arviz 0.21.0__py3-none-any.whl → 0.22.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -46,7 +46,9 @@ class TestDataNumPyro:
46
46
  )
47
47
  return predictions
48
48
 
49
- def get_inference_data(self, data, eight_schools_params, predictions_data, predictions_params):
49
+ def get_inference_data(
50
+ self, data, eight_schools_params, predictions_data, predictions_params, infer_dims=False
51
+ ):
50
52
  posterior_samples = data.obj.get_samples()
51
53
  model = data.obj.sampler.model
52
54
  posterior_predictive = Predictive(model, posterior_samples)(
@@ -55,6 +57,12 @@ class TestDataNumPyro:
55
57
  prior = Predictive(model, num_samples=500)(
56
58
  PRNGKey(2), eight_schools_params["J"], eight_schools_params["sigma"]
57
59
  )
60
+ dims = {"theta": ["school"], "eta": ["school"], "obs": ["school"]}
61
+ pred_dims = {"theta": ["school_pred"], "eta": ["school_pred"], "obs": ["school_pred"]}
62
+ if infer_dims:
63
+ dims = None
64
+ pred_dims = None
65
+
58
66
  predictions = predictions_data
59
67
  return from_numpyro(
60
68
  posterior=data.obj,
@@ -65,8 +73,8 @@ class TestDataNumPyro:
65
73
  "school": np.arange(eight_schools_params["J"]),
66
74
  "school_pred": np.arange(predictions_params["J"]),
67
75
  },
68
- dims={"theta": ["school"], "eta": ["school"], "obs": ["school"]},
69
- pred_dims={"theta": ["school_pred"], "eta": ["school_pred"], "obs": ["school_pred"]},
76
+ dims=dims,
77
+ pred_dims=pred_dims,
70
78
  )
71
79
 
72
80
  def test_inference_data_namedtuple(self, data):
@@ -77,6 +85,7 @@ class TestDataNumPyro:
77
85
  data.obj.get_samples = lambda *args, **kwargs: data_namedtuple
78
86
  inference_data = from_numpyro(
79
87
  posterior=data.obj,
88
+ dims={}, # This mock test needs to turn off autodims like so or mock group_by_chain
80
89
  )
81
90
  assert isinstance(data.obj.get_samples(), Samples)
82
91
  data.obj.get_samples = _old_fn
@@ -282,3 +291,121 @@ class TestDataNumPyro:
282
291
  mcmc.run(PRNGKey(0))
283
292
  inference_data = from_numpyro(mcmc)
284
293
  assert inference_data.observed_data
294
+
295
+ def test_mcmc_infer_dims(self):
296
+ import numpyro
297
+ import numpyro.distributions as dist
298
+ from numpyro.infer import MCMC, NUTS
299
+
300
+ def model():
301
+ # note: group2 gets assigned dim=-1 and group1 is assigned dim=-2
302
+ with numpyro.plate("group2", 5), numpyro.plate("group1", 10):
303
+ _ = numpyro.sample("param", dist.Normal(0, 1))
304
+
305
+ mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
306
+ mcmc.run(PRNGKey(0))
307
+ inference_data = from_numpyro(
308
+ mcmc, coords={"group1": np.arange(10), "group2": np.arange(5)}
309
+ )
310
+ assert inference_data.posterior.param.dims == ("chain", "draw", "group1", "group2")
311
+ assert all(dim in inference_data.posterior.param.coords for dim in ("group1", "group2"))
312
+
313
+ def test_mcmc_infer_unsorted_dims(self):
314
+ import numpyro
315
+ import numpyro.distributions as dist
316
+ from numpyro.infer import MCMC, NUTS
317
+
318
+ def model():
319
+ group1_plate = numpyro.plate("group1", 10, dim=-1)
320
+ group2_plate = numpyro.plate("group2", 5, dim=-2)
321
+
322
+ # the plate contexts are entered in a different order than the pre-defined dims
323
+ # we should make sure this still works because the trace has all of the info it needs
324
+ with group2_plate, group1_plate:
325
+ _ = numpyro.sample("param", dist.Normal(0, 1))
326
+
327
+ mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
328
+ mcmc.run(PRNGKey(0))
329
+ inference_data = from_numpyro(
330
+ mcmc, coords={"group1": np.arange(10), "group2": np.arange(5)}
331
+ )
332
+ assert inference_data.posterior.param.dims == ("chain", "draw", "group2", "group1")
333
