athena-intelligence 0.1.93__py3-none-any.whl → 0.1.95__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. athena/__init__.py +1 -76
  2. athena/base_client.py +4 -31
  3. athena/client.py +4 -9
  4. athena/core/client_wrapper.py +1 -1
  5. athena/environment.py +1 -1
  6. athena/tools/client.py +61 -916
  7. athena/tools/types/tools_data_frame_request_columns_item.py +1 -1
  8. athena/types/__init__.py +0 -66
  9. athena/types/data_frame_parsing_error.py +1 -1
  10. athena/types/data_frame_request_out.py +5 -1
  11. athena/types/data_frame_unknown_format_error.py +1 -1
  12. {athena_intelligence-0.1.93.dist-info → athena_intelligence-0.1.95.dist-info}/METADATA +1 -1
  13. athena_intelligence-0.1.95.dist-info/RECORD +40 -0
  14. athena/chain/__init__.py +0 -2
  15. athena/chain/client.py +0 -302
  16. athena/dataset/__init__.py +0 -2
  17. athena/dataset/client.py +0 -124
  18. athena/message/__init__.py +0 -2
  19. athena/message/client.py +0 -249
  20. athena/polling_message_client.py +0 -125
  21. athena/query/__init__.py +0 -2
  22. athena/query/client.py +0 -123
  23. athena/report/__init__.py +0 -2
  24. athena/report/client.py +0 -125
  25. athena/search/__init__.py +0 -2
  26. athena/search/client.py +0 -171
  27. athena/snippet/__init__.py +0 -2
  28. athena/snippet/client.py +0 -208
  29. athena/types/athena_document_v_2_out.py +0 -29
  30. athena/types/convert_pdf_to_sheet_out.py +0 -30
  31. athena/types/dataset.py +0 -33
  32. athena/types/document.py +0 -47
  33. athena/types/excecute_tool_first_workflow_out.py +0 -29
  34. athena/types/file_data_response.py +0 -36
  35. athena/types/filter_model.py +0 -32
  36. athena/types/filter_operator.py +0 -73
  37. athena/types/firecrawl_scrape_url_data_reponse_dto.py +0 -32
  38. athena/types/firecrawl_scrape_url_metadata.py +0 -34
  39. athena/types/get_datasets_response.py +0 -34
  40. athena/types/get_snippet_out.py +0 -29
  41. athena/types/get_snippets_response.py +0 -34
  42. athena/types/langchain_documents_request_out.py +0 -29
  43. athena/types/llm_model.py +0 -141
  44. athena/types/map_reduce_chain_out.py +0 -32
  45. athena/types/message_out.py +0 -29
  46. athena/types/message_out_dto.py +0 -35
  47. athena/types/model.py +0 -93
  48. athena/types/publish_formats.py +0 -31
  49. athena/types/query_model.py +0 -40
  50. athena/types/report.py +0 -32
  51. athena/types/researcher_out.py +0 -29
  52. athena/types/semantic_query_out.py +0 -29
  53. athena/types/snippet.py +0 -35
  54. athena/types/sql_results.py +0 -29
  55. athena/types/status_enum.py +0 -29
  56. athena/types/structured_parse_result.py +0 -29
  57. athena/types/time_dimension_model.py +0 -33
  58. athena/types/tools.py +0 -57
  59. athena/types/upload_documents_out.py +0 -31
  60. athena/types/url_result.py +0 -29
  61. athena/types/workflow_status_out.py +0 -31
  62. athena/upload/__init__.py +0 -2
  63. athena/upload/client.py +0 -108
  64. athena/workflow/__init__.py +0 -2
  65. athena/workflow/client.py +0 -117
  66. athena_intelligence-0.1.93.dist-info/RECORD +0 -92
  67. {athena_intelligence-0.1.93.dist-info → athena_intelligence-0.1.95.dist-info}/WHEEL +0 -0
@@ -1,73 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import enum
4
- import typing
5
-
6
- T_Result = typing.TypeVar("T_Result")
7
-
8
-
9
- class FilterOperator(str, enum.Enum):
10
- """
11
- An enumeration.
