join(missing))
253
+ if outdated:
254
+ logger.error("Outdated packages: %s", ", ".join(outdated))
255
+ logger.info(
256
+ "Install required packages: pip install %s",
257
+ " ".join(
258
+ f"{pkg}=={ver}" if ver else pkg
259
+ for pkg, ver in cls.REQUIRED_PACKAGES.items()
260
+ ),
261
+ )
262
+ return False
263
+ return True
264
+
265
+
266
+ class AudioProcessor:
267
+ """
268
+ Handles audio file processing and segmentation using the `wave` module.
269
+ """
270
+ def __init__(self, config: TranscriptionConfig):
271
+ self.config = config
272
+
273
+ def load_audio_segment(
274
+ self,
275
+ audio_path: Path,
276
+ start_time: float,
277
+ end_time: float,
278
+ output_path: Path,
279
+ ) -> bool:
280
+ """
281
+ Extract and save the audio segment from `start_time` to `end_time`.
282
+ """
283
+ try:
284
+ with wave.open(str(audio_path), "rb") as infile:
285
+ params = infile.getparams()
286
+ frame_rate = params.framerate
287
+ start_frame = int(start_time * frame_rate)
288
+ end_frame = min(int(end_time * frame_rate), infile.getnframes())
289
+
290
+ infile.setpos(start_frame)
291
+ frames = infile.readframes(end_frame - start_frame)
292
+
293
+ with wave.open(str(output_path), "wb") as outfile:
294
+ outfile.setparams(params)
295
+ outfile.writeframes(frames)
296
+ return True
297
+ except Exception as e:
298
+ logger.error(f"Failed to process audio segment: {e}")
299
+ return False
300
+
301
+
302
+ class TranscriptionPipeline:
303
+ """
304
+ Main pipeline for audio transcription (Whisper) and speaker diarization (Pyannote).
305
+ """
306
+ def __init__(self, config: TranscriptionConfig):
307
+ self.config = config
308
+ self.diarization_pipeline = None
309
+ self.whisper_model = None
310
+ self.token_manager = TokenManager()
311
+ self._running = False # used for resource monitor thread
312
+
313
+ def initialize_models(self, auth_token: str) -> bool:
314
+ """
315
+ Initialize the Pyannote diarization pipeline and the Whisper model.
316
+ """
317
+ try:
318
+ # Load Whisper model (set download root to avoid clutter in home directory)
319
+ self.whisper_model = whisper.load_model(
320
+ self.config.whisper_model,
321
+ device=self.config.device,
322
+ download_root=str(self.config.output_directory / "models"),
323
+ )
324
+
325
+ # Load Pyannote diarization pipeline
326
+ self.diarization_pipeline = Pipeline.from_pretrained(
327
+ self.config.diarization_model, use_auth_token=auth_token
328
+ )
329
+ self.diarization_pipeline.to(torch.device(self.config.device))
330
+
331
+ if self.config.device == "cpu":
332
+ warnings.warn("Running on CPU. GPU is recommended for better performance.")
333
+
334
+ return True
335
+ except Exception as e:
336
+ logger.error(f"Model initialization failed: {e}")
337
+ logger.error("Please ensure you have accepted the model conditions at:")
338
+ logger.error(" 1. https://huggingface.co/pyannote/segmentation-3.0")
339
+ logger.error(" 2. https://huggingface.co/pyannote/speaker-diarization-3.1")
340
+ return False
341
+
342
+ def _update_resources(self, bar):
343
+ """
344
+ Continuously update progress bar text with CPU/MEM/GPU usage, until self._running is False.
345
+ """
346
+ while self._running:
347
+ try:
348
+ import time
349
+ time.sleep(0.5)
350
+
351
+ cpu_usage = psutil.cpu_percent(interval=None) if HAVE_PROGRESS_SUPPORT else 0
352
+ memory_usage = psutil.virtual_memory().percent if HAVE_PROGRESS_SUPPORT else 0
353
+
354
+ if HAVE_PROGRESS_SUPPORT and GPUtil.getGPUs():
355
+ gpus = GPUtil.getGPUs()
356
+ gpu_mem_used = f"{gpus[0].memoryUsed:.0f}"
357
+ gpu_mem_total = f"{gpus[0].memoryTotal:.0f}"
358
+ gpu_usage_text = f"{gpu_mem_used}/{gpu_mem_total} MB"
359
+ else:
360
+ gpu_usage_text = "N/A"
361
+
362
+ resource_text = f"CPU: {cpu_usage}%, MEM: {memory_usage}%, GPU Mem: {gpu_usage_text}"
363
+ bar.text(resource_text)
364
+ except Exception as e:
365
+ logger.error(f"Resource monitoring error: {e}")
366
+
367
+ def process_file(self, audio_path: Path) -> bool:
368
+ """
369
+ Diarize, segment, and transcribe using Whisper + Pyannote with progress feedback.
