athena-intelligence 0.1.121__py3-none-any.whl → 0.1.123__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
athena/__init__.py CHANGED
@@ -2,6 +2,12 @@
2
2
 
3
3
  from .types import (
4
4
  AssetNotFoundError,
5
+ Chunk,
6
+ ChunkContentItem,
7
+ ChunkContentItem_ImageUrl,
8
+ ChunkContentItem_Text,
9
+ ChunkResult,
10
+ ChunkResultChunkId,
5
11
  CustomAgentResponse,
6
12
  DataFrameRequestOut,
7
13
  DataFrameRequestOutColumnsItem,
@@ -16,12 +22,16 @@ from .types import (
16
22
  GeneralAgentConfigEnabledToolsItem,
17
23
  GeneralAgentRequest,
18
24
  GeneralAgentResponse,
25
+ ImageUrlContent,
19
26
  ParentFolderError,
27
+ PromptMessage,
20
28
  ResearchAgentResponse,
21
29
  SaveAssetRequestOut,
22
30
  SqlAgentResponse,
23
- StructuredDataExtractorReponse,
31
+ StructuredDataExtractorResponse,
32
+ TextContent,
24
33
  Tool,
34
+ Type,
25
35
  )
26
36
  from .errors import (
27
37
  BadRequestError,
@@ -42,6 +52,12 @@ __all__ = [
42
52
  "AssetNotFoundError",
43
53
  "AthenaEnvironment",
44
54
  "BadRequestError",
55
+ "Chunk",
56
+ "ChunkContentItem",
57
+ "ChunkContentItem_ImageUrl",
58
+ "ChunkContentItem_Text",
59
+ "ChunkResult",
60
+ "ChunkResultChunkId",
45
61
  "ContentTooLargeError",
46
62
  "CustomAgentResponse",
47
63
  "DataFrameRequestOut",
@@ -57,16 +73,20 @@ __all__ = [
57
73
  "GeneralAgentConfigEnabledToolsItem",
58
74
  "GeneralAgentRequest",
59
75
  "GeneralAgentResponse",
76
+ "ImageUrlContent",
60
77
  "InternalServerError",
61
78
  "NotFoundError",
62
79
  "ParentFolderError",
80
+ "PromptMessage",
63
81
  "QueryExecuteRequestDatabaseAssetIds",
64
82
  "ResearchAgentResponse",
65
83
  "SaveAssetRequestOut",
66
84
  "SqlAgentResponse",
67
- "StructuredDataExtractorReponse",
85
+ "StructuredDataExtractorResponse",
86
+ "TextContent",
68
87
  "Tool",
69
88
  "ToolsDataFrameRequestColumnsItem",
89
+ "Type",
70
90
  "UnauthorizedError",
71
91
  "UnprocessableEntityError",
72
92
  "UnsupportedMediaTypeError",
@@ -17,7 +17,7 @@ class BaseClientWrapper:
17
17
  headers: typing.Dict[str, str] = {
18
18
  "X-Fern-Language": "Python",
19
19
  "X-Fern-SDK-Name": "athena-intelligence",
20
- "X-Fern-SDK-Version": "0.1.121",
20
+ "X-Fern-SDK-Version": "0.1.123",
21
21
  }
22
22
  headers["X-API-KEY"] = self.api_key
23
23
  return headers
@@ -8,7 +8,9 @@ from ...core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
8
8
  from ...core.pydantic_utilities import pydantic_v1
9
9
  from ...core.request_options import RequestOptions
10
10
  from ...errors.unprocessable_entity_error import UnprocessableEntityError
11
- from ...types.structured_data_extractor_reponse import StructuredDataExtractorReponse
11
+ from ...types.chunk import Chunk
12
+ from ...types.prompt_message import PromptMessage
13
+ from ...types.structured_data_extractor_response import StructuredDataExtractorResponse
12
14
 