+ assert all(dim in inference_data.posterior.param.coords for dim in ("group1", "group2"))
334
+
335
+ def test_mcmc_infer_dims_no_coords(self):
336
+ import numpyro
337
+ import numpyro.distributions as dist
338
+ from numpyro.infer import MCMC, NUTS
339
+
340
+ def model():
341
+ with numpyro.plate("group", 5):
342
+ _ = numpyro.sample("param", dist.Normal(0, 1))
343
+
344
+ mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
345
+ mcmc.run(PRNGKey(0))
346
+ inference_data = from_numpyro(mcmc)
347
+ assert inference_data.posterior.param.dims == ("chain", "draw", "group")
348
+
349
+ def test_mcmc_event_dims(self):
350
+ import numpyro
351
+ import numpyro.distributions as dist
352
+ from numpyro.infer import MCMC, NUTS
353
+
354
+ def model():
355
+ _ = numpyro.sample(
356
+ "gamma", dist.ZeroSumNormal(1, event_shape=(10,)), infer={"event_dims": ["groups"]}
357
+ )
358
+
359
+ mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
360
+ mcmc.run(PRNGKey(0))
361
+ inference_data = from_numpyro(mcmc, coords={"groups": np.arange(10)})
362
+ assert inference_data.posterior.gamma.dims == ("chain", "draw", "groups")
363
+ assert "groups" in inference_data.posterior.gamma.coords
364
+
365
+ @pytest.mark.xfail
366
+ def test_mcmc_inferred_dims_univariate(self):
367
+ import numpyro
368
+ import numpyro.distributions as dist
369
+ from numpyro.infer import MCMC, NUTS
370
+ import jax.numpy as jnp
371
+
372
+ def model():
373
+ alpha = numpyro.sample("alpha", dist.Normal(0, 1))
374
+ sigma = numpyro.sample("sigma", dist.HalfNormal(1))
375
+ with numpyro.plate("obs_idx", 3):
376
+ # mu is plated by obs_idx, but isnt broadcasted to the plate shape
377
+ # the expected behavior is that this should cause a failure
378
+ mu = numpyro.deterministic("mu", alpha)
379
+ return numpyro.sample("y", dist.Normal(mu, sigma), obs=jnp.array([-1, 0, 1]))
380
+
381
+ mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
382
+ mcmc.run(PRNGKey(0))
383
+ inference_data = from_numpyro(mcmc, coords={"obs_idx": np.arange(3)})
384
+ assert inference_data.posterior.mu.dims == ("chain", "draw", "obs_idx")
385
+ assert "obs_idx" in inference_data.posterior.mu.coords
386
+
387
+ def test_mcmc_extra_event_dims(self):
388
+ import numpyro
389
+ import numpyro.distributions as dist
390
+ from numpyro.infer import MCMC, NUTS
391
+
392
+ def model():
393
+ gamma = numpyro.sample("gamma", dist.ZeroSumNormal(1, event_shape=(10,)))
394
+ _ = numpyro.deterministic("gamma_plus1", gamma + 1)
395
+
396
+ mcmc = MCMC(NUTS(model), num_warmup=10, num_samples=10)
397
+ mcmc.run(PRNGKey(0))
398
+ inference_data = from_numpyro(
399
+ mcmc, coords={"groups": np.arange(10)}, extra_event_dims={"gamma_plus1": ["groups"]}
400
+ )
401
+ assert inference_data.posterior.gamma_plus1.dims == ("chain", "draw", "groups")
402
+ assert "groups" in inference_data.posterior.gamma_plus1.coords
403
+
404
+ def test_mcmc_predictions_infer_dims(
405
+ self, data, eight_schools_params, predictions_data, predictions_params
406
+ ):
407
+ inference_data = self.get_inference_data(
408
+ data, eight_schools_params, predictions_data, predictions_params, infer_dims=True
409
+ )
410
+ assert inference_data.predictions.obs.dims == ("chain", "draw", "J")
411
+ assert "J" in inference_data.predictions.obs.coords
arviz/wrappers/base.py CHANGED
@@ -197,7 +197,7 @@ class SamplingWrapper:
197
197
  """Check that all methods listed are implemented.
198
198
 
199
199
  Not all functions that require refitting need to have all the methods implemented in
200
- order to work properly. This function shoulg be used before using the SamplingWrapper and
200
+ order to work properly. This function should be used before using the SamplingWrapper and
201
201
  its subclasses to get informative error messages.