370
+ """
371
+ try:
372
+ logger.info("Starting audio processing...")
373
+ diarization = self.diarization_pipeline(str(audio_path))
374
+ segments = list(diarization.itertracks(yield_label=True))
375
+ total_segments = len(segments)
376
+
377
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
378
+ output_file = self.config.output_directory / f"transcript_{timestamp}.txt"
379
+ audio_processor = AudioProcessor(self.config)
380
+
381
+ if not HAVE_PROGRESS_SUPPORT:
382
+ # No alive_progress, psutil, or GPUtil installed
383
+ logger.info("Processing audio without progress bar (missing optional packages).")
384
+ with output_file.open("w", encoding="utf-8") as f:
385
+ for turn, _, speaker in segments:
386
+ segment_path = (
387
+ self.config.temp_directory
388
+ / f"segment_{speaker}_{turn.start:.2f}_{turn.end:.2f}.wav"
389
+ )
390
+ if audio_processor.load_audio_segment(audio_path, turn.start, turn.end, segment_path):
391
+ transcription = self.whisper_model.transcribe(str(segment_path))["text"]
392
+ segment_path.unlink(missing_ok=True)
393
+
394
+ line = f"[{turn.start:.2f}s - {turn.end:.2f}s] Speaker {speaker}: {transcription.strip()}\n"
395
+ f.write(line)
396
+ logger.info(line.strip())
397
+ else:
398
+ # Use a progress bar to track segment transcription
399
+ from alive_progress import alive_bar
400
+ import threading
401
+
402
+ self._running = True
403
+ with output_file.open("w", encoding="utf-8") as f, alive_bar(
404
+ total_segments,
405
+ title="Transcribing Audio",
406
+ spinner="pulse",
407
+ theme="classic",
408
+ stats=False,
409
+ elapsed=True,
410
+ monitor=True,
411
+ ) as bar:
412
+
413
+ # Start a background thread for resource monitoring
414
+ resource_thread = threading.Thread(target=self._update_resources, args=(bar,))
415
+ resource_thread.start()
416
+
417
+ for turn, _, speaker in segments:
418
+ segment_path = (
419
+ self.config.temp_directory
420
+ / f"segment_{speaker}_{turn.start:.2f}_{turn.end:.2f}.wav"
421
+ )
422
+ if audio_processor.load_audio_segment(audio_path, turn.start, turn.end, segment_path):
423
+ transcription = self.whisper_model.transcribe(str(segment_path))["text"]
424
+ segment_path.unlink(missing_ok=True)
425
+
426
+ line = f"[{turn.start:.2f}s - {turn.end:.2f}s] Speaker {speaker}: {transcription.strip()}\n"
427
+ f.write(line)
428
+ logger.info(line.strip())
429
+
430
+ # Update the progress bar
431
+ bar()
432
+
433
+ # Stop resource monitoring
434
+ self._running = False
435
+ resource_thread.join()
436
+
437
+ logger.info(f"Transcription completed. Output saved to: {output_file}")
438
+ return True
439
+
440
+ except Exception as e:
441
+ logger.error(f"Processing failed: {e}")
442
+ return False
443
+
444
+
445
+ def get_token(token_manager: TokenManager) -> Optional[str]:
446
+ """
447
+ Get authentication token from storage or user input.
448
+ """
449
+ stored_token = token_manager.retrieve_token()
450
+ if stored_token:
451
+ choice = input("\nUse the stored Hugging Face token? (y/n): ").lower().strip()
452
+ if choice == "y":
453
+ return stored_token
454
+
455
+ print("\nA HuggingFace token is required for speaker diarization.")
