atlan-application-sdk 1.1.1__py3-none-any.whl → 2.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. application_sdk/activities/common/sql_utils.py +312 -0
  2. application_sdk/activities/common/utils.py +1 -45
  3. application_sdk/activities/metadata_extraction/sql.py +110 -353
  4. application_sdk/activities/query_extraction/sql.py +12 -11
  5. application_sdk/application/__init__.py +1 -1
  6. application_sdk/clients/sql.py +167 -1
  7. application_sdk/clients/temporal.py +6 -6
  8. application_sdk/common/types.py +8 -0
  9. application_sdk/common/utils.py +1 -8
  10. application_sdk/constants.py +1 -1
  11. application_sdk/handlers/sql.py +10 -25
  12. application_sdk/interceptors/events.py +1 -1
  13. application_sdk/io/__init__.py +749 -0
  14. application_sdk/io/json.py +473 -0
  15. application_sdk/{outputs → io}/parquet.py +414 -47
  16. application_sdk/io/utils.py +307 -0
  17. application_sdk/observability/observability.py +16 -12
  18. application_sdk/server/fastapi/middleware/logmiddleware.py +23 -17
  19. application_sdk/server/fastapi/middleware/metrics.py +27 -24
  20. application_sdk/server/fastapi/models.py +1 -1
  21. application_sdk/server/fastapi/routers/server.py +1 -1
  22. application_sdk/server/fastapi/utils.py +10 -0
  23. application_sdk/services/eventstore.py +4 -4
  24. application_sdk/services/objectstore.py +14 -1
  25. application_sdk/services/secretstore.py +1 -1
  26. application_sdk/test_utils/hypothesis/strategies/outputs/json_output.py +0 -1
  27. application_sdk/test_utils/hypothesis/strategies/server/fastapi/__init__.py +1 -1
  28. application_sdk/version.py +1 -1
  29. application_sdk/worker.py +1 -1
  30. {atlan_application_sdk-1.1.1.dist-info → atlan_application_sdk-2.1.0.dist-info}/METADATA +9 -11
  31. {atlan_application_sdk-1.1.1.dist-info → atlan_application_sdk-2.1.0.dist-info}/RECORD +36 -43
  32. application_sdk/common/dataframe_utils.py +0 -42
  33. application_sdk/events/__init__.py +0 -5
  34. application_sdk/inputs/.cursor/BUGBOT.md +0 -250
  35. application_sdk/inputs/__init__.py +0 -168
  36. application_sdk/inputs/iceberg.py +0 -75
  37. application_sdk/inputs/json.py +0 -136
  38. application_sdk/inputs/parquet.py +0 -272
  39. application_sdk/inputs/sql_query.py +0 -271
  40. application_sdk/outputs/.cursor/BUGBOT.md +0 -295
  41. application_sdk/outputs/__init__.py +0 -453
  42. application_sdk/outputs/iceberg.py +0 -139
  43. application_sdk/outputs/json.py +0 -268
  44. /application_sdk/{events → interceptors}/models.py +0 -0
  45. /application_sdk/{common/dapr_utils.py → services/_utils.py} +0 -0
  46. {atlan_application_sdk-1.1.1.dist-info → atlan_application_sdk-2.1.0.dist-info}/WHEEL +0 -0
  47. {atlan_application_sdk-1.1.1.dist-info → atlan_application_sdk-2.1.0.dist-info}/licenses/LICENSE +0 -0
  48. {atlan_application_sdk-1.1.1.dist-info → atlan_application_sdk-2.1.0.dist-info}/licenses/NOTICE +0 -0
@@ -1,271 +0,0 @@
1
- import asyncio
2
- import concurrent
3
- from typing import TYPE_CHECKING, AsyncIterator, Iterator, Optional, Union
4
-
5
- from application_sdk.inputs import Input
6
- from application_sdk.observability.logger_adaptor import get_logger
7
-
8
- logger = get_logger(__name__)
9
-
10
- if TYPE_CHECKING:
11
- import daft
12
- import pandas as pd
13
- from sqlalchemy.engine import Engine
14
- from sqlalchemy.orm import Session
15
-
16
-
17
- class SQLQueryInput(Input):
18
- """Input handler for SQL queries.
19
-
20
- This class provides asynchronous functionality to execute SQL queries and return
21
- results as DataFrames, with support for both pandas and daft formats.
22
-
23
- Attributes:
24
- query (str): The SQL query to execute.
