arviz 0.18.0__py3-none-any.whl → 0.19.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. arviz/__init__.py +2 -1
  2. arviz/data/io_cmdstan.py +4 -0
  3. arviz/data/io_numpyro.py +1 -1
  4. arviz/plots/backends/bokeh/ecdfplot.py +1 -2
  5. arviz/plots/backends/bokeh/khatplot.py +8 -3
  6. arviz/plots/backends/bokeh/pairplot.py +2 -6
  7. arviz/plots/backends/matplotlib/ecdfplot.py +1 -2
  8. arviz/plots/backends/matplotlib/khatplot.py +7 -3
  9. arviz/plots/backends/matplotlib/traceplot.py +1 -1
  10. arviz/plots/bpvplot.py +2 -2
  11. arviz/plots/densityplot.py +1 -1
  12. arviz/plots/dotplot.py +2 -2
  13. arviz/plots/ecdfplot.py +205 -89
  14. arviz/plots/essplot.py +2 -2
  15. arviz/plots/forestplot.py +1 -1
  16. arviz/plots/hdiplot.py +2 -2
  17. arviz/plots/khatplot.py +23 -6
  18. arviz/plots/loopitplot.py +2 -2
  19. arviz/plots/mcseplot.py +3 -1
  20. arviz/plots/plot_utils.py +2 -4
  21. arviz/plots/posteriorplot.py +1 -1
  22. arviz/plots/rankplot.py +2 -2
  23. arviz/plots/violinplot.py +1 -1
  24. arviz/preview.py +17 -0
  25. arviz/rcparams.py +27 -2
  26. arviz/stats/diagnostics.py +13 -9
  27. arviz/stats/ecdf_utils.py +11 -8
  28. arviz/stats/stats.py +31 -16
  29. arviz/stats/stats_utils.py +8 -6
  30. arviz/tests/base_tests/test_data.py +1 -2
  31. arviz/tests/base_tests/test_data_zarr.py +0 -1
  32. arviz/tests/base_tests/test_diagnostics_numba.py +2 -7
  33. arviz/tests/base_tests/test_helpers.py +2 -2
  34. arviz/tests/base_tests/test_plot_utils.py +5 -13
  35. arviz/tests/base_tests/test_plots_matplotlib.py +92 -2
  36. arviz/tests/base_tests/test_rcparams.py +12 -0
  37. arviz/tests/base_tests/test_stats.py +1 -1
  38. arviz/tests/base_tests/test_stats_numba.py +2 -7
  39. arviz/tests/base_tests/test_utils_numba.py +2 -5
  40. arviz/tests/external_tests/test_data_pystan.py +5 -5
  41. arviz/tests/helpers.py +17 -9
  42. arviz/utils.py +4 -0
  43. {arviz-0.18.0.dist-info → arviz-0.19.0.dist-info}/METADATA +8 -4
  44. {arviz-0.18.0.dist-info → arviz-0.19.0.dist-info}/RECORD +47 -46
  45. {arviz-0.18.0.dist-info → arviz-0.19.0.dist-info}/LICENSE +0 -0
  46. {arviz-0.18.0.dist-info → arviz-0.19.0.dist-info}/WHEEL +0 -0
  47. {arviz-0.18.0.dist-info → arviz-0.19.0.dist-info}/top_level.txt +0 -0
@@ -46,12 +46,13 @@ from ...plots import (
46
46
  from ...rcparams import rc_context, rcParams
47
47
  from ...stats import compare, hdi, loo, waic
48
48
  from ...stats.density_utils import kde as _kde
49
- from ...utils import _cov
49
+ from ...utils import _cov, BehaviourChangeWarning
50
50
  from ...plots.plot_utils import plot_point_interval
51
51
  from ...plots.dotplot import wilkinson_algorithm
52
52
  from ..helpers import ( # pylint: disable=unused-import
53
53
  create_model,
54
54
  create_multidimensional_model,
55
+ does_not_warn,
55
56
  eight_schools_params,
56
57
  models,
57
58
  multidim_models,
@@ -261,7 +262,7 @@ def test_plot_trace_legend(compact, combined):
261
262
  axes = plot_trace(
262
263
  idata, var_names=["home", "atts_star"], compact=compact, combined=combined, legend=True
263
264
  )
264
- assert axes[0, 0].get_legend()
265
+ assert axes[0, 1].get_legend()
265
266
  compact_legend = axes[1, 0].get_legend()
266
267
  if compact:
267
268
  assert axes.shape == (2, 2)
@@ -1272,6 +1273,26 @@ def test_plot_ecdf_basic():
1272
1273
  assert axes is not None
1273
1274
 