12
- """
13
-
14
- EQUALS = "equals"
15
- NOT_EQUALS = "notEquals"
16
- CONTAINS = "contains"
17
- NOT_CONTAINS = "notContains"
18
- STARTS_WITH = "startsWith"
19
- ENDS_WITH = "endsWith"
20
- GT = "gt"
21
- GTE = "gte"
22
- LT = "lt"
23
- LTE = "lte"
24
- SET = "set"
25
- NOT_SET = "notSet"
26
- IN = "in"
27
- NOT_IN = "notIn"
28
-
29
- def visit(
30
- self,
31
- equals: typing.Callable[[], T_Result],
32
- not_equals: typing.Callable[[], T_Result],
33
- contains: typing.Callable[[], T_Result],
34
- not_contains: typing.Callable[[], T_Result],
35
- starts_with: typing.Callable[[], T_Result],
36
- ends_with: typing.Callable[[], T_Result],
37
- gt: typing.Callable[[], T_Result],
38
- gte: typing.Callable[[], T_Result],
39
- lt: typing.Callable[[], T_Result],
40
- lte: typing.Callable[[], T_Result],
41
- set_: typing.Callable[[], T_Result],
42
- not_set: typing.Callable[[], T_Result],
43
- in_: typing.Callable[[], T_Result],
44
- not_in: typing.Callable[[], T_Result],
45
- ) -> T_Result:
46
- if self is FilterOperator.EQUALS:
47
- return equals()
48
- if self is FilterOperator.NOT_EQUALS:
49
- return not_equals()
50
- if self is FilterOperator.CONTAINS:
51
- return contains()
52
- if self is FilterOperator.NOT_CONTAINS:
53
- return not_contains()
54
- if self is FilterOperator.STARTS_WITH:
55
- return starts_with()
56
- if self is FilterOperator.ENDS_WITH:
57
- return ends_with()
58
- if self is FilterOperator.GT:
59
- return gt()
60
- if self is FilterOperator.GTE:
61
- return gte()
62
- if self is FilterOperator.LT:
63
- return lt()
64
- if self is FilterOperator.LTE:
65
- return lte()
66
- if self is FilterOperator.SET:
67
- return set_()
68
- if self is FilterOperator.NOT_SET:
69
- return not_set()
70
- if self is FilterOperator.IN:
71
- return in_()
72
- if self is FilterOperator.NOT_IN:
73
- return not_in()
@@ -1,32 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
- from .firecrawl_scrape_url_metadata import FirecrawlScrapeUrlMetadata
9
-
10
-
11
- class FirecrawlScrapeUrlDataReponseDto(pydantic_v1.BaseModel):
12
- content: str
13
- markdown: str
14
- metadata: FirecrawlScrapeUrlMetadata
15
-
16
- def json(self, **kwargs: typing.Any) -> str:
17
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
- return super().json(**kwargs_with_defaults)
19
-
20
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
23
-
24
- return deep_union_pydantic_dicts(
25
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
26
- )
27
-
28
- class Config:
29
- frozen = True
30
- smart_union = True
31
- extra = pydantic_v1.Extra.allow
32
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,34 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
-
9
-
10
- class FirecrawlScrapeUrlMetadata(pydantic_v1.BaseModel):
11
- title: typing.Optional[str] = None
12
- description: typing.Optional[str] = None
13
- language: typing.Optional[str] = None
14
- source_url: typing.Optional[str] = pydantic_v1.Field(alias="sourceURL", default=None)
15
-
16
- def json(self, **kwargs: typing.Any) -> str:
17
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
- return super().json(**kwargs_with_defaults)
19
-
20
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
23
-
24
- return deep_union_pydantic_dicts(
25
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
26
- )
27
-
28
- class Config:
29
- frozen = True
30
- smart_union = True
31
- allow_population_by_field_name = True
32
- populate_by_name = True
33
- extra = pydantic_v1.Extra.allow
34
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,34 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
- from .dataset import Dataset
9
-
10
-
11
- class GetDatasetsResponse(pydantic_v1.BaseModel):
12
- datasets: typing.List[Dataset]
13
- total: int
14
- page: int
15
- page_size: int
16
- pages: int
17
-
18
- def json(self, **kwargs: typing.Any) -> str:
19
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