25
- engine (Union[Engine, str]): SQLAlchemy engine or connection string.
26
- chunk_size (Optional[int]): Number of rows to fetch per batch.
27
- """
28
-
29
- query: str
30
- engine: Union["Engine", str]
31
- chunk_size: Optional[int]
32
-
33
- def __init__(
34
- self,
35
- query: str,
36
- engine: Union["Engine", str],
37
- chunk_size: Optional[int] = 5000,
38
- ):
39
- """Initialize the async SQL query input handler.
40
-
41
- Args:
42
- engine (Union[Engine, str]): SQLAlchemy engine or connection string.
43
- query (str): The SQL query to execute.
44
- chunk_size (Optional[int], optional): Number of rows per batch.
45
- Defaults to 5000.
46
- """
47
- self.query = query
48
- self.engine = engine
49
- self.chunk_size = chunk_size
50
- self.engine = engine
51
-
52
- def _execute_pandas_query(
53
- self, conn
54
- ) -> Union["pd.DataFrame", Iterator["pd.DataFrame"]]:
55
- """Helper function to execute SQL query using pandas.
56
- The function is responsible for using import_optional_dependency method of the pandas library to import sqlalchemy
57
- This function helps pandas in determining weather to use the sqlalchemy connection object and constructs like text()
58
- or use the underlying database connection object. This has been done to make sure connectors like the Redshift connector,
59
- which do not support the sqlalchemy connection object, can be made compatible with the application-sdk.
60
-
61
- Args:
62
- conn: Database connection object.
63
-
64
- Returns:
65
- Union["pd.DataFrame", Iterator["pd.DataFrame"]]: Query results as DataFrame
66
- or iterator of DataFrames if chunked.
67
- """
68
- import pandas as pd
69
- from pandas.compat._optional import import_optional_dependency
70
- from sqlalchemy import text
71
-
72
- if import_optional_dependency("sqlalchemy", errors="ignore"):
73
- return pd.read_sql_query(text(self.query), conn, chunksize=self.chunk_size)
74
- else:
75
- dbapi_conn = getattr(conn, "connection", None)
76
- return pd.read_sql_query(self.query, dbapi_conn, chunksize=self.chunk_size)
77
-
78
- def _read_sql_query(
79
- self, session: "Session"
80
- ) -> Union["pd.DataFrame", Iterator["pd.DataFrame"]]:
81
- """Execute SQL query using the provided session.
82
-
83
- Args:
84
- session: SQLAlchemy session for database operations.
85
-
86
- Returns:
87
- Union["pd.DataFrame", Iterator["pd.DataFrame"]]: Query results as DataFrame
88
- or iterator of DataFrames if chunked.
89
- """
90
- conn = session.connection()
91
- return self._execute_pandas_query(conn)
92
-
93
- def _execute_query_daft(
94
- self,
95
- ) -> Union["daft.DataFrame", Iterator["daft.DataFrame"]]:
96
- """Execute SQL query using the provided engine and daft.
97
-
98
- Returns:
99
- Union["daft.DataFrame", Iterator["daft.DataFrame"]]: Query results as DataFrame
100
- or iterator of DataFrames if chunked.
101
- """
102
- # Daft uses ConnectorX to read data from SQL by default for supported connectors
103
- # If a connection string is passed, it will use ConnectorX to read data
104
- # For unsupported connectors and if directly engine is passed, it will use SQLAlchemy
105
- import daft
106
-
107
- if isinstance(self.engine, str):
108
- return daft.read_sql(
109
- self.query, self.engine, infer_schema_length=self.chunk_size
110
- )
111
- return daft.read_sql(
112
- self.query, self.engine.connect, infer_schema_length=self.chunk_size
113
- )
114
-
115
- def _execute_query(self) -> Union["pd.DataFrame", Iterator["pd.DataFrame"]]:
116
- """Execute SQL query using the provided engine and pandas.
117
-
118
- Returns:
119
- Union["pd.DataFrame", Iterator["pd.DataFrame"]]: Query results as DataFrame
120
- or iterator of DataFrames if chunked.
121
- """
122
- with self.engine.connect() as conn:
123
- return self._execute_pandas_query(conn)
124
-
125
- async def get_batched_dataframe(
126
- self,
127
- ) -> Union[AsyncIterator["pd.DataFrame"], Iterator["pd.DataFrame"]]: # type: ignore
128
- """Get query results as batched pandas DataFrames asynchronously.