202
202
 
203
203
  Parameters
@@ -44,7 +44,7 @@ class StanSamplingWrapper(SamplingWrapper):
44
44
  excluded_observed_data : str
45
45
  Variable name containing the pointwise log likelihood data of the excluded
46
46
  data. As PyStan cannot call C++ functions and log_likelihood__i is already
47
- calculated *during* the simultion, instead of the value on which to evaluate
47
+ calculated *during* the simulation, instead of the value on which to evaluate
48
48
  the likelihood, ``log_likelihood__i`` expects a string so it can extract the
49
49
  corresponding data from the InferenceData object.
50
50
  """
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: arviz
3
- Version: 0.21.0
3
+ Version: 0.22.0
4
4
  Summary: Exploratory analysis of Bayesian models
5
5
  Home-page: http://github.com/arviz-devs/arviz
6
6
  Author: ArviZ Developers
@@ -22,12 +22,12 @@ Requires-Python: >=3.10
22
22
  Description-Content-Type: text/markdown
23
23
  License-File: LICENSE
24
24
  Requires-Dist: setuptools>=60.0.0
25
- Requires-Dist: matplotlib>=3.5
26
- Requires-Dist: numpy>=1.23.0
27
- Requires-Dist: scipy>=1.9.0
25
+ Requires-Dist: matplotlib>=3.8
26
+ Requires-Dist: numpy>=1.26.0
27
+ Requires-Dist: scipy>=1.11.0
28
28
  Requires-Dist: packaging
29
- Requires-Dist: pandas>=1.5.0
30
- Requires-Dist: xarray>=2022.6.0
29
+ Requires-Dist: pandas>=2.1.0
30
+ Requires-Dist: xarray>=2023.7.0
31
31
  Requires-Dist: h5netcdf>=1.0.2
32
32
  Requires-Dist: typing-extensions>=4.1.0
33
33
  Requires-Dist: xarray-einstats>=0.3
@@ -39,7 +39,7 @@ Requires-Dist: contourpy; extra == "all"
39
39
  Requires-Dist: ujson; extra == "all"
40
40
  Requires-Dist: dask[distributed]; extra == "all"
41
41
  Requires-Dist: zarr<3,>=2.5.0; extra == "all"
42
- Requires-Dist: xarray-datatree; extra == "all"
42
+ Requires-Dist: xarray>=2024.11.0; extra == "all"
43
43
  Requires-Dist: dm-tree>=0.1.8; extra == "all"
44
44
  Provides-Extra: preview
45
45
  Requires-Dist: arviz-base[h5netcdf]; extra == "preview"
@@ -1,4 +1,4 @@
1
- arviz/__init__.py,sha256=1PWUe3oeouP_C8JmAXhMrHarplymbqLyWqm950C-aAI,10397
1
+ arviz/__init__.py,sha256=IOdU7uIJbHurf--mKztuR4Yq-fVHSLyU_neL4nK89KE,10590
2
2
  arviz/labels.py,sha256=w4-t0qdJzjKrqRyhzbtk6ucoMIAxle1HpHYlH7up06Q,6828
3
3
  arviz/preview.py,sha256=Fmff8j9Zlvgi5w2PRwnbkEOioJY8fK9p1SWQWjTl4N8,1314
4
4
  arviz/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -9,16 +9,16 @@ arviz/data/__init__.py,sha256=SG2umdZ8uVNYKVBoVYPy5tNxJnzLdyw0spPMjMTae5k,1558
9
9
  arviz/data/base.py,sha256=PALdVidyCxJqje_za4XPwXH010qAMJt4VzzeOflUCC8,21365
10
10