13
15
  # this is used as the default value for optional parameters
14
16
  OMIT = typing.cast(typing.Any, ...)
@@ -21,58 +23,114 @@ class StructuredDataExtractorClient:
21
23
  def invoke(
22
24
  self,
23
25
  *,
24
- asset_ids: typing.Sequence[str],
26
+ chunks: typing.Sequence[Chunk],
25
27
  json_schema: typing.Dict[str, typing.Any],
26
- map_: typing.Optional[bool] = OMIT,
28
+ chunk_messages: typing.Optional[typing.Sequence[PromptMessage]] = OMIT,
27
29
  reduce: typing.Optional[bool] = OMIT,
30
+ reduce_messages: typing.Optional[typing.Sequence[PromptMessage]] = OMIT,
28
31
  request_options: typing.Optional[RequestOptions] = None
29
- ) -> StructuredDataExtractorReponse:
32
+ ) -> StructuredDataExtractorResponse:
30
33
  """
31
- Coming soon! Extract structured data from assets of arbitrary length.
34
+ Extract structured data.
35
+
36
+ tl;dr:
37
+
38
+ - pass a valid JSON schema in `json_schema`
39
+ - pass the page chunks as a list of `Chunk` objects, by default: {"type": "text", "content": "..."}
40
+ - leave all other fields as default
41
+
42
+ Detailed configuration (only relevant for complex use cases):
43
+
44
+ The structured data extractor's architecture follows the map-reduce pattern,
45
+ where the asset is divided into chunks, the schema is extracted from each chunk,
46
+ and the chunks are then reduced to a single structured data object.
47
+
48
+ In some applications, you may not want to: - map (if your input asset is small enough) - reduce (if your output object is large enough that it will overflow the output length;
49
+ if you're extracting a long list of entities; if youre )
50
+ to extract all instances of the schema).
51
+
52
+ You can configure these behaviors with the `map` and `reduce` fields.
32
53
 
33
54
  Parameters
34
55
  ----------
35
- asset_ids : typing.Sequence[str]
36
- The IDs of the assets from which to extract structured data matching `json_schema`.
56
+ chunks : typing.Sequence[Chunk]
57
+ The chunks from which to extract structured data.
37
58
 
38
59
  json_schema : typing.Dict[str, typing.Any]
39
- The JSON schema to use for validation (version draft 2020-12). See the docs [here](https://json-schema.org/learn/getting-started-step-by-step).
60
+ The JSON schema to use for validation (version draft 2020-12). See the docs [here](https://json-schema.org/learn/getting-started-step-by-step).
40
61
 
41
- map_ : typing.Optional[bool]
42
- Whether to split the asset into chunks and attempt to extract the schema from each chunk. Set to false if you know the asset is small.
62
+ chunk_messages : typing.Optional[typing.Sequence[PromptMessage]]
63
+ The prompt to use for the data extraction over *each individual chunk*. It must be a list of messages. The chunk content will be appended as a list of human messages.
43
64
 
44
65
  reduce : typing.Optional[bool]
45
66
  If `map`, whether to reduce the chunks to a single structured object (true) or return the full list (false). Use True unless you want to preserve duplicates from each page or expect the object to overflow the output context.
46
67
 
68
+ reduce_messages : typing.Optional[typing.Sequence[PromptMessage]]
69
+ The prompt to use for the reduce steps. It must be a list of messages. The two extraction attempts will be appended as a list of human messages.
70
+
47
71
  request_options : typing.Optional[RequestOptions]
48
72
  Request-specific configuration.
49
73
 
50
74
  Returns
51
75
  -------
52
- StructuredDataExtractorReponse
76
+ StructuredDataExtractorResponse
53
77
  Successful Response
54
78
 
55
79
  Examples
56
80
  --------
81
+ from athena import Chunk, ChunkContentItem_Text
57
82
  from athena.client import Athena
58
83
 