456
+ print("Get your token at: https://huggingface.co/settings/tokens")
457
+ print("\nEnsure you have accepted:")
458
+ print(" 1. pyannote/segmentation-3.0 conditions")
459
+ print(" 2. pyannote/speaker-diarization-3.1 conditions")
460
+
461
+ token = input("\nEnter HuggingFace token: ").strip()
462
+ if token:
463
+ choice = input("Save token for future use? (y/n): ").lower().strip()
464
+ if choice == "y":
465
+ if token_manager.store_token(token):
466
+ print("Token saved successfully.")
467
+ else:
468
+ print("Failed to save token. It will be used for this session only.")
469
+ return token if token else None
470
+
471
+
472
+ def main():
473
+ parser = argparse.ArgumentParser(
474
+ description="Audio Transcription Pipeline using Whisper + Pyannote, with optional progress bar."
475
+ )
476
+ parser.add_argument(
477
+ "--audio",
478
+ type=Path,
479
+ help="Path to the audio file to transcribe."
480
+ )
481
+ parser.add_argument(
482
+ "--token",
483
+ help="HuggingFace API token. Overrides any saved token."
484
+ )
485
+ parser.add_argument(
486
+ "--output",
487
+ type=Path,
488
+ help="Path to the output directory for transcripts and temporary files.",
489
+ )
490
+ parser.add_argument(
491
+ "--delete-token",
492
+ action="store_true",
493
+ help="Delete any stored Hugging Face token and exit.",
494
+ )
495
+ parser.add_argument(
496
+ "--show-warnings",
497
+ action="store_true",
498
+ help="Enable user warnings (e.g., from pyannote.audio). Disabled by default.",
499
+ )
500
+ parser.add_argument(
501
+ "--whisper-model",
502
+ default="base.en",
503
+ help="Specify the Whisper model to use (default: 'base.en').",
504
+ )
505
+ args = parser.parse_args()
506
+
507
+ # Manage user warnings
508
+ if not args.show_warnings:
509
+ warnings.filterwarnings("ignore", category=UserWarning, module=r"pyannote\.audio")
510
+ warnings.filterwarnings("ignore", category=FutureWarning, module="whisper")
511
+ else:
512
+ warnings.resetwarnings()
513
+
514
+ # Check dependencies
515
+ if not DependencyManager.verify_dependencies():
516
+ sys.exit(1)
517
+
518
+ # Initialize tab-completion for file paths (Unix-like only, or with pyreadline on Windows)
519
+ readline.set_completer_delims(' \t\n;')
520
+ readline.set_completer(complete_path)
521
+ readline.parse_and_bind("tab: complete")
522
+
523
+ # Initialize the token manager
524
+ token_manager = TokenManager()
525
+
526
+ # If user wants to delete the stored token, do so and exit
527
+ if args.delete_token:
528
+ success = token_manager.delete_token()
529
+ sys.exit(0 if success else 1)
530
+
531
+ # Prepare configuration
532
+ output_dir = args.output or (Path("transcripts") / datetime.now().strftime("%Y%m%d"))
533
+ config = TranscriptionConfig(
534
+ output_directory=output_dir,
535
+ whisper_model=args.whisper_model
536
+ )
537
+
538
+ # Initialize pipeline
539
+ pipeline = TranscriptionPipeline(config)
540
+ hf_token = args.token or get_token(token_manager)
541
+ if not hf_token:
542
+ logger.error("No Hugging Face token provided. Exiting.")
543
+ sys.exit(1)
544
+
545
+ # Initialize models
546
+ if not pipeline.initialize_models(hf_token):
547
+ logger.error("Failed to initialize pipeline. Exiting.")
548
+ sys.exit(1)
549
+
550
+ # Prompt user for audio file path if not passed in
551
+ audio_path = args.audio
552
+ while not audio_path or not audio_path.exists():
553
+ audio_path_str = input("\nEnter path to audio file (Tab for autocomplete): ").strip()
554
+ audio_path = Path(audio_path_str)
555
+ if not audio_path.exists():
556
+ print(f"File '{audio_path}' not found. Please try again.")
557
+
558
+ print("Audio file path accepted. Preparing to process the audio...")
559
+ sys.stdout.flush()
560
+
561
+ # Process the audio file
562
+ if not pipeline.process_file(audio_path):
563
+ sys.exit(1)
564
+
565
+
566
+ if __name__ == "__main__":
567
+ main()
@@ -0,0 +1,273 @@
1
+ Metadata-Version: 2.2
2
+ Name: audio_scribe
3
+ Version: 0.1.0
4
+ Summary: A command-line tool for audio transcription with Whisper and Pyannote.