- return super().json(**kwargs_with_defaults)
21
-
22
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
25
-
26
- return deep_union_pydantic_dicts(
27
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
28
- )
29
-
30
- class Config:
31
- frozen = True
32
- smart_union = True
33
- extra = pydantic_v1.Extra.allow
34
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,29 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
-
9
-
10
- class GetSnippetOut(pydantic_v1.BaseModel):
11
- response: typing.Dict[str, typing.Any]
12
-
13
- def json(self, **kwargs: typing.Any) -> str:
14
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
15
- return super().json(**kwargs_with_defaults)
16
-
17
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
18
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
20
-
21
- return deep_union_pydantic_dicts(
22
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
23
- )
24
-
25
- class Config:
26
- frozen = True
27
- smart_union = True
28
- extra = pydantic_v1.Extra.allow
29
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,34 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
- from .snippet import Snippet
9
-
10
-
11
- class GetSnippetsResponse(pydantic_v1.BaseModel):
12
- snippets: typing.List[Snippet]
13
- total: int
14
- page: int
15
- page_size: int
16
- pages: int
17
-
18
- def json(self, **kwargs: typing.Any) -> str:
19
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
- return super().json(**kwargs_with_defaults)
21
-
22
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
25
-
26
- return deep_union_pydantic_dicts(
27
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
28
- )
29
-
30
- class Config:
31
- frozen = True
32
- smart_union = True
33
- extra = pydantic_v1.Extra.allow
34
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,29 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
-
9
-
10
- class LangchainDocumentsRequestOut(pydantic_v1.BaseModel):
11
- output: typing.Dict[str, typing.Any]
12
-
13
- def json(self, **kwargs: typing.Any) -> str:
14
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
15
- return super().json(**kwargs_with_defaults)
16
-
17
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
18
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
20
-
21
- return deep_union_pydantic_dicts(
22
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
23
- )
24
-
25
- class Config:
26
- frozen = True
27
- smart_union = True
28
- extra = pydantic_v1.Extra.allow
29
- json_encoders = {dt.datetime: serialize_datetime}
athena/types/llm_model.py DELETED
@@ -1,141 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import enum
4
- import typing
5
-
6
- T_Result = typing.TypeVar("T_Result")
7
-
8
-
9
- class LlmModel(str, enum.Enum):
10
- """
11
- An enumeration.
12
- """
13
-
14
- GPT_35_TURBO = "gpt-3.5-turbo"
15
- GPT_4_TURBO = "gpt-4-turbo"
16
- GPT_4_TURBO_PREVIEW = "gpt-4-turbo-preview"
17
- GPT_4_O_MINI = "gpt-4o-mini"
18
- GPT_4_O = "gpt-4o"
19
- GPT_4_O_20240806 = "gpt-4o-2024-08-06"
20
- GPT_4 = "gpt-4"
21
- MIXTRAL_SMALL_8_X_7_B_0211 = "mixtral-small-8x7b-0211"
22
- MISTRAL_LARGE_0224 = "mistral-large-0224"
23
- MIXTRAL_8_X_22_B_INSTRUCT = "mixtral-8x22b-instruct"
24
- LLAMA_V_38_B_INSTRUCT = "llama-v3-8b-instruct"
25
- LLAMA_V_370_B_INSTRUCT = "llama-v3-70b-instruct"
26
- LLAMA_V_3_P_1405_B_INSTRUCT = "llama-v3p1-405b-instruct"
27
- CLAUDE_35_SONNET_20240620 = "claude-3-5-sonnet-20240620"
28
- CLAUDE_3_OPUS_20240229 = "claude-3-opus-20240229"
29
- CLAUDE_3_SONNET_20240229 = "claude-3-sonnet-20240229"
30
- CLAUDE_3_HAIKU_20240307 = "claude-3-haiku-20240307"
31
- GROQ_MIXTRAL_8_X_7_B_32768 = "groq-mixtral-8x7b-32768"
32
- GROQ_LLAMA_38_B_8192 = "groq-llama3-8b-8192"
33
- GROQ_LLAMA_370_B_8192 = "groq-llama3-70b-8192"
34
- GROQ_GEMMA_7_B_IT = "groq-gemma-7b-it"
35
- GROQ_LLAMA_31405_B_REASONING = "groq-llama-3.1-405b-reasoning"