1274
1275
 
1276
+ def test_plot_ecdf_eval_points():
1277
+ """Check that BehaviourChangeWarning is raised if eval_points is not specified."""
1278
+ data = np.random.randn(4, 1000)
1279
+ eval_points = np.linspace(-3, 3, 100)
1280
+ with pytest.warns(BehaviourChangeWarning):
1281
+ axes = plot_ecdf(data)
1282
+ assert axes is not None
1283
+ with does_not_warn(BehaviourChangeWarning):
1284
+ axes = plot_ecdf(data, eval_points=eval_points)
1285
+ assert axes is not None
1286
+
1287
+
1288
+ @pytest.mark.parametrize("confidence_bands", [True, "pointwise", "simulated"])
1289
+ def test_plot_ecdf_confidence_bands(confidence_bands):
1290
+ """Check that all confidence_bands values correctly accepted"""
1291
+ data = np.random.randn(4, 1000)
1292
+ axes = plot_ecdf(data, confidence_bands=confidence_bands, cdf=norm(0, 1).cdf)
1293
+ assert axes is not None
1294
+
1295
+
1275
1296
  def test_plot_ecdf_values2():
1276
1297
  data = np.random.randn(4, 1000)
1277
1298
  data2 = np.random.randn(4, 1000)
@@ -1286,6 +1307,75 @@ def test_plot_ecdf_cdf():
1286
1307
  assert axes is not None
1287
1308
 
1288
1309
 
1310
+ def test_plot_ecdf_error():
1311
+ """Check that all error conditions are correctly raised."""
1312
+ dist = norm(0, 1)
1313
+ data = dist.rvs(1000)
1314
+
1315
+ # cdf not specified
1316
+ with pytest.raises(ValueError):
1317
+ plot_ecdf(data, confidence_bands=True)
1318
+ plot_ecdf(data, confidence_bands=True, cdf=dist.cdf)
1319
+ with pytest.raises(ValueError):
1320
+ plot_ecdf(data, difference=True)
1321
+ plot_ecdf(data, difference=True, cdf=dist.cdf)
1322
+ with pytest.raises(ValueError):
1323
+ plot_ecdf(data, pit=True)
1324
+ plot_ecdf(data, pit=True, cdf=dist.cdf)
1325
+
1326
+ # contradictory confidence band types
1327
+ with pytest.raises(ValueError):
1328
+ plot_ecdf(data, cdf=dist.cdf, confidence_bands="simulated", pointwise=True)
1329
+ plot_ecdf(data, cdf=dist.cdf, confidence_bands=True, pointwise=True)
1330
+ plot_ecdf(data, cdf=dist.cdf, confidence_bands="pointwise")
1331
+
1332
+ # contradictory band probabilities
1333
+ with pytest.raises(ValueError):
1334
+ plot_ecdf(data, cdf=dist.cdf, confidence_bands=True, ci_prob=0.9, fpr=0.1)
1335
+ plot_ecdf(data, cdf=dist.cdf, confidence_bands=True, ci_prob=0.9)
1336
+ plot_ecdf(data, cdf=dist.cdf, confidence_bands=True, fpr=0.1)
1337
+
1338
+ # contradictory reference
1339
+ data2 = dist.rvs(200)
1340
+ with pytest.raises(ValueError):
1341
+ plot_ecdf(data, data2, cdf=dist.cdf, difference=True)
1342
+ plot_ecdf(data, data2, difference=True)
1343
+ plot_ecdf(data, cdf=dist.cdf, difference=True)
1344
+
1345
+
1346
+ def test_plot_ecdf_deprecations():
1347
+ """Check that deprecations are raised correctly."""
1348
+ dist = norm(0, 1)
1349
+ data = dist.rvs(1000)
1350
+ # base case, no deprecations
1351
+ with does_not_warn(FutureWarning):
1352
+ axes = plot_ecdf(data, cdf=dist.cdf, confidence_bands=True)
1353
+ assert axes is not None
1354
+
1355
+ # values2 is deprecated
1356
+ data2 = dist.rvs(200)
1357
+ with pytest.warns(FutureWarning):
1358
+ axes = plot_ecdf(data, values2=data2, difference=True)
1359
+
1360
+ # pit is deprecated
1361
+ with pytest.warns(FutureWarning):
1362
+ axes = plot_ecdf(data, cdf=dist.cdf, pit=True)
1363
+ assert axes is not None
1364
+
1365
+ # fpr is deprecated
1366
+ with does_not_warn(FutureWarning):
1367
+ axes = plot_ecdf(data, cdf=dist.cdf, ci_prob=0.9)
1368
+ with pytest.warns(FutureWarning):
1369
+ axes = plot_ecdf(data, cdf=dist.cdf, confidence_bands=True, fpr=0.1)
1370
+ assert axes is not None
1371
+
1372
+ # pointwise is deprecated
1373
+ with does_not_warn(FutureWarning):
1374
+ axes = plot_ecdf(data, cdf=dist.cdf, confidence_bands="pointwise")
1375
+ with pytest.warns(FutureWarning):
1376
+ axes = plot_ecdf(data, cdf=dist.cdf, confidence_bands=True, pointwise=True)
1377
+
1378
+
1289
1379
  @pytest.mark.parametrize(
1290
1380
  "kwargs",
1291
1381
  [
@@ -127,6 +127,18 @@ def test_choice_bad_values(param):
127
127
  rcParams[param] = "bad_value"
128
128
 