129
-
130
- Returns:
131
- AsyncIterator["pd.DataFrame"]: Async iterator yielding batches of query results.
132
-
133
- Raises:
134
- ValueError: If engine is a string instead of SQLAlchemy engine.
135
- Exception: If there's an error executing the query.
136
- """
137
- try:
138
- if isinstance(self.engine, str):
139
- raise ValueError("Engine should be an SQLAlchemy engine object")
140
-
141
- from sqlalchemy.ext.asyncio import AsyncEngine, AsyncSession
142
-
143
- async_session = None
144
- if self.engine and isinstance(self.engine, AsyncEngine):
145
- from sqlalchemy.orm import sessionmaker
146
-
147
- async_session = sessionmaker(
148
- self.engine, expire_on_commit=False, class_=AsyncSession
149
- )
150
-
151
- if async_session:
152
- async with async_session() as session:
153
- return await session.run_sync(self._read_sql_query)
154
- else:
155
- # Run the blocking operation in a thread pool
156
- with concurrent.futures.ThreadPoolExecutor() as executor:
157
- return await asyncio.get_event_loop().run_in_executor( # type: ignore
158
- executor, self._execute_query
159
- )
160
- except Exception as e:
161
- logger.error(f"Error reading batched data(pandas) from SQL: {str(e)}")
162
-
163
- async def get_dataframe(self) -> "pd.DataFrame":
164
- """Get all query results as a single pandas DataFrame asynchronously.
165
-
166
- Returns:
167
- pd.DataFrame: Query results as a DataFrame.
168
-
169
- Raises:
170
- ValueError: If engine is a string instead of SQLAlchemy engine.
171
- Exception: If there's an error executing the query.
172
- """
173
- try:
174
- if isinstance(self.engine, str):
175
- raise ValueError("Engine should be an SQLAlchemy engine object")
176
-
177
- from sqlalchemy.ext.asyncio import AsyncEngine, AsyncSession
178
-
179
- async_session = None
180
- if self.engine and isinstance(self.engine, AsyncEngine):
181
- from sqlalchemy.orm import sessionmaker
182
-
183
- async_session = sessionmaker(
184
- self.engine, expire_on_commit=False, class_=AsyncSession
185
- )
186
-
187
- if async_session:
188
- async with async_session() as session:
189
- return await session.run_sync(self._read_sql_query)
190
- else:
191
- # Run the blocking operation in a thread pool
192
- with concurrent.futures.ThreadPoolExecutor() as executor:
193
- result = await asyncio.get_event_loop().run_in_executor(
194
- executor, self._execute_query
195
- )
196
- import pandas as pd
197
-
198
- if isinstance(result, pd.DataFrame):
199
- return result
200
- raise Exception(
201
- "Unable to get pandas dataframe from SQL query results"
202
- )
203
-
204
- except Exception as e:
205
- logger.error(f"Error reading data(pandas) from SQL: {str(e)}")
206
- raise e
207
-
208
- async def get_daft_dataframe(self) -> "daft.DataFrame": # noqa: F821
209
- """Get query results as a daft DataFrame.
210
-
211
- This method uses ConnectorX to read data from SQL for supported connectors.
212
- For unsupported connectors and direct engine usage, it falls back to SQLAlchemy.
213
-
214
- Returns:
215
- daft.DataFrame: Query results as a daft DataFrame.
216
-
217
- Raises:
218
- ValueError: If engine is a string instead of SQLAlchemy engine.
219
- Exception: If there's an error executing the query.
220
-
221
- Note:
222
- For ConnectorX supported sources, see:
223
- https://sfu-db.github.io/connector-x/intro.html#sources
224
- """
225
- try:
226
- import daft
227
-
228
- # Run the blocking operation in a thread pool
229
- with concurrent.futures.ThreadPoolExecutor() as executor:
230
- result = await asyncio.get_event_loop().run_in_executor(
231
- executor, self._execute_query_daft
232
- )
233
- if isinstance(result, daft.DataFrame):
234
- return result
235
- raise
236
- except Exception as e:
237
- logger.error(f"Error reading data(daft) from SQL: {str(e)}")
238
- raise
239
-
240
- async def get_batched_daft_dataframe(
241
- self,
242
- ) -> Union[AsyncIterator["daft.DataFrame"], Iterator["daft.DataFrame"]]: # noqa: F821
243
- """Get query results as batched daft DataFrames.