36
- GROQ_LLAMA_3170_B_VERSATILE = "groq-llama-3.1-70b-versatile"
37
- GROQ_LLAMA_318_B_INSTANT = "groq-llama-3.1-8b-instant"
38
- GROQ_LLAMA_3_GROQ_70_B_8192_TOOL_USE_PREVIEW = "groq-llama3-groq-70b-8192-tool-use-preview"
39
- GROQ_LLAMA_3_GROQ_8_B_8192_TOOL_USE_PREVIEW = "groq-llama3-groq-8b-8192-tool-use-preview"
40
- DATABRICKS_DBRX = "databricks-dbrx"
41
- GOOGLE_GEMINI_10_PRO_LATEST = "google-gemini-1.0-pro-latest"
42
- GOOGLE_GEMINI_15_PRO_LATEST = "google-gemini-1.5-pro-latest"
43
- GOOGLE_GEMINI_15_FLASH_001 = "google-gemini-1.5-flash-001"
44
- GOOGLE_GEMINI_15_PRO_001 = "google-gemini-1.5-pro-001"
45
-
46
- def visit(
47
- self,
48
- gpt_35_turbo: typing.Callable[[], T_Result],
49
- gpt_4_turbo: typing.Callable[[], T_Result],
50
- gpt_4_turbo_preview: typing.Callable[[], T_Result],
51
- gpt_4_o_mini: typing.Callable[[], T_Result],
52
- gpt_4_o: typing.Callable[[], T_Result],
53
- gpt_4_o_20240806: typing.Callable[[], T_Result],
54
- gpt_4: typing.Callable[[], T_Result],
55
- mixtral_small_8_x_7_b_0211: typing.Callable[[], T_Result],
56
- mistral_large_0224: typing.Callable[[], T_Result],
57
- mixtral_8_x_22_b_instruct: typing.Callable[[], T_Result],
58
- llama_v_38_b_instruct: typing.Callable[[], T_Result],
59
- llama_v_370_b_instruct: typing.Callable[[], T_Result],
60
- llama_v_3_p_1405_b_instruct: typing.Callable[[], T_Result],
61
- claude_35_sonnet_20240620: typing.Callable[[], T_Result],
62
- claude_3_opus_20240229: typing.Callable[[], T_Result],
63
- claude_3_sonnet_20240229: typing.Callable[[], T_Result],
64
- claude_3_haiku_20240307: typing.Callable[[], T_Result],
65
- groq_mixtral_8_x_7_b_32768: typing.Callable[[], T_Result],
66
- groq_llama_38_b_8192: typing.Callable[[], T_Result],
67
- groq_llama_370_b_8192: typing.Callable[[], T_Result],
68
- groq_gemma_7_b_it: typing.Callable[[], T_Result],
69
- groq_llama_31405_b_reasoning: typing.Callable[[], T_Result],
70
- groq_llama_3170_b_versatile: typing.Callable[[], T_Result],
71
- groq_llama_318_b_instant: typing.Callable[[], T_Result],
72
- groq_llama_3_groq_70_b_8192_tool_use_preview: typing.Callable[[], T_Result],
73
- groq_llama_3_groq_8_b_8192_tool_use_preview: typing.Callable[[], T_Result],
74
- databricks_dbrx: typing.Callable[[], T_Result],
75
- google_gemini_10_pro_latest: typing.Callable[[], T_Result],
76
- google_gemini_15_pro_latest: typing.Callable[[], T_Result],
77
- google_gemini_15_flash_001: typing.Callable[[], T_Result],
78
- google_gemini_15_pro_001: typing.Callable[[], T_Result],
79
- ) -> T_Result:
80
- if self is LlmModel.GPT_35_TURBO:
81
- return gpt_35_turbo()
82
- if self is LlmModel.GPT_4_TURBO:
83
- return gpt_4_turbo()
84
- if self is LlmModel.GPT_4_TURBO_PREVIEW:
85
- return gpt_4_turbo_preview()
86
- if self is LlmModel.GPT_4_O_MINI:
87
- return gpt_4_o_mini()
88
- if self is LlmModel.GPT_4_O:
89
- return gpt_4_o()
90
- if self is LlmModel.GPT_4_O_20240806:
91
- return gpt_4_o_20240806()
92
- if self is LlmModel.GPT_4:
93
- return gpt_4()
94
- if self is LlmModel.MIXTRAL_SMALL_8_X_7_B_0211:
95
- return mixtral_small_8_x_7_b_0211()
96
- if self is LlmModel.MISTRAL_LARGE_0224:
97
- return mistral_large_0224()
98
- if self is LlmModel.MIXTRAL_8_X_22_B_INSTRUCT:
99
- return mixtral_8_x_22_b_instruct()
100
- if self is LlmModel.LLAMA_V_38_B_INSTRUCT:
101
- return llama_v_38_b_instruct()
102
- if self is LlmModel.LLAMA_V_370_B_INSTRUCT:
103
- return llama_v_370_b_instruct()
104
- if self is LlmModel.LLAMA_V_3_P_1405_B_INSTRUCT:
105
- return llama_v_3_p_1405_b_instruct()
106
- if self is LlmModel.CLAUDE_35_SONNET_20240620:
107
- return claude_35_sonnet_20240620()
108
- if self is LlmModel.CLAUDE_3_OPUS_20240229:
109
- return claude_3_opus_20240229()
110
- if self is LlmModel.CLAUDE_3_SONNET_20240229:
111
- return claude_3_sonnet_20240229()
112
- if self is LlmModel.CLAUDE_3_HAIKU_20240307:
113