59
84
  client = Athena(
60
85
  api_key="YOUR_API_KEY",
61
86
  )
62
87
  client.tools.structured_data_extractor.invoke(
63
- asset_ids=["asset_ids"],
64
- json_schema={"key": "value"},
88
+ chunks=[
89
+ Chunk(
90
+ chunk_id="1",
91
+ content=[
92
+ ChunkContentItem_Text(
93
+ text="John Smith is a 35 year old developer. You can reach him at john.smith@example.com",
94
+ )
95
+ ],
96
+ ),
97
+ Chunk(
98
+ chunk_id="2",
99
+ content=[
100
+ ChunkContentItem_Text(
101
+ text="Jane Doe is a 25 year old developer. You can reach her at jane@example.com",
102
+ )
103
+ ],
104
+ ),
105
+ ],
106
+ json_schema={
107
+ "description": "A person",
108
+ "properties": {
109
+ "age": {"type": "integer"},
110
+ "email": {"type": "string"},
111
+ "name": {"type": "string"},
112
+ },
113
+ "required": ["name"],
114
+ "title": "Person",
115
+ "type": "object",
116
+ },
65
117
  )
66
118
  """
67
119
  _response = self._client_wrapper.httpx_client.request(
68
120
  "api/v0/tools/structured-data-extractor/invoke",
69
121
  method="POST",
70
- json={"asset_ids": asset_ids, "json_schema": json_schema, "map": map_, "reduce": reduce},
122
+ json={
123
+ "chunk_messages": chunk_messages,
124
+ "chunks": chunks,
125
+ "json_schema": json_schema,
126
+ "reduce": reduce,
127
+ "reduce_messages": reduce_messages,
128
+ },
71
129
  request_options=request_options,
72
130
  omit=OMIT,
73
131
  )
74
132
  if 200 <= _response.status_code < 300:
75
- return pydantic_v1.parse_obj_as(StructuredDataExtractorReponse, _response.json()) # type: ignore
133
+ return pydantic_v1.parse_obj_as(StructuredDataExtractorResponse, _response.json()) # type: ignore
76
134
  if _response.status_code == 422:
77
135
  raise UnprocessableEntityError(pydantic_v1.parse_obj_as(typing.Any, _response.json())) # type: ignore
78
136
  try:
@@ -89,58 +147,114 @@ class AsyncStructuredDataExtractorClient:
89
147
  async def invoke(
90
148
  self,
91
149
  *,
92
- asset_ids: typing.Sequence[str],
150
+ chunks: typing.Sequence[Chunk],
93
151
  json_schema: typing.Dict[str, typing.Any],
94
- map_: typing.Optional[bool] = OMIT,
152
+ chunk_messages: typing.Optional[typing.Sequence[PromptMessage]] = OMIT,
95
153
  reduce: typing.Optional[bool] = OMIT,
154
+ reduce_messages: typing.Optional[typing.Sequence[PromptMessage]] = OMIT,
96
155
  request_options: typing.Optional[RequestOptions] = None
97
- ) -> StructuredDataExtractorReponse:
156
+ ) -> StructuredDataExtractorResponse:
98
157
  """
99
- Coming soon! Extract structured data from assets of arbitrary length.
158
+ Extract structured data.
159
+
160
+ tl;dr:
161
+
162
+ - pass a valid JSON schema in `json_schema`
163
+ - pass the page chunks as a list of `Chunk` objects, by default: {"type": "text", "content": "..."}
164
+ - leave all other fields as default
165
+
166
+ Detailed configuration (only relevant for complex use cases):
167
+
168
+ The structured data extractor's architecture follows the map-reduce pattern,
169
+ where the asset is divided into chunks, the schema is extracted from each chunk,
170
+ and the chunks are then reduced to a single structured data object.
171
+
172
+ In some applications, you may not want to: - map (if your input asset is small enough) - reduce (if your output object is large enough that it will overflow the output length;
173
+ if you're extracting a long list of entities; if youre )
174
+ to extract all instances of the schema).
175
+
176
+ You can configure these behaviors with the `map` and `reduce` fields.
100
177
 
101
178
  Parameters
102
179
  ----------
103
- asset_ids : typing.Sequence[str]
104
- The IDs of the assets from which to extract structured data matching `json_schema`.
180
+ chunks : typing.Sequence[Chunk]
181
+ The chunks from which to extract structured data.
105
182
 
106
183
  json_schema : typing.Dict[str, typing.Any]
107
- The JSON schema to use for validation (version draft 2020-12). See the docs [here](https://json-schema.org/learn/getting-started-step-by-step).
184
+ The JSON schema to use for validation (version draft 2020-12). See the docs [here](https://json-schema.org/learn/getting-started-step-by-step).
108
185
 
109
- map_ : typing.Optional[bool]
110
- Whether to split the asset into chunks and attempt to extract the schema from each chunk. Set to false if you know the asset is small.
186
+ chunk_messages : typing.Optional[typing.Sequence[PromptMessage]]
187
+ The prompt to use for the data extraction over *each individual chunk*. It must be a list of messages. The chunk content will be appended as a list of human messages.
111
188
 
112
189
  reduce : typing.Optional[bool]
113
190
  If `map`, whether to reduce the chunks to a single structured object (true) or return the full list (false). Use True unless you want to preserve duplicates from each page or expect the object to overflow the output context.
114
191
 