  arviz/data/converters.py,sha256=4QU5_0OU84HV3gSXXY_N5bd6S9ft81lfpnCT-8E8qyc,7933
11
11
  arviz/data/datasets.py,sha256=wPi23KZI-w4HrhjmY1LUg0Rj0aJobSJ4WO3LBrjfZQc,5392
12
- arviz/data/inference_data.py,sha256=GYmQzz26c614IX_XVvmoTA0ycaC2pZs3B48hd2HYhrA,93619
12
+ arviz/data/inference_data.py,sha256=BvZsTROxRIGc6c4Jg_NQrjnlfm_WquPyhJi88KBEkis,94545
13
13
  arviz/data/io_beanmachine.py,sha256=QQVBD6rftvs6_kLIb4Vm1QzQ6BsS0J9DTrzw2Jj4ob8,3745
14
14
  arviz/data/io_cmdstan.py,sha256=8YX9Nfkx4LqjfKms4s4GTOkOjZNelb6SukvRZRHY6iM,38994
15
15
  arviz/data/io_cmdstanpy.py,sha256=iSr8ciKBFoIa1tJGHEX-2JKkUJRyaTXzRXf-5mu8q5U,42991
16
- arviz/data/io_datatree.py,sha256=Ag_7LHAejqt0Zxbu350u8WBY44nGsFY7eyhKa0Wi7FE,502
16
+ arviz/data/io_datatree.py,sha256=QNj6Fkbv9HiJbCMbQmwGNPkwhYD4BkeMN10syhV9-J0,498
17
17
  arviz/data/io_dict.py,sha256=HM4ke-NuopsPnIdU-UGMtppAnj3vcbkBti8eROpMRTs,17698
18
18
  arviz/data/io_emcee.py,sha256=zsJJqwlyXLN_TfI6hgKz97p4N30NYTVvQSrIIpiLmB0,11844
19
19
  arviz/data/io_json.py,sha256=lrSP_9abfUW_5E8TwnG4hsS5HNHzAHZQCJTynl_tXKY,1256
20
20
  arviz/data/io_netcdf.py,sha256=cCxVnXSCTzWP3SU7cM4SqBiRRK9txFOsm-MchzNUzM4,2336
21
- arviz/data/io_numpyro.py,sha256=_U6owmsY5hrQU7C5NPw43s76Swmy_YqXw4UZYfZwzU4,14241
21
+ arviz/data/io_numpyro.py,sha256=FgIoHp62eSgTOwNLIdfYhlOWIuPey55pvz949zwyX2I,18567
22
22
  arviz/data/io_pyjags.py,sha256=AG2ckAuygSxbjULVFQCJQSM72GnUoTMi3T94aQRJYKQ,13271
23
23
  arviz/data/io_pyro.py,sha256=JYywUGUU1Qil_ahLuDYhYFafQAKB-y1kIipXdfH_vnQ,12740
24
24
  arviz/data/io_pystan.py,sha256=nRTU6yujilQCKERxzN7LIVwZplfvFNb-Y9Jk9YVJQLk,41700
@@ -30,7 +30,7 @@ arviz/data/example_data/code/radon/radon.json,sha256=XwpiyGRrqkBP02zWz00s6z-d00V
30
30
  arviz/data/example_data/data/centered_eight.nc,sha256=jvw6uv4MeW65rqe2lJDU4kAKM8V1BO9JMuHHEFhJF28,654694
31
31
  arviz/data/example_data/data/non_centered_eight.nc,sha256=r7kyd10HyJTTRQs4OlSCXPVt3T-nLsPd3g-bcPYnPmA,836647
32
32
  arviz/plots/__init__.py,sha256=atWhfLXHAD6zaTjbdWdTaJrPTNBl3XpcSCY4etgw_cY,1514
33
- arviz/plots/autocorrplot.py,sha256=f-rYtnZtxgOns5sIT6pdw-EdU74lAVmAeV9b6rKLsgw,5666
33
+ arviz/plots/autocorrplot.py,sha256=veeZNEhHoDBzR-mGNm-JOP1gBoSpilpy2E6lOgcoWKk,5926
34
34
  arviz/plots/bfplot.py,sha256=TKCkk60dgIk70CNWz9pHDXb1HGwHT_aLfNgFH6jDz9c,4367
35
35
  arviz/plots/bpvplot.py,sha256=Pf0ME21_teSQd_7CcuYE2MxfDJHcy5eW7Ms7yIDZSCA,12505
36
36
  arviz/plots/compareplot.py,sha256=Z8usSMEeQKs4GmkziDR4dVzSh3Ocd4ySfiNDZVaFOUc,6078
@@ -44,12 +44,12 @@ arviz/plots/energyplot.py,sha256=znEDPYpWaTIX0XpdVoyhXOITJ4A8BYkI9t1TVhJq4Qo,479
44
44