- return claude_3_haiku_20240307()
114
- if self is LlmModel.GROQ_MIXTRAL_8_X_7_B_32768:
115
- return groq_mixtral_8_x_7_b_32768()
116
- if self is LlmModel.GROQ_LLAMA_38_B_8192:
117
- return groq_llama_38_b_8192()
118
- if self is LlmModel.GROQ_LLAMA_370_B_8192:
119
- return groq_llama_370_b_8192()
120
- if self is LlmModel.GROQ_GEMMA_7_B_IT:
121
- return groq_gemma_7_b_it()
122
- if self is LlmModel.GROQ_LLAMA_31405_B_REASONING:
123
- return groq_llama_31405_b_reasoning()
124
- if self is LlmModel.GROQ_LLAMA_3170_B_VERSATILE:
125
- return groq_llama_3170_b_versatile()
126
- if self is LlmModel.GROQ_LLAMA_318_B_INSTANT:
127
- return groq_llama_318_b_instant()
128
- if self is LlmModel.GROQ_LLAMA_3_GROQ_70_B_8192_TOOL_USE_PREVIEW:
129
- return groq_llama_3_groq_70_b_8192_tool_use_preview()
130
- if self is LlmModel.GROQ_LLAMA_3_GROQ_8_B_8192_TOOL_USE_PREVIEW:
131
- return groq_llama_3_groq_8_b_8192_tool_use_preview()
132
- if self is LlmModel.DATABRICKS_DBRX:
133
- return databricks_dbrx()
134
- if self is LlmModel.GOOGLE_GEMINI_10_PRO_LATEST:
135
- return google_gemini_10_pro_latest()
136
- if self is LlmModel.GOOGLE_GEMINI_15_PRO_LATEST:
137
- return google_gemini_15_pro_latest()
138
- if self is LlmModel.GOOGLE_GEMINI_15_FLASH_001:
139
- return google_gemini_15_flash_001()
140
- if self is LlmModel.GOOGLE_GEMINI_15_PRO_001:
141
- return google_gemini_15_pro_001()
@@ -1,32 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
- from .document import Document
9
-
10
-
11
- class MapReduceChainOut(pydantic_v1.BaseModel):
12
- input: str
13
- input_documents: typing.List[Document]
14
- output_text: str
15
-
16
- def json(self, **kwargs: typing.Any) -> str:
17
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
- return super().json(**kwargs_with_defaults)
19
-
20
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
23
-
24
- return deep_union_pydantic_dicts(
25
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
26
- )
27
-
28
- class Config:
29
- frozen = True
30
- smart_union = True
31
- extra = pydantic_v1.Extra.allow
32
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,29 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
-
9
-
10
- class MessageOut(pydantic_v1.BaseModel):
11
- id: str
12
-
13
- def json(self, **kwargs: typing.Any) -> str:
14
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
15
- return super().json(**kwargs_with_defaults)
16
-
17
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
18
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
20
-
21
- return deep_union_pydantic_dicts(
22
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
23
- )
24
-
25
- class Config:
26
- frozen = True
27
- smart_union = True
28
- extra = pydantic_v1.Extra.allow
29
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,35 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
- from .status_enum import StatusEnum
9
-
10
-
11
- class MessageOutDto(pydantic_v1.BaseModel):
12
- id: str
13
- conversation_id: str
14
- logs: typing.Optional[str] = None
15
- content: typing.Optional[str] = None
16
- created_at: str
17
- status: StatusEnum
18
-
19
- def json(self, **kwargs: typing.Any) -> str:
20
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
21
- return super().json(**kwargs_with_defaults)
22
-
23
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
24
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
26
-
27
- return deep_union_pydantic_dicts(
28
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
29
- )
30
-
31
- class Config:
32
- frozen = True
33
- smart_union = True
34
- extra = pydantic_v1.Extra.allow
35
- json_encoders = {dt.datetime: serialize_datetime}
athena/types/model.py DELETED
@@ -1,93 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import enum
4
- import typing
5
-
6
- T_Result = typing.TypeVar("T_Result")
7
-
8
-
9
- class Model(str, enum.Enum):
10
- """
11
- An enumeration.