192
+ reduce_messages : typing.Optional[typing.Sequence[PromptMessage]]
193
+ The prompt to use for the reduce steps. It must be a list of messages. The two extraction attempts will be appended as a list of human messages.
194
+
115
195
  request_options : typing.Optional[RequestOptions]
116
196
  Request-specific configuration.
117
197
 
118
198
  Returns
119
199
  -------
120
- StructuredDataExtractorReponse
200
+ StructuredDataExtractorResponse
121
201
  Successful Response
122
202
 
123
203
  Examples
124
204
  --------
205
+ from athena import Chunk, ChunkContentItem_Text
125
206
  from athena.client import AsyncAthena
126
207
 
127
208
  client = AsyncAthena(
128
209
  api_key="YOUR_API_KEY",
129
210
  )
130
211
  await client.tools.structured_data_extractor.invoke(
131
- asset_ids=["asset_ids"],
132
- json_schema={"key": "value"},
212
+ chunks=[
213
+ Chunk(
214
+ chunk_id="1",
215
+ content=[
216
+ ChunkContentItem_Text(
217
+ text="John Smith is a 35 year old developer. You can reach him at john.smith@example.com",
218
+ )
219
+ ],
220
+ ),
221
+ Chunk(
222
+ chunk_id="2",
223
+ content=[
224
+ ChunkContentItem_Text(
225
+ text="Jane Doe is a 25 year old developer. You can reach her at jane@example.com",
226
+ )
227
+ ],
228
+ ),
229
+ ],
230
+ json_schema={
231
+ "description": "A person",
232
+ "properties": {
233
+ "age": {"type": "integer"},
234
+ "email": {"type": "string"},
235
+ "name": {"type": "string"},
236
+ },
237
+ "required": ["name"],
238
+ "title": "Person",
239
+ "type": "object",
240
+ },
133
241
  )
134
242
  """
135
243
  _response = await self._client_wrapper.httpx_client.request(
136
244
  "api/v0/tools/structured-data-extractor/invoke",
137
245
  method="POST",
138
- json={"asset_ids": asset_ids, "json_schema": json_schema, "map": map_, "reduce": reduce},
246
+ json={
247
+ "chunk_messages": chunk_messages,
248
+ "chunks": chunks,
249
+ "json_schema": json_schema,
250
+ "reduce": reduce,
251
+ "reduce_messages": reduce_messages,
252
+ },
139
253
  request_options=request_options,
140
254
  omit=OMIT,
141
255
  )
142
256
  if 200 <= _response.status_code < 300:
143
- return pydantic_v1.parse_obj_as(StructuredDataExtractorReponse, _response.json()) # type: ignore
257
+ return pydantic_v1.parse_obj_as(StructuredDataExtractorResponse, _response.json()) # type: ignore
144
258
  if _response.status_code == 422:
145
259
  raise UnprocessableEntityError(pydantic_v1.parse_obj_as(typing.Any, _response.json())) # type: ignore
146
260
  try:
athena/types/__init__.py CHANGED
@@ -1,6 +1,10 @@
1
1
  # This file was auto-generated by Fern from our API Definition.
2
2
 
3
3
  from .asset_not_found_error import AssetNotFoundError
4
+ from .chunk import Chunk
5
+ from .chunk_content_item import ChunkContentItem, ChunkContentItem_ImageUrl, ChunkContentItem_Text
6
+ from .chunk_result import ChunkResult
7
+ from .chunk_result_chunk_id import ChunkResultChunkId
4
8
  from .custom_agent_response import CustomAgentResponse
5
9
  from .data_frame_request_out import DataFrameRequestOut
6
10
  from .data_frame_request_out_columns_item import DataFrameRequestOutColumnsItem
@@ -15,15 +19,25 @@ from .general_agent_config import GeneralAgentConfig
15
19
  from .general_agent_config_enabled_tools_item import GeneralAgentConfigEnabledToolsItem
16
20
  from .general_agent_request import GeneralAgentRequest
17
21
  from .general_agent_response import GeneralAgentResponse
22
+ from .image_url_content import ImageUrlContent
18
23
  from .parent_folder_error import ParentFolderError
24
+ from .prompt_message import PromptMessage
19
25
  from .research_agent_response import ResearchAgentResponse
20
26
  from .save_asset_request_out import SaveAssetRequestOut
21
27
  from .sql_agent_response import SqlAgentResponse
22
- from .structured_data_extractor_reponse import StructuredDataExtractorReponse
28
+ from .structured_data_extractor_response import StructuredDataExtractorResponse
29
+ from .text_content import TextContent
23
30
  from .tool import Tool
31
+ from .type import Type
24
32
 