244
-
245
- This method reads data using pandas in batches since daft does not support
246
- batch reading. Each pandas DataFrame is then converted to a daft DataFrame.
247
-
248
- Returns:
249
- AsyncIterator[daft.DataFrame]: Async iterator yielding batches of query results
250
- as daft DataFrames.
251
-
252
- Raises:
253
- ValueError: If engine is a string instead of SQLAlchemy engine.
254
- Exception: If there's an error executing the query.
255
-
256
- Note:
257
- This method uses pandas for batch reading since daft does not support
258
- reading data in batches natively.
259
- """
260
- try:
261
- import daft
262
-
263
- if isinstance(self.engine, str):
264
- raise ValueError("Engine should be an SQLAlchemy engine object")
265
-
266
- # Use async for to consume the AsyncIterator properly
267
- async for dataframe in self.get_batched_dataframe():
268
- daft_dataframe = daft.from_pandas(dataframe)
269
- yield daft_dataframe
270
- except Exception as e:
271
- logger.error(f"Error reading batched data(daft) from SQL: {str(e)}")
@@ -1,295 +0,0 @@
1
- # Output Code Review Guidelines - Data Output Processing
2
-
3
- ## Context-Specific Patterns
4
-
5
- This directory contains output processing implementations for various data formats (JSON, Parquet, Iceberg). Output processors must handle data uploads efficiently while maintaining data integrity and correct destination paths.
6
-
7
- ### Phase 1: Critical Output Safety Issues
8
-
9
- **Object Store Path Management:**
10
-
11
- - **Correct destination paths**: Upload paths must respect user-configured output prefixes
12
- - **Path construction accuracy**: Object store keys must be calculated correctly, not hardcoded
13
- - **User prefix preservation**: Respect user-provided output directories and naming conventions
14
- - **Path validation**: Ensure upload paths don't conflict with existing data
15
-
16
- **Data Integrity and Security:**
17
-
18
- - All output data must be validated before upload
19
- - File permissions and access controls must be properly set
20
- - Data serialization must be consistent and recoverable
21
- - Prevent overwriting critical data without confirmation
22
- - Maintain data lineage information in output metadata
23
-
24
- ```python
25
- # ✅ DO: Proper object store upload path handling
26
- class JsonOutput:
27
- async def upload_to_object_store(
28
- self,
29
- data: List[dict],
30
- output_prefix: str, # User-provided output location
31
- filename: str
32
- ) -> dict:
33
- """Upload data with correct path handling."""
34
-
35
- # Construct full object store path respecting user's output prefix
36
- object_store_key = os.path.join(output_prefix, filename)
37
-
38
- # Serialize data
39
- json_data = orjson.dumps(data, option=orjson.OPT_APPEND_NEWLINE)
40
-
41
- # Upload to correct location
42
- result = await self.object_store.upload_file(
43
- data=json_data,
44
- destination=object_store_key # Respect user's intended location
45
- )
46
-
47
- return result
48
-
49
- # ❌ REJECT: Incorrect path handling
50
- class BadJsonOutput:
51
- async def upload_to_object_store(self, data: List[dict], filename: str):
52
- # Wrong: hardcoded or derived path, ignoring user configuration
53
- object_store_key = get_object_store_prefix(f"/tmp/{filename}") # Ignores output_prefix!
54
-
55
- result = await self.object_store.upload_file(
56
- data=orjson.dumps(data),
57
- destination=object_store_key # Wrong destination!
58
- )
59
- return result
60
- ```
61
-
62
- ### Phase 2: Output Architecture Patterns
63
-
64
- **Performance Optimization Requirements:**
65
-
66
- - **Parallelization opportunities**: Flag sequential upload operations that could be parallelized
67
- - **Batch processing**: Group related uploads to reduce overhead
68
- - **Streaming uploads**: Use streaming for large datasets instead of loading into memory
69
- - **Connection optimization**: Reuse object store connections across operations
70
-
71
- **Resource Management:**
72
-
73
- - Use proper connection pooling for object store operations
74
- - Implement timeout handling for upload operations
75
- - Clean up temporary files after upload
76
- - Handle partial upload failures gracefully
77
- - Monitor memory usage during large data serialization
78
-
79
- ```python
80
- # ✅ DO: Parallel upload processing
81
- async def upload_multiple_datasets_parallel(
82
- self,
83
- datasets: List[Tuple[List[dict], str]], # (data, filename) pairs
84
- output_prefix: str
85
- ) -> List[dict]:
86
- """Upload multiple datasets in parallel for better performance."""