5
+ Home-page: https://gitlab.genomicops.cloud/genomicops/audio-scribe
6
+ Author: Gurasis Osahan
7
+ Author-email: contact@genomicops.com
8
+ License: Apache-2.0
9
+ Project-URL: Source, https://gitlab.genomicops.cloud/genomicops/audio-scribe
10
+ Project-URL: Tracker, https://gitlab.genomicops.cloud/genomicops/audio-scribe/-/issues
11
+ Keywords: whisper pyannote transcription audio diarization
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Developers
14
+ Classifier: Intended Audience :: Science/Research
15
+ Classifier: Topic :: Multimedia :: Sound/Audio
16
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
17
+ Classifier: License :: OSI Approved :: Apache Software License
18
+ Classifier: Programming Language :: Python :: 3
19
+ Classifier: Programming Language :: Python :: 3.8
20
+ Classifier: Programming Language :: Python :: 3.9
21
+ Classifier: Programming Language :: Python :: 3.10
22
+ Classifier: Operating System :: OS Independent
23
+ Requires-Python: >=3.8
24
+ Description-Content-Type: text/markdown
25
+ Requires-Dist: torch
26
+ Requires-Dist: openai-whisper
27
+ Requires-Dist: pyannote.audio
28
+ Requires-Dist: pytorch-lightning
29
+ Requires-Dist: keyring
30
+ Requires-Dist: cryptography
31
+ Requires-Dist: alive-progress
32
+ Requires-Dist: psutil
33
+ Requires-Dist: GPUtil
34
+ Dynamic: author
35
+ Dynamic: author-email
36
+ Dynamic: classifier
37
+ Dynamic: description
38
+ Dynamic: description-content-type
39
+ Dynamic: home-page
40
+ Dynamic: keywords
41
+ Dynamic: license
42
+ Dynamic: project-url
43
+ Dynamic: requires-dist
44
+ Dynamic: requires-python
45
+ Dynamic: summary
46
+
47
+ # Audio Scribe
48
+
49
+ **A Command-Line Tool for Audio Transcription (Audio Scribe) and Speaker Diarization Using OpenAI Whisper and Pyannote**
50
+
51
+ [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
52
+
53
+ ## Overview
54
+
55
+ **Audio Scribe** is a command-line tool that transcribes audio files with speaker diarization. Leveraging [OpenAI Whisper](https://github.com/openai/whisper) for transcription and [Pyannote Audio](https://github.com/pyannote/pyannote-audio) for speaker diarization, this solution converts audio into segmented text files, identifying each speaker turn. Key features include:
56
+
57
+ - **Progress Bar & Resource Monitoring**: See real-time CPU, memory, and GPU usage with a live progress bar.
58
+ - **Speaker Diarization**: Automatically separates speaker turns using Pyannote’s state-of-the-art models.
59
+ - **Tab-Completion for File Paths**: Easily navigate your file system when prompted for the audio path.
60
+ - **Secure Token Storage**: Encrypts and stores your Hugging Face token for private model downloads.
61
+ - **Customizable Whisper Models**: Default to `base.en`, or specify `tiny`, `small`, `medium`, `large`, etc.
62
+
63
+ This repository is licensed under the [Apache License 2.0](#license).
64
+
65
+ ---
66
+
67
+ ## Table of Contents
68
+
69
+ - [Audio Scribe](#audio-scribe)
70
+ - [Overview](#overview)
71
+ - [Table of Contents](#table-of-contents)
72
+ - [Features](#features)
73
+ - [Installation](#installation)
74
+ - [Installing from PyPI](#installing-from-pypi)
75
+ - [Installing from GitHub](#installing-from-github)
76
+ - [Quick Start](#quick-start)
77
+ - [Usage](#usage)
78
+ - [Dependencies](#dependencies)
79
+ - [Sample `requirements.txt`](#sample-requirementstxt)
80
+ - [Contributing](#contributing)
81
+ - [License](#license)
82
+
83
+ ---
84
+
85
+ ## Features
86
+
87
+ - **Whisper Transcription**
88
+ Utilizes [OpenAI Whisper](https://github.com/openai/whisper) to convert speech to text in multiple languages.