25
33
  __all__ = [
26
34
  "AssetNotFoundError",
35
+ "Chunk",
36
+ "ChunkContentItem",
37
+ "ChunkContentItem_ImageUrl",
38
+ "ChunkContentItem_Text",
39
+ "ChunkResult",
40
+ "ChunkResultChunkId",
27
41
  "CustomAgentResponse",
28
42
  "DataFrameRequestOut",
29
43
  "DataFrameRequestOutColumnsItem",
@@ -38,10 +52,14 @@ __all__ = [
38
52
  "GeneralAgentConfigEnabledToolsItem",
39
53
  "GeneralAgentRequest",
40
54
  "GeneralAgentResponse",
55
+ "ImageUrlContent",
41
56
  "ParentFolderError",
57
+ "PromptMessage",
42
58
  "ResearchAgentResponse",
43
59
  "SaveAssetRequestOut",
44
60
  "SqlAgentResponse",
45
- "StructuredDataExtractorReponse",
61
+ "StructuredDataExtractorResponse",
62
+ "TextContent",
46
63
  "Tool",
64
+ "Type",
47
65
  ]
athena/types/chunk.py ADDED
@@ -0,0 +1,36 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
+ from .chunk_content_item import ChunkContentItem
9
+
10
+
11
+ class Chunk(pydantic_v1.BaseModel):
12
+ """
13
+ A chunk of content to extract data from.
14
+ """
15
+
16
+ chunk_id: str
17
+ content: typing.List[ChunkContentItem]
18
+ metadata: typing.Optional[typing.Dict[str, typing.Optional[str]]] = None
19
+
20
+ def json(self, **kwargs: typing.Any) -> str:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().json(**kwargs_with_defaults)
23
+
24
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
25
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
26
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
27
+
28
+ return deep_union_pydantic_dicts(
29
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
30
+ )
31
+
32
+ class Config:
33
+ frozen = True
34
+ smart_union = True
35
+ extra = pydantic_v1.Extra.allow
36
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,58 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import datetime as dt
6
+ import typing
7
+
8
+ from ..core.datetime_utils import serialize_datetime
9
+ from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
10
+
11
+
12
+ class ChunkContentItem_Text(pydantic_v1.BaseModel):
13
+ text: str
14
+ type: typing.Literal["text"] = "text"
15
+
16
+ def json(self, **kwargs: typing.Any) -> str:
17
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
+ return super().json(**kwargs_with_defaults)
19
+
20
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
23
+
24
+ return deep_union_pydantic_dicts(
25
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
26
+ )
27
+
28
+ class Config:
29
+ frozen = True
30
+ smart_union = True
31
+ extra = pydantic_v1.Extra.allow
32
+ json_encoders = {dt.datetime: serialize_datetime}
33
+
34
+
35
+ class ChunkContentItem_ImageUrl(pydantic_v1.BaseModel):
36
+ image_url: typing.Dict[str, str]
37
+ type: typing.Literal["image_url"] = "image_url"
38
+
39
+ def json(self, **kwargs: typing.Any) -> str:
40
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
41
+ return super().json(**kwargs_with_defaults)
42
+
43
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
44
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
45
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
46
+
47
+ return deep_union_pydantic_dicts(
48
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
49
+ )
50
+
51
+ class Config:
52
+ frozen = True
53
+ smart_union = True
54
+ extra = pydantic_v1.Extra.allow
55
+ json_encoders = {dt.datetime: serialize_datetime}
56
+
57
+
58
+ ChunkContentItem = typing.Union[ChunkContentItem_Text, ChunkContentItem_ImageUrl]
@@ -0,0 +1,35 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
+ from .chunk_result_chunk_id import ChunkResultChunkId
9
+
10
+
11
+ class ChunkResult(pydantic_v1.BaseModel):
12
+ """
13
+ The result of a chunk extraction.
14
+ """
15
+
16
+ chunk_id: ChunkResultChunkId
17
+ chunk_result: typing.Optional[typing.Dict[str, typing.Any]] = None
18
+
19
+ def json(self, **kwargs: typing.Any) -> str:
20
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
21
+ return super().json(**kwargs_with_defaults)
22
+
23
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
24
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
26
+
27
+ return deep_union_pydantic_dicts(
28
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
29
+ )
30
+
31
+ class Config:
32
+ frozen = True
33
+ smart_union = True
34
+ extra = pydantic_v1.Extra.allow
35
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ ChunkResultChunkId = typing.Union[str, int]
@@ -7,15 +7,12 @@ from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
8
 