  arviz/plots/essplot.py,sha256=ch0DjUQDILk4ohpSUR-9VHejGFb6Xmelly-qa-fKb9E,11741
45
45
  arviz/plots/forestplot.py,sha256=37Wj4wFGjydZS4SpdqZ9qLxhZBo4rFxV_MWQnZAS7DA,11897
46
46
  arviz/plots/hdiplot.py,sha256=Pii9ZsuejEM-I24dn39muUL-yYKTfe2RWzAuU0W-3SI,7798
47
- arviz/plots/kdeplot.py,sha256=55mQPyIrvPKeJbjTsqWTExcff6QPvXFXG47XtDfPs_Y,11924
47
+ arviz/plots/kdeplot.py,sha256=t-SJt3LIL1nThAsVM5npXZhRxqkGoCsfF1F0Fkj8ZV8,11924
48
48
  arviz/plots/khatplot.py,sha256=u03gmBG1xwxG07ASLZEJB-GsRhRHtUCtbglpC1N0aIg,8086
49
- arviz/plots/lmplot.py,sha256=LxR7RXkaAi5J8076isebVrtdk6UwbcTRekEymM9S6cY,11726
49
+ arviz/plots/lmplot.py,sha256=ZKX0RNaUpQO4qYYDqRqc_yktNsfdUXjs4EGFU2Wem2o,12943
50
50
  arviz/plots/loopitplot.py,sha256=bFUO_Fy4z6u6E39GdaF4rIvc-COWNwF4A0n2kcmZBfA,8321
51
51
  arviz/plots/mcseplot.py,sha256=rsiz4E9M9p58YetAaF75gbenGIj4M0hapWnh9UJOXzY,6829
52
- arviz/plots/pairplot.py,sha256=yVxyLC7ms0SKpTunifacUyOblH8BW9CsQqE2Hv0ARP4,10407
52
+ arviz/plots/pairplot.py,sha256=v-NCJIG6UG9cGIdFUWzW5S7Y29Ag5zE9zucxNSv46ME,10787
53
53
  arviz/plots/parallelplot.py,sha256=ZBEsHvnlmSXLRpSwP-KUwzgWBC2S4siKXFGJnLf7uAE,7125
54
54
  arviz/plots/plot_utils.py,sha256=VyVR50HrZegdkWa6ZxtRnC_WJstooYvaB-xsDHf6kaQ,18337
55
55
  arviz/plots/posteriorplot.py,sha256=pC-5SQZOGq1F4opM_sQLxn4ZG2we4Y9ULV8yhxjGVdo,10952
@@ -74,13 +74,13 @@ arviz/plots/backends/bokeh/elpdplot.py,sha256=5bn_rH1Aixm0--BArAP4m4kuZMjWxR8ox-
74
74
  arviz/plots/backends/bokeh/energyplot.py,sha256=FKPYRaWwM32Vw0AHE0MIWBn9wZQeoYdP_YpYZGijIq0,4571
75
75
  arviz/plots/backends/bokeh/essplot.py,sha256=0i2E1TvlzzP9mTavlGlJ5hPoFW5tGWCkAPAKrVHbgYQ,5560
76
76
  arviz/plots/backends/bokeh/forestplot.py,sha256=TAaXMqF2F1G7BIeDdWas14C6pCKZ3RTNhLIjUm-_IQs,27466
77
- arviz/plots/backends/bokeh/hdiplot.py,sha256=bAhTPi9D7cw2ytSvjSIRD3g-PqpB9OFwusrQAnmKCYY,1538
77
+ arviz/plots/backends/bokeh/hdiplot.py,sha256=O4sDsYDe94VsDRM0BFGblwQGKXE0WhA8Y8TmwX85vd8,1670
78
78
  arviz/plots/backends/bokeh/kdeplot.py,sha256=nKEgJfnP7NK2Y2cipF_RglEC6GpowaagH5wZP3iZq-U,9329
79
79
  arviz/plots/backends/bokeh/khatplot.py,sha256=Iz2C6YaQOhnucAFbjSWTha2HNLFmctXc4tt_rLdS6Ko,4663
80
- arviz/plots/backends/bokeh/lmplot.py,sha256=0VIu1CPngKFQZayOqASAYHfXU8s_SRzysjdmxkELRJo,5600
80
+ arviz/plots/backends/bokeh/lmplot.py,sha256=BP1-5O-PqpkheKHe1vDaZTzbAmFP_YKs9K02c3kYWtA,6532
81
81
  arviz/plots/backends/bokeh/loopitplot.py,sha256=FWjcsSWGJNy4wM63_N2qpg5oECb3Cq-uLy3xDS5x6j4,7172
82
82
  arviz/plots/backends/bokeh/mcseplot.py,sha256=QHyXeANcVSeLRdPJGh5RihZmaYq8cAPjSAn6FGJXQRk,5960
83
- arviz/plots/backends/bokeh/pairplot.py,sha256=kNvB3pVcpWXz7GMjBKc0pNyJdbx7VYgyEQOZeFbVgKo,13416