89
+ - **Pyannote Speaker Diarization**
90
+ Identifies different speakers and segments your audio output accordingly.
91
+ - **Progress Bar & Resource Usage**
92
+ Displays a live progress bar with CPU, memory, and GPU stats through [alive-progress](https://github.com/rsalmei/alive-progress), [psutil](https://pypi.org/project/psutil/), and [GPUtil](https://pypi.org/project/GPUtil/).
93
+ - **Tab-Completion**
94
+ Press **Tab** to autocomplete file paths on Unix-like systems (and on Windows with [pyreadline3](https://pypi.org/project/pyreadline3/)).
95
+ - **Secure Token Storage**
96
+ Saves your Hugging Face token via [cryptography](https://pypi.org/project/cryptography/) for model downloads (e.g., `pyannote/speaker-diarization-3.1`).
97
+ - **Configurable Models**
98
+ Default is `base.en` but you can specify any other Whisper model using `--whisper-model`.
99
+
100
+ ---
101
+
102
+ ## Installation
103
+
104
+ ### Installing from PyPI
105
+
106
+ **Audio Scribe** is available on PyPI. You can install it with:
107
+
108
+ ```bash
109
+ pip install audio-scribe
110
+ ```
111
+
112
+ After installation, the **`audio-scribe`** command should be available in your terminal (depending on how your PATH is configured). If you prefer to run via Python module, you can also do:
113
+
114
+ ```bash
115
+ python -m audio-scribe --audio path/to/yourfile.wav
116
+ ```
117
+
118
+ ### Installing from GitHub
119
+
120
+ To install the latest development version directly from GitHub:
121
+
122
+ ```bash
123
+ git clone https://gitlab.genomicops.cloud/genomicops/audio-scribe.git
124
+ cd audio-scribe
125
+ pip install -r requirements.txt
126
+ ```
127
+
128
+ This approach is particularly useful if you want the newest changes or plan to contribute.
129
+
130
+ ---
131
+
132
+ ## Quick Start
133
+
134
+ 1. **Obtain a Hugging Face Token**
135
+ - Create a token at [Hugging Face Settings](https://huggingface.co/settings/tokens).
136
+ - Accept the model conditions for `pyannote/segmentation-3.0` and `pyannote/speaker-diarization-3.1`.
137
+
138
+ 2. **Run the Command-Line Tool**
139
+ ```bash
140
+ audio-scribe --audio path/to/audio.wav
141
+ ```
142
+ > On the first run, you’ll be prompted for your Hugging Face token if you haven’t stored one yet.
143
+
144
+ 3. **Watch the Progress Bar**
145
+ - The tool displays a progress bar for each diarized speaker turn, along with real-time CPU, GPU, and memory usage.
146
+
147
+ ---
148
+
149
+ ## Usage
150
+
151
+ Below is a summary of the main command-line options:
152
+
153
+ ```
154
+ usage: audio-scribe [options]
155
+
156
+ Audio Transcription (Audio Scribe) Pipeline using Whisper + Pyannote, with optional progress bar.
157
+
158
+ optional arguments:
159
+ --audio PATH Path to the audio file to transcribe.
160
+ --token TOKEN HuggingFace API token. Overrides any saved token.
161
+ --output PATH Path to the output directory for transcripts and temporary files.
162
+ --delete-token Delete any stored Hugging Face token and exit.
163
+ --show-warnings Enable user warnings (e.g., from pyannote.audio). Disabled by default.
164
+ --whisper-model MODEL Specify the Whisper model to use (default: 'base.en').