9
9
 
10
- class StructuredDataExtractorReponse(pydantic_v1.BaseModel):
10
+ class ImageUrlContent(pydantic_v1.BaseModel):
11
11
  """
12
- The agent's response.
12
+ An image content item.
13
13
  """
14
14
 
15
- data: typing.Dict[str, typing.Any] = pydantic_v1.Field()
16
- """
17
- The extracted structured data. Guaranteed to match `json_schema`.
18
- """
15
+ image_url: typing.Dict[str, str]
19
16
 
20
17
  def json(self, **kwargs: typing.Any) -> str:
21
18
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,35 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
+ from .type import Type
9
+
10
+
11
+ class PromptMessage(pydantic_v1.BaseModel):
12
+ """
13
+ A message to use for the structured data extractor.
14
+ """
15
+
16
+ content: str
17
+ type: Type
18
+
19
+ def json(self, **kwargs: typing.Any) -> str:
20
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
21
+ return super().json(**kwargs_with_defaults)
22
+
23
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
24
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
26
+
27
+ return deep_union_pydantic_dicts(
28
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
29
+ )
30
+
31
+ class Config:
32
+ frozen = True
33
+ smart_union = True
34
+ extra = pydantic_v1.Extra.allow
35
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,42 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
+ from .chunk_result import ChunkResult
9
+
10
+
11
+ class StructuredDataExtractorResponse(pydantic_v1.BaseModel):
12
+ """
13
+ The agent's response.
14
+ """
15
+
16
+ chunk_by_chunk_data: typing.Optional[typing.List[ChunkResult]] = pydantic_v1.Field(default=None)
17
+ """
18
+ The extracted structured data for each chunk. A list where each element is guaranteed to match `json_schema`.
19
+ """
20
+
21
+ reduced_data: typing.Optional[typing.Dict[str, typing.Any]] = pydantic_v1.Field(default=None)
22
+ """
23
+ If reduce is True, the reduced structured data, otherwise null. Guaranteed to match `json_schema`.
24
+ """
25
+
26
+ def json(self, **kwargs: typing.Any) -> str:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().json(**kwargs_with_defaults)
29
+
30
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
31
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
32
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
33
+
34
+ return deep_union_pydantic_dicts(
35
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
36
+ )
37
+
38
+ class Config:
39
+ frozen = True
40
+ smart_union = True
41
+ extra = pydantic_v1.Extra.allow
42
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,33 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import deep_union_pydantic_dicts, pydantic_v1
8
+
9
+
10
+ class TextContent(pydantic_v1.BaseModel):
11
+ """
12
+ A text content item in a multimodal message content.
13
+ """
14
+
15
+ text: str
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults_exclude_unset: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ kwargs_with_defaults_exclude_none: typing.Any = {"by_alias": True, "exclude_none": True, **kwargs}
24
+
25
+ return deep_union_pydantic_dicts(
26