12
- """
13
-
14
- GPT_35_TURBO = "gpt-3.5-turbo"
15
- GPT_4_TURBO = "gpt-4-turbo"
16
- GPT_4_TURBO_PREVIEW = "gpt-4-turbo-preview"
17
- GPT_4 = "gpt-4"
18
- GPT_4_O = "gpt-4o"
19
- GPT_4_O_MINI = "gpt-4o-mini"
20
- GPT_4_O_20240806 = "gpt-4o-2024-08-06"
21
- MIXTRAL_SMALL_8_X_7_B_0211 = "mixtral-small-8x7b-0211"
22
- MISTRAL_LARGE_0224 = "mistral-large-0224"
23
- MIXTRAL_8_X_22_B_INSTRUCT = "mixtral-8x22b-instruct"
24
- LLAMA_V_370_B_INSTRUCT = "llama-v3-70b-instruct"
25
- LLAMA_V_38_B_INSTRUCT = "llama-v3-8b-instruct"
26
- CLAUDE_3_OPUS_20240229 = "claude-3-opus-20240229"
27
- CLAUDE_3_SONNET_20240229 = "claude-3-sonnet-20240229"
28
- CLAUDE_3_HAIKU_20240307 = "claude-3-haiku-20240307"
29
- CLAUDE_35_SONNET_20240620 = "claude-3-5-sonnet-20240620"
30
- GOOGLE_GEMINI_10_PRO_LATEST = "google-gemini-1.0-pro-latest"
31
- GOOGLE_GEMINI_15_PRO_LATEST = "google-gemini-1.5-pro-latest"
32
- DATABRICKS_DBRX = "databricks-dbrx"
33
-
34
- def visit(
35
- self,
36
- gpt_35_turbo: typing.Callable[[], T_Result],
37
- gpt_4_turbo: typing.Callable[[], T_Result],
38
- gpt_4_turbo_preview: typing.Callable[[], T_Result],
39
- gpt_4: typing.Callable[[], T_Result],
40
- gpt_4_o: typing.Callable[[], T_Result],
41
- gpt_4_o_mini: typing.Callable[[], T_Result],
42
- gpt_4_o_20240806: typing.Callable[[], T_Result],
43
- mixtral_small_8_x_7_b_0211: typing.Callable[[], T_Result],
44
- mistral_large_0224: typing.Callable[[], T_Result],
45
- mixtral_8_x_22_b_instruct: typing.Callable[[], T_Result],
46
- llama_v_370_b_instruct: typing.Callable[[], T_Result],
47
- llama_v_38_b_instruct: typing.Callable[[], T_Result],
48
- claude_3_opus_20240229: typing.Callable[[], T_Result],
49
- claude_3_sonnet_20240229: typing.Callable[[], T_Result],
50
- claude_3_haiku_20240307: typing.Callable[[], T_Result],
51
- claude_35_sonnet_20240620: typing.Callable[[], T_Result],
52
- google_gemini_10_pro_latest: typing.Callable[[], T_Result],
53
- google_gemini_15_pro_latest: typing.Callable[[], T_Result],
54
- databricks_dbrx: typing.Callable[[], T_Result],
55
- ) -> T_Result:
56
- if self is Model.GPT_35_TURBO:
57
- return gpt_35_turbo()
58
- if self is Model.GPT_4_TURBO:
59
- return gpt_4_turbo()
60
- if self is Model.GPT_4_TURBO_PREVIEW:
61
- return gpt_4_turbo_preview()
62
- if self is Model.GPT_4:
63
- return gpt_4()
64
- if self is Model.GPT_4_O:
65
- return gpt_4_o()
66
- if self is Model.GPT_4_O_MINI:
67
- return gpt_4_o_mini()
68
- if self is Model.GPT_4_O_20240806:
69
- return gpt_4_o_20240806()
70
- if self is Model.MIXTRAL_SMALL_8_X_7_B_0211:
71
- return mixtral_small_8_x_7_b_0211()
72
- if self is Model.MISTRAL_LARGE_0224:
73
- return mistral_large_0224()
74
- if self is Model.MIXTRAL_8_X_22_B_INSTRUCT:
75
- return mixtral_8_x_22_b_instruct()
76
- if self is Model.LLAMA_V_370_B_INSTRUCT:
77
- return llama_v_370_b_instruct()
78
- if self is Model.LLAMA_V_38_B_INSTRUCT:
79