165
+ ```
166
+
167
+ **Examples:**
168
+
169
+ - **Basic Transcription**
170
+ ```bash
171
+ audio-scribe --audio meeting.wav
172
+ ```
173
+
174
+ - **Specify a Different Whisper Model**
175
+ ```bash
176
+ audio-scribe --audio webinar.mp3 --whisper-model small
177
+ ```
178
+
179
+ - **Delete a Stored Token**
180
+ ```bash
181
+ audio-scribe --delete-token
182
+ ```
183
+
184
+ - **Show Internal Warnings**
185
+ ```bash
186
+ audio-scribe --audio session.wav --show-warnings
187
+ ```
188
+
189
+ - **Tab-Completion**
190
+ ```bash
191
+ audio-scribe
192
+ # When prompted for an audio file path, press Tab to autocomplete
193
+ ```
194
+
195
+ ---
196
+
197
+ ## Dependencies
198
+
199
+ **Core Libraries**
200
+ - **Python 3.8+**
201
+ - [PyTorch](https://pytorch.org/)
202
+ - [openai-whisper](https://github.com/openai/whisper)
203
+ - [pyannote.audio](https://github.com/pyannote/pyannote-audio)
204
+ - [pytorch-lightning](https://pypi.org/project/pytorch-lightning/)
205
+ - [cryptography](https://pypi.org/project/cryptography/)
206
+ - [keyring](https://pypi.org/project/keyring/)
207
+
208
+ **Optional for Extended Functionality**
209
+ - [alive-progress](https://pypi.org/project/alive-progress/) – Real-time progress bar
210
+ - [psutil](https://pypi.org/project/psutil/) – CPU/memory usage
211
+ - [GPUtil](https://pypi.org/project/GPUtil/) – GPU usage
212
+ - [pyreadline3](https://pypi.org/project/pyreadline3/) (for Windows tab-completion)
213
+
214
+ ### Sample `requirements.txt`
215
+
216
+ Below is a typical `requirements.txt` you can place in your repository:
217
+
218
+ ```
219
+ torch>=1.9
220
+ openai-whisper
221
+ pyannote.audio
222
+ pytorch-lightning
223
+ cryptography
224
+ keyring
225
+ alive-progress
226
+ psutil
227
+ GPUtil
228
+ pyreadline3; sys_platform == "win32"
229
+ ```
230
+
231
+ > Note:
232
+ > - `pyreadline3` is appended with a [PEP 508 marker](https://peps.python.org/pep-0508/) (`; sys_platform == "win32"`) so it only installs on Windows.
233
+ > - For GPU support, ensure you install a compatible PyTorch version with CUDA.
234
+
235
+ ---
236
+
237
+ ## Contributing
238
+
239
+ We welcome contributions to **Audio Scribe**!
240
+
241
+ 1. **Fork** the repository and clone your fork.
242
+ 2. **Create a new branch** for your feature or bugfix.
243
+ 3. **Implement your changes**, ensuring code is well-documented and follows best practices.
244
+ 4. **Open a pull request**, detailing the changes you’ve made.
245
+
246
+ Please read any available guidelines or templates in our repository (such as `CONTRIBUTING.md` or `CODE_OF_CONDUCT.md`) before submitting.
247
+
248
+ ---
249
+
250
+ ## License
251
+
252
+ This project is licensed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
253
+
254
+ ```
255
+ Copyright 2025 Gurasis Osahan
256
+
257
+ Licensed under the Apache License, Version 2.0 (the "License");
258
+ you may not use this file except in compliance with the License.
259
+ You may obtain a copy of the License at
260
+
261
+ http://www.apache.org/licenses/LICENSE-2.0
262
+
263
+ Unless required by applicable law or agreed to in writing, software
264
+ distributed under the License is distributed on an "AS IS" BASIS,
265
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
266
+ See the License for the specific language governing permissions and
267
+ limitations under the License.
268
+ ```
269
+
270
+ ---
271
+
272
+ **Thank you for using Audio Scribe!**
273
+ For questions or feedback, please open a [GitHub issue](https://gitlab.genomicops.cloud/genomicops/audio-scribe/issues) or contact the maintainers.
@@ -0,0 +1,7 @@
1
+ audio_scribe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ audio_scribe/cli.py,sha256=dabh7fe9wAEORwVIBd-V8FAzHBBzbkjnfMSR-wOywO8,20286
3
+ audio_scribe-0.1.0.dist-info/METADATA,sha256=BBx81TI9DPCYgsdKyBn2PWEJ9pJsnhqTUb8ZsWoS1Ps,9503
4
+ audio_scribe-0.1.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
5
+ audio_scribe-0.1.0.dist-info/entry_points.txt,sha256=eaO9r_zAFnrWseKyJcBpGUHQq-P7NXBw5er8sZaPfFU,55
6
+ audio_scribe-0.1.0.dist-info/top_level.txt,sha256=L1mltKt-5HrbTXPpAXwht8SXQCgcCceoqpCq4OCZRsk,13
7
+ audio_scribe-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.8.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ audio-scribe = audio_scribe.cli:main
@@ -0,0 +1 @@
1
+ audio_scribe