+ super().dict(**kwargs_with_defaults_exclude_unset), super().dict(**kwargs_with_defaults_exclude_none)
27
+ )
28
+
29
+ class Config:
30
+ frozen = True
31
+ smart_union = True
32
+ extra = pydantic_v1.Extra.allow
33
+ json_encoders = {dt.datetime: serialize_datetime}
athena/types/type.py ADDED
@@ -0,0 +1,25 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import enum
4
+ import typing
5
+
6
+ T_Result = typing.TypeVar("T_Result")
7
+
8
+
9
+ class Type(str, enum.Enum):
10
+ SYSTEM = "system"
11
+ HUMAN = "human"
12
+ USER = "user"
13
+
14
+ def visit(
15
+ self,
16
+ system: typing.Callable[[], T_Result],
17
+ human: typing.Callable[[], T_Result],
18
+ user: typing.Callable[[], T_Result],
19
+ ) -> T_Result:
20
+ if self is Type.SYSTEM:
21
+ return system()
22
+ if self is Type.HUMAN:
23
+ return human()
24
+ if self is Type.USER:
25
+ return user()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: athena-intelligence
3
- Version: 0.1.121
3
+ Version: 0.1.123
4
4
  Summary: Athena Intelligence Python Library
5
5
  Requires-Python: >=3.8,<4.0
6
6
  Classifier: Intended Audience :: Developers
@@ -1,4 +1,4 @@
1
- athena/__init__.py,sha256=iCOL1NZiVObNQQHMZ47mrTS_r4YuHRGJGLCThyQxVRg,2044
1
+ athena/__init__.py,sha256=-QY5Njk1mv2eVt9CMdJSaU_nMqoXzZ8d5kHjxKCs7jU,2464
2
2
  athena/agents/__init__.py,sha256=I6MO2O_hb6KLa8oDHbGNSAhcPE-dsrX6LMcAEhsg3PQ,160
3
3
  athena/agents/client.py,sha256=aI8rNhXBSVJ-hvjnIoCK9sKvHB0e95Zkn-3YpXOKFrY,6721
4
4
  athena/agents/drive/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
@@ -13,7 +13,7 @@ athena/base_client.py,sha256=-kVdOlIibBz48lxWratdQAzT7fTvZsORvOMF3KoPDPw,5647
13
13
  athena/client.py,sha256=4PUPrBPCMTFpHR1yuKVR5eC1AYBl_25SMf6ZH82JHB0,19039
14
14
  athena/core/__init__.py,sha256=UFXpYzcGxWQUucU1TkjOQ9mGWN3A5JohluOIWVYKU4I,973
15
15
  athena/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
16
- athena/core/client_wrapper.py,sha256=Iw_m28Z_BdzyE_v5KyxM2rnGy-dJUf2iyYAlXGxcEFo,1806
16
+ athena/core/client_wrapper.py,sha256=QpWDM_UvxCir-D4qH9GDRZGMoDC2fW-UpSPKEHT3S0o,1806
17
17
  athena/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
18
18
  athena/core/file.py,sha256=sy1RUGZ3aJYuw998bZytxxo6QdgKmlnlgBaMvwEKCGg,1480
19
19
  athena/core/http_client.py,sha256=Z4NuAsJD-51yqmoME17O5sxwx5orSp1wsnd6bPyKcgA,17768
@@ -43,13 +43,17 @@ athena/tools/client.py,sha256=9ec2gnf3z_vhr3EqT_-ZksevTDtFP1jftPY4os0Ty3Q,21166
43
43
  athena/tools/email/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
44
44
  athena/tools/email/client.py,sha256=epUkV5af3eilVgRR81SFZAf29JuhEWKMkdMuN6qDLUM,7593
45
45
  athena/tools/structured_data_extractor/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
46
- athena/tools/structured_data_extractor/client.py,sha256=yEF-wVyRhebkSlb0r_kcvs4P7TZSlfPTwG-GdZAclvQ,6272
46
+ athena/tools/structured_data_extractor/client.py,sha256=0rEq5bftoWQJwCF9fcP3r8nUSY5hZLy_pOAucena9Go,11235
47
47
  athena/tools/tasks/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
48
48
  athena/tools/tasks/client.py,sha256=5kT6ulh2YDIbNYiv-knBjtF-ST7p0dUvZyrd7t5O61s,2975
49
49
  athena/tools/types/__init__.py,sha256=cA-ZQm6veQAP3_vKu9KkZpISsQqgTBN_Z--FGY1c2iA,197
50
50