83
+ arviz/plots/backends/bokeh/pairplot.py,sha256=RI480xTSrCvMNd8YQx5sjcDDkIytkSuGeCfWYpYIm8o,12482
84
84
  arviz/plots/backends/bokeh/parallelplot.py,sha256=SNChOLWvcKxXuuJsIfWs9CNj7qDuVb95UZyp4CP1BQE,2230
85
85
  arviz/plots/backends/bokeh/posteriorplot.py,sha256=yBAlGo3lQpFBVro724eZtKnOHgVkY7LXupa-8_VtE7c,9380
86
86
  arviz/plots/backends/bokeh/ppcplot.py,sha256=fDeXXn1WtjjSs-285nDo76NKJTp2m5hIZ7V9S6iqA30,13307
@@ -104,11 +104,11 @@ arviz/plots/backends/matplotlib/essplot.py,sha256=C5RH8MNIOGpCPKHUsGfZ03aQ3CaXI8
104
104
  arviz/plots/backends/matplotlib/forestplot.py,sha256=TWmJqmoH8Rn2bc-g3Tx1QTb_RIfNUKN5PxPFRnF3flA,23228
105
105
  arviz/plots/backends/matplotlib/hdiplot.py,sha256=7KawWKFahxILp0dxodkhRni9oJMCkulLhLhRD9qoH60,1521
106
106
  arviz/plots/backends/matplotlib/kdeplot.py,sha256=wsTBABG3MLkMAoAzu22otJdXCVzUnUu3McIt9_Hjldc,5323
107
- arviz/plots/backends/matplotlib/khatplot.py,sha256=JajJXlDXJce1DvB0Eh7ueB4N6ZkqKHgLaGhck8EsaXs,7437
108
- arviz/plots/backends/matplotlib/lmplot.py,sha256=EeXiqQhfQBaKAhmzRMLLV5gNGELo_QPZ24MkGnDWUfM,5288
107
+ arviz/plots/backends/matplotlib/khatplot.py,sha256=SUV-Bbb88mnvFwxzFUf2j66JMjVtJNHoqYTRE7DmC8Y,7735
108
+ arviz/plots/backends/matplotlib/lmplot.py,sha256=CHFhvUZaexnkS0ZFOJWTB3t0fdCF915RbmR-L2-cuM4,5564
109
109
  arviz/plots/backends/matplotlib/loopitplot.py,sha256=glK-BP4NftmdZEK5sB7kM8SzoGWsDnBdDVDzV-fDdCg,4632
110
110
  arviz/plots/backends/matplotlib/mcseplot.py,sha256=kGuRHRnyQKZPxoiHp8S30RzK7qbL83AaFGbn7BNVOZo,5810
111
- arviz/plots/backends/matplotlib/pairplot.py,sha256=82MfXs8Gxt40pGqsj48hvyM0Xvc44Eskj2fQC-0AasM,13793
111
+ arviz/plots/backends/matplotlib/pairplot.py,sha256=NTBMIyvOMmCHwlrHeriEkwInA1R7beA9M28AlqCw8dU,13595
112
112
  arviz/plots/backends/matplotlib/parallelplot.py,sha256=zxtO6CNsK_HSl7E2sH40x8OYoO9a5bPNJ6VPJTuDQbk,1450
113
113
  arviz/plots/backends/matplotlib/posteriorplot.py,sha256=dUJfGYWYv5Lzlbz9Tr5d9virVfJb7JsnGiSYU7CdmsI,10092
114
114
  arviz/plots/backends/matplotlib/ppcplot.py,sha256=3kPTVEUsGpMyr_P5OKgfAu_NHZNmdJWXvCmfhIlNieE,16134
@@ -137,27 +137,27 @@ arviz/plots/styles/arviz-whitegrid.mplstyle,sha256=IMjjlfG3wg7heUjcVrkez1SNoiMI6
137
137
  arviz/static/css/style.css,sha256=wcC7rvCT4E6TycEiw7YqxwyaaZ4tTRDGqMkYYjAqrao,5910
138
138
  arviz/static/html/icons-svg-inline.html,sha256=t-ChbtS1Gv8uZxc31DCJS8SuXDsLGUHoKgwv8zu6j2M,1343
139
139
  arviz/stats/__init__.py,sha256=kvrANzMkqyHMTdry7N5w836E2OP0tJM6bm5-G8OZaA0,721
140
- arviz/stats/density_utils.py,sha256=WCEkXCQsaycY_usA6xkorhIqr3_5ru7wgwE9eJJgdH8,32216
140