- return llama_v_38_b_instruct()
80
- if self is Model.CLAUDE_3_OPUS_20240229:
81
- return claude_3_opus_20240229()
82
- if self is Model.CLAUDE_3_SONNET_20240229:
83
- return claude_3_sonnet_20240229()
84
- if self is Model.CLAUDE_3_HAIKU_20240307:
85
- return claude_3_haiku_20240307()
86
- if self is Model.CLAUDE_35_SONNET_20240620:
87
- return claude_35_sonnet_20240620()
88
- if self is Model.GOOGLE_GEMINI_10_PRO_LATEST:
89
- return google_gemini_10_pro_latest()
90
- if self is Model.GOOGLE_GEMINI_15_PRO_LATEST:
91
- return google_gemini_15_pro_latest()
92
- if self is Model.DATABRICKS_DBRX:
93
- return databricks_dbrx()
@@ -1,31 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
-
9
-
10
- class PublishFormats(pydantic_v1.BaseModel):
11
- markdown: bool
12
- pdf: bool
13
- docx: bool
14
-
15
- def json(self, **kwargs: typing.Any) -> str:
16
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
17
- return super().json(**kwargs_with_defaults)
18
-
19
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
20
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
21
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
22
-
23
- return deep_union_pydantic_dicts(
24
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
25
- )
26
-
27
- class Config:
28
- frozen = True
29
- smart_union = True
30
- extra = pydantic_v1.Extra.allow
31
- json_encoders = {dt.datetime: serialize_datetime}
@@ -1,40 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import datetime as dt
4
- import typing
5
-
6
- from ..core.datetime_utils import serialize_datetime
7
- from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
- from .filter_model import FilterModel
9
- from .time_dimension_model import TimeDimensionModel
10
-
11
-
12
- class QueryModel(pydantic_v1.BaseModel):
13
- measures: typing.Optional[typing.List[str]] = None
14
- time_dimensions: typing.Optional[typing.List[TimeDimensionModel]] = pydantic_v1.Field(
15
- alias="timeDimensions", default=None
16
- )
17
- dimensions: typing.Optional[typing.List[str]] = None
18
- filters: typing.Optional[typing.List[FilterModel]] = None
19
- order: typing.Optional[typing.Dict[str, typing.Any]] = None
20
- limit: typing.Optional[int] = None
21
-
22
- def json(self, **kwargs: typing.Any) -> str:
23
- kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
- return super().json(**kwargs_with_defaults)
25
-
26
- def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
27
- kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
- kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
29
-
30
- return deep_union_pydantic_dicts(
31
- super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
32
- )
33
-
34
- class Config:
35
- frozen = True
36
- smart_union = True
37
- allow_population_by_field_name = True
38
- populate_by_name = True
39
- extra = pydantic_v1.Extra.allow
40
- json_encoders = {dt.datetime: serialize_datetime}