87
-
88
- async def upload_single_dataset(data: List[dict], filename: str) -> dict:
89
- """Upload a single dataset with error handling."""
90
- try:
91
- object_store_key = os.path.join(output_prefix, filename)
92
- serialized_data = orjson.dumps(data, option=orjson.OPT_APPEND_NEWLINE)
93
-
94
- return await self.object_store.upload_file(
95
- data=serialized_data,
96
- destination=object_store_key
97
- )
98
- except Exception as e:
99
- logger.error(f"Failed to upload {filename}: {e}")
100
- raise
101
-
102
- # Parallel processing with controlled concurrency
103
- semaphore = asyncio.Semaphore(5) # Limit concurrent uploads
104
-
105
- async def upload_with_semaphore(data: List[dict], filename: str) -> dict:
106
- async with semaphore:
107
- return await upload_single_dataset(data, filename)
108
-
109
- tasks = [upload_with_semaphore(data, filename) for data, filename in datasets]
110
- return await asyncio.gather(*tasks)
111
-
112
- # ❌ REJECT: Sequential upload processing
113
- async def upload_multiple_datasets_sequential(
114
- self,
115
- datasets: List[Tuple[List[dict], str]],
116
- output_prefix: str
117
- ) -> List[dict]:
118
- """Sequential uploads - should be flagged for parallelization."""
119
- results = []
120
- for data, filename in datasets: # FLAG: Could be parallelized
121
- object_store_key = os.path.join(output_prefix, filename)
122
- result = await self.object_store.upload_file(data, object_store_key)
123
- results.append(result)
124
- return results
125
- ```
126
-
127
- ### Phase 3: Output Testing Requirements
128
-
129
- **Data Output Testing:**
130
-
131
- - Test with various data formats and sizes
132
- - Test serialization and deserialization consistency
133
- - Test partial upload scenarios and recovery
134
- - Mock object store operations in unit tests
135
- - Include integration tests with real object store
136
- - Test data corruption detection and prevention
137
-
138
- **Performance Testing:**
139
-
140
- - Include tests for large dataset uploads
141
- - Test memory usage during serialization
142
- - Test concurrent upload operations
143
- - Verify timeout handling works correctly
144
- - Test connection pool behavior under load
145
-
146
- ### Phase 4: Performance and Scalability
147
-
148
- **Data Upload Efficiency:**
149
-
150
- - Use streaming uploads for large datasets
151
- - Implement proper chunking for oversized data
152
- - Use compression for large text-based outputs
153
- - Monitor upload progress and provide feedback
154
- - Optimize serialization performance (use orjson over json)
155
-
156
- **Object Store Optimization:**
157
-
158
- - Use connection pooling for object store clients
159
- - Implement proper retry logic for upload failures
160
- - Use parallel uploads where appropriate
161
- - Monitor upload metrics and error rates
162
- - Handle bandwidth limitations gracefully
163
-
164
- ### Phase 5: Output Maintainability
165
-
166
- **Error Handling and Recovery:**
167
-
168
- - Implement comprehensive error handling for all upload operations
169
- - Provide meaningful error messages with upload context
170
- - Handle partial upload failures gracefully
171
- - Implement proper retry logic for transient failures
172
- - Log all upload operations with destination information
173
-
174
- **Configuration Management:**
175
-
176
- - Externalize all output-related configuration
177
- - Support different output destinations and formats
178
- - Validate output configuration before processing
179
- - Document all supported output parameters
180
- - Handle environment-specific output requirements
181
-
182
- ---
183
-
184
- ## Output-Specific Anti-Patterns
185
-
186
- **Always Reject:**
187
-
188
- - **Path derivation errors**: Deriving object store paths from local temporary paths
189
- - **Sequential uploads**: Uploading multiple files sequentially when parallel uploads are possible
190
- - **Memory inefficiency**: Loading entire datasets into memory for serialization
191
- - **Missing upload verification**: Not verifying successful uploads
192
- - **Poor error recovery**: Not handling partial upload failures gracefully
193
- - **Resource leaks**: Not cleaning up temporary files or connections
194
-
195
- **Object Store Upload Anti-Patterns:**
196
-
197
- ```python
198
- # ❌ REJECT: Incorrect upload path handling
199
- class BadOutputProcessor:
200
- async def upload_results(self, results: List[dict]):
201
- # Wrong: derives upload path from temporary local path
202
- local_temp_file = "/tmp/results.json"
203
- upload_key = get_object_store_prefix(local_temp_file) # Incorrect!