+ arviz/stats/density_utils.py,sha256=wmPFJzEZR7KgKxwQb5pGhY-w-rnFZpMIavrhpt_6u9w,32215
141
141
  arviz/stats/diagnostics.py,sha256=COTy2c5ROAirCAK_UNo7kQnggN71maBRPwy54ZdabKE,32656
142
142
  arviz/stats/ecdf_utils.py,sha256=Wy38wL-bsHDlpyU9qnDjedYBvbP_6ZrzJuWo6NzD2Xg,11835
143
- arviz/stats/stats.py,sha256=0cpdhmTwEVNY6VedeYhl2D3zlXj2hn2Mp2yqVkufP94,89884
143
+ arviz/stats/stats.py,sha256=Q4MMxSJPyElFzBXpCqA21bMb1jQfnmLAHVTPmDHGiSo,90129
144
144
  arviz/stats/stats_refitting.py,sha256=trbPC7LCnsb-n5D6g7J0bzXJCPfcDukJDniB4ud1z9E,5415
145
145
  arviz/stats/stats_utils.py,sha256=XG8ILPVs8Jbh_v7jzLfwMkm2HraT2j2-Hxe_kEYlLjQ,20076
146
146
  arviz/tests/__init__.py,sha256=TiS6C1IzwAXmNa8u36Y2xzL1CTTZm2PwzAtmZgoqepE,18
147
147
  arviz/tests/conftest.py,sha256=6U9WpKmYf38EVRoFZNBpV0CunQvESBFJG2SJ8IBEkL4,1270
148
148
  arviz/tests/helpers.py,sha256=qhsOhLtfyz-dC2yuT6ug0frYZlbims06BljJuEVDP6E,23593
149
149
  arviz/tests/base_tests/__init__.py,sha256=zg7V5_0DZrCz7ozETqET6bUpAvUUmmkSoLpJLwaIj2E,23
150
- arviz/tests/base_tests/test_data.py,sha256=L3vfscLm8aMVjd3MswJqmJ_J7Y2sNjwjCeJQb4TX9_Q,64296
150
+ arviz/tests/base_tests/test_data.py,sha256=vnaYftgX_r58ra-Eo7ivAhUC8cSWAhf-zOLuDlWdZXA,64131
151
151
  arviz/tests/base_tests/test_data_zarr.py,sha256=sPWnIQ7vPhN5Ql3Dq4JENuSwQV5IeignQjy9BAYe1_A,5441
152
152
  arviz/tests/base_tests/test_diagnostics.py,sha256=pbuy1-nvTKWSHv0nnhXOhpG4e2uy-4GGZb4lxAdoMpw,20353
153
153
  arviz/tests/base_tests/test_diagnostics_numba.py,sha256=2G5O-7Hz66DSaHIZtjs2XL45RezYnXQZH6Dg2Ow-p4Q,2847
154
154
  arviz/tests/base_tests/test_helpers.py,sha256=PogHpWCMBEtkuzKt9jGQ8uIPg0cLDwztXxOnPSPNyVE,669
155
155
  arviz/tests/base_tests/test_labels.py,sha256=X08vTMmcgXkYGbE2Qnu_UUDSTAIvSNKdnyqoWwmj008,1686
156
156
  arviz/tests/base_tests/test_plot_utils.py,sha256=lwDZYDNrlEOKP-asJv6qu3sH_4y-FiHcFlqnMTpZyhw,11771
157
- arviz/tests/base_tests/test_plots_bokeh.py,sha256=1JqUqLKUb1g4c4w41K3j_LCT4eqb3u1qGnYbUuJMHPE,39148
158
- arviz/tests/base_tests/test_plots_matplotlib.py,sha256=sRn-jWzBeCkk49i8DO_a1l9WXoia269sANOQfPpqYjQ,66197
157
+ arviz/tests/base_tests/test_plots_bokeh.py,sha256=FDw3dp-M89EVsIAWvl7M17GXWyatRalYQJJHsbT5BzQ,41052
158
+ arviz/tests/base_tests/test_plots_matplotlib.py,sha256=v_GwjrmWV18AyG-1aetUzpx2QqD9nqIrxsfVOKHtGY0,68533
159
159
  arviz/tests/base_tests/test_rcparams.py,sha256=b9ueOXd9C0xiUIqgS0qnzvalHFgTFK7sUqL8UAzgJNs,10851
160
- arviz/tests/base_tests/test_stats.py,sha256=zEK8uKvXBFpnLQPxoHkM5L9-KWqHQXvUcWAzKGMGgFQ,32809
160
+ arviz/tests/base_tests/test_stats.py,sha256=QHVa8sSzr5FX8X0D8tGFntCz9aW032gLu-EOuC6RHA4,34322
161
161