  athena/tools/types/tools_data_frame_request_columns_item.py,sha256=GA1FUlTV_CfSc-KToTAwFf4Exl0rr4fsweVZupztjw0,138
51
- athena/types/__init__.py,sha256=0D7plyB40Adtmo5YohNnc7bs7qcwIxslC7LknZd_nK4,1934
51
+ athena/types/__init__.py,sha256=-VA36LN5Q1SLk5IUgw159TBfTtTmvbgAOfaL-3TRY7A,2522
52
52
  athena/types/asset_not_found_error.py,sha256=ZcgqRuzvO4Z8vVVxwtDB-QtKhpVIVV3hqQuJeUoOoJE,1121
53
+ athena/types/chunk.py,sha256=M4O7Sj3EMvkXioQneuKbptr1n5XNGCU9fVxYR12XG9o,1340
54
+ athena/types/chunk_content_item.py,sha256=2B1mTc0a4h7jyKRiYwfC573fM4xijhNEgfd_FI-myj4,2251
55
+ athena/types/chunk_result.py,sha256=b74rp4xNKm3r0R76N-VnoaKrEKeBzMWRGI2PVMyiXpc,1310
56
+ athena/types/chunk_result_chunk_id.py,sha256=pzJ6yL6NdUtseoeU4Kw2jlxSTMCVew2TrjhR1MbCuFg,124
53
57
  athena/types/custom_agent_response.py,sha256=_Vm_fJq4cETtOawBW7p0cvH4Jmle26lHQZ73A8MdLX0,1263
54
58
  athena/types/data_frame_request_out.py,sha256=1CEBe-baDQi0uz_EgMw0TKGYXGj6KV44cL3ViRTZLKM,1669
55
59
  athena/types/data_frame_request_out_columns_item.py,sha256=9cjzciFv6C8n8Griytt_q_8ovkzHViS5tvUcMDfkfKE,143
@@ -64,13 +68,17 @@ athena/types/general_agent_config.py,sha256=FaswWVsDTsL5Fs9Tlx4zSK1S8OrsFnzruEt7
64
68
  athena/types/general_agent_config_enabled_tools_item.py,sha256=6gYaU7uIDJbgygtBKLdYL-VbPxxbEcxwRsT8VaW5vN8,165
65
69
  athena/types/general_agent_request.py,sha256=NnUVtz8U1VoA1SJapbp163Wf_inEQVeFCYWJvM4P-qI,1449
66
70
  athena/types/general_agent_response.py,sha256=9BxqXzchSti5O0Ch_WJkvmkawkBhpH03QlZIbKdYbAY,1212
71
+ athena/types/image_url_content.py,sha256=AivFiET-XA7guQ_rWEGOOafDuQBXTvO8-rMGmKucCss,1182
67
72
  athena/types/parent_folder_error.py,sha256=ZMF-i3mZY6Mu1n5uQ60Q3mIIfehlWuXtgFUkSYspkx8,1120
73
+ athena/types/prompt_message.py,sha256=0z2qlWbqHCG2j7hvWBDvDpQrHLDCI3h8Z0kg8AOOgKs,1227
68
74
  athena/types/research_agent_response.py,sha256=-1mX4M0IEWDFH3alSZdtuhZHSerjWYJQkn74r3Dp26g,1235
69
75
  athena/types/save_asset_request_out.py,sha256=5bpBaUV3oeuL_hz4s07c-6MQHkn4cBsyxgT_SD5oi6I,1193
70
76
  athena/types/sql_agent_response.py,sha256=DmeG0HPZkPT_gTrtkroVZluGZIV9McB8wmME2iT8PB0,1347
71
- athena/types/structured_data_extractor_reponse.py,sha256=Fa-54k20UIqHKDsmUpF4wZpaiTb_J35XysY1GZUf63w,1306
77
+ athena/types/structured_data_extractor_response.py,sha256=RBTjR50PWs3NM0GUlENNHaqAMiOatf14Vmvrd94de8s,1647
78
+ athena/types/text_content.py,sha256=uG2poNIkM6o7tFgf-eKzZk9kZHYImY3JdI-NkYiqWgU,1185
72
79
  athena/types/tool.py,sha256=6H2BFZiBgQOtYUAwSYBeGZKhwev17IEwnIjgmno6dZw,436
80
+ athena/types/type.py,sha256=JaUIt4ogmO4XxCQ9c56fqKN5qANKkrnpuZGmdqOCIow,581
73
81
  athena/version.py,sha256=8aYAOJtVLaJLpRp6mTiEIhnl8gXA7yE0aDtZ-3mKQ4k,87
74
- athena_intelligence-0.1.121.dist-info/METADATA,sha256=jk-Y2QEd6peFk4TLfnNMwO10n9uC-rtM9kTeSbaMzoE,5274
75
- athena_intelligence-0.1.121.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
76
- athena_intelligence-0.1.121.dist-info/RECORD,,
82
+ athena_intelligence-0.1.123.dist-info/METADATA,sha256=Au7QjNP7MXi0igYTXg3ypVp_OHoNiFm-Q8c-E53dEGU,5274
83
+ athena_intelligence-0.1.123.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
84
+ athena_intelligence-0.1.123.dist-info/RECORD,,