204
-
205
- await self.object_store.upload_file(results, upload_key)
206
-
207
- # ✅ REQUIRE: Correct upload path handling
208
- class GoodOutputProcessor:
209
- async def upload_results(
210
- self,
211
- results: List[dict],
212
- output_prefix: str, # User-specified destination
213
- filename: str = "results.json"
214
- ):
215
- # Use actual user-configured output location
216
- upload_key = os.path.join(output_prefix, filename)
217
-
218
- await self.object_store.upload_file(
219
- data=orjson.dumps(results),
220
- destination=upload_key # Correct destination
221
- )
222
- ```
223
-
224
- **Performance Anti-Patterns:**
225
-
226
- ```python
227
- # ❌ REJECT: Sequential upload processing
228
- async def upload_multiple_files_sequential(file_data_pairs: List[Tuple]):
229
- results = []
230
- for data, filename in file_data_pairs: # Should be parallelized
231
- result = await upload_single_file(data, filename)
232
- results.append(result)
233
- return results
234
-
235
- # ✅ REQUIRE: Parallel upload processing with proper error handling
236
- async def upload_multiple_files_parallel(
237
- file_data_pairs: List[Tuple],
238
- max_concurrency: int = 5
239
- ) -> List[dict]:
240
- semaphore = asyncio.Semaphore(max_concurrency)
241
-
242
- async def upload_with_semaphore(data, filename):
243
- async with semaphore:
244
- try:
245
- return await upload_single_file(data, filename)
246
- except Exception as e:
247
- logger.error(f"Upload failed for {filename}: {e}")
248
- return {"filename": filename, "status": "failed", "error": str(e)}
249
-
250
- tasks = [upload_with_semaphore(data, filename) for data, filename in file_data_pairs]
251
- return await asyncio.gather(*tasks)
252
- ```
253
-
254
- **Memory Management Anti-Patterns:**
255
-
256
- ```python
257
- # ❌ REJECT: Loading entire dataset for serialization
258
- async def bad_large_dataset_upload(large_dataset: List[dict]):
259
- # Loads entire dataset into memory
260
- json_data = orjson.dumps(large_dataset) # Could exceed memory limits
261
- await upload_data(json_data)
262
-
263
- # ✅ REQUIRE: Streaming serialization for large datasets
264
- async def good_large_dataset_upload(large_dataset: List[dict], chunk_size: int = 1000):
265
- """Stream large datasets to avoid memory issues."""
266
-
267
- async def serialize_chunk(chunk: List[dict]) -> bytes:
268
- return orjson.dumps(chunk, option=orjson.OPT_APPEND_NEWLINE)
269
-
270
- # Process in chunks to manage memory
271
- for i in range(0, len(large_dataset), chunk_size):
272
- chunk = large_dataset[i:i + chunk_size]
273
- serialized_chunk = await serialize_chunk(chunk)
274
-
275
- await upload_chunk(
276
- data=serialized_chunk,
277
- chunk_index=i // chunk_size
278
- )
279
- ```
280
-
281
- ## Educational Context for Output Reviews
282
-
283
- When reviewing output code, emphasize:
284
-
285
- 1. **Data Integrity Impact**: "Incorrect upload path handling can cause data to be stored in wrong locations, making it inaccessible to downstream processes. This breaks data pipelines and can cause data loss."
286
-
287
- 2. **Performance Impact**: "Sequential uploads create unnecessary bottlenecks. For enterprise datasets with multiple output files, parallelization can significantly reduce processing time and improve user experience."
288
-
289
- 3. **Resource Impact**: "Poor memory management during serialization can cause out-of-memory errors with large datasets. Streaming and chunking are essential for enterprise-scale data output."
290
-
291
- 4. **User Experience Impact**: "Output path errors are often discovered late in processing, causing wasted computation and frustrating delays. Proper validation and clear error messages improve reliability."
292
-
293
- 5. **Scalability Impact**: "Output patterns that work for small datasets can fail at enterprise scale. Always design output processes to handle the largest expected dataset sizes efficiently."
294
-
295
- 6. **Data Pipeline Impact**: "Output processing is the final step in data pipelines. Failures here can invalidate all upstream processing work. Robust error handling and verification are critical for pipeline reliability."