  arviz/tests/base_tests/test_stats_ecdf_utils.py,sha256=p1FnQzlC0fjjKDFfhbHIrrbwAVhLiygH4J0aarx89A0,6038
162
162
  arviz/tests/base_tests/test_stats_numba.py,sha256=wGXgNuSO_gwJajoYtXSgpIe88PcBRyIkRihxC8paR-o,1582
163
163
  arviz/tests/base_tests/test_stats_utils.py,sha256=Udkw8tODs8mLt3_hO3HgNczrU0n09IJrML2agXF-upQ,13864
@@ -168,16 +168,16 @@ arviz/tests/external_tests/test_data_beanmachine.py,sha256=nwOJNJLrk5rY4M5YW-LT6
168
168
  arviz/tests/external_tests/test_data_cmdstan.py,sha256=jHy-dZrY4M7F4uYWf71fOxVwfPxgRpM9E3JAvpk03qA,16829
169
169
  arviz/tests/external_tests/test_data_cmdstanpy.py,sha256=uCSOJVowKXccCPLpAwCiihghx_WxnUVyR8r801Xhw_0,18753
170
170
  arviz/tests/external_tests/test_data_emcee.py,sha256=w-tsP74-n688C9-v_KIf0YxZg7S1WrhOdJUvaHS9e6I,6270
171
- arviz/tests/external_tests/test_data_numpyro.py,sha256=TB5IkxlU3pMsjIgnxyhQaCkRkPWaK_d_YHEcs7XaWNo,11366
171
+ arviz/tests/external_tests/test_data_numpyro.py,sha256=cdUzv0MKPCmsfNLbvz7IgBxapGSJjG42bgaR_MfDmPg,16758
172
172
  arviz/tests/external_tests/test_data_pyjags.py,sha256=kqZfV8QRnAngO9obnAq5lKPIuJdVJ82sbkIfSr2tpqY,4547
173
173
  arviz/tests/external_tests/test_data_pyro.py,sha256=EaD_hZGALaSKQKK4OFgmuJ_1SsIYKessHQ7Jl9AKbw0,10771
174
174
  arviz/tests/external_tests/test_data_pystan.py,sha256=ebg_JXkmAhXRllP0otjyourGF_fUaKMkwRfrQO6Glwk,11792
175
175
  arviz/wrappers/__init__.py,sha256=d8GTUuBW_30LyDyk6qn2MAnvg-GZCeUw_i5SUPqaa1w,354
176
- arviz/wrappers/base.py,sha256=Vvh330pdzIvBEaikHsDP1ej6L2jCZZ0Dqj5TvUbYesI,9134
176
+ arviz/wrappers/base.py,sha256=FNgPvd_tLCB5C2tRx1ngYjr4F5tEUuNrrLkStuyRXsE,9134
177
177
  arviz/wrappers/wrap_pymc.py,sha256=ltKv55aG0WTWXVDJuff5TXkgJJ_ESLvlT-JPlh3yHAg,1143
178
- arviz/wrappers/wrap_stan.py,sha256=c40brlajoPcc3xk00xI9Hqc-y0xcbAmFAIZOtfXWeqo,5525
179
- arviz-0.21.0.dist-info/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
180
- arviz-0.21.0.dist-info/METADATA,sha256=3zSEB4npy44RXZtTxQVEkIvjvCqbDXQ9s6vsAyxvXmg,8848
181
- arviz-0.21.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
182
- arviz-0.21.0.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
183
- arviz-0.21.0.dist-info/RECORD,,
178
+ arviz/wrappers/wrap_stan.py,sha256=sIy38fXg4Ln_0CM6xONDwOJg1Y6FwNM_JQErv3a-8_c,5526
179
+ arviz-0.22.0.dist-info/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
180
+ arviz-0.22.0.dist-info/METADATA,sha256=co8xturD_y3pE5nwukUw29h3QPDd4fyVFXylpFidKvY,8851
181
+ arviz-0.22.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
182
+ arviz-0.22.0.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
183
+ arviz-0.22.0.dist-info/RECORD,,
File without changes