129
129
 
130
+ @pytest.mark.parametrize("args", [("stats.hdi_prob", "stats.ci_prob", 0.7, 0.7)])
131
+ def test_deprecated_param(args):
132
+ """Test value and warning message correctly set for deprecated rcparams."""
133
+ param_old, param_new, val_old, val_new = args
134
+ assert param_new in rcParams
135
+ assert not np.isclose(rcParams[param_new], val_new)
136
+ msg = f"{param_old} is deprecated since .*, use {param_new} instead"
137
+ with pytest.warns(FutureWarning, match=msg):
138
+ with rc_context(rc={param_old: val_old}):
139
+ assert np.isclose(rcParams[param_new], val_new)
140
+
141
+
130
142
  @pytest.mark.parametrize("allow_none", (True, False))
131
143
  @pytest.mark.parametrize("typeof", (str, int))
132
144
  @pytest.mark.parametrize("args", [("not one", 10), (False, None), (False, 4)])
@@ -179,7 +179,7 @@ def test_compare_same(centered_eight, multidim_models, method, multidim):
179
179
  else:
180
180
  data_dict = {"first": centered_eight, "second": centered_eight}
181
181
 
182
- weight = compare(data_dict, method=method)["weight"]
182
+ weight = compare(data_dict, method=method)["weight"].to_numpy()
183
183
  assert_allclose(weight[0], weight[1])
184
184
  assert_allclose(np.sum(weight), 1.0)
185
185
 
@@ -1,6 +1,4 @@
1
1
  # pylint: disable=redefined-outer-name, no-member
2
- import importlib
3
-
4
2
  import numpy as np
5
3
  import pytest
6
4
 
@@ -9,15 +7,12 @@ from ...stats import r2_score, summary
9
7
  from ...utils import Numba
10
8
  from ..helpers import ( # pylint: disable=unused-import
11
9
  check_multiple_attrs,
10
+ importorskip,
12
11
  multidim_models,
13
- running_on_ci,
14
12
  )
15
13
  from .test_stats import centered_eight, non_centered_eight # pylint: disable=unused-import
16
14
 
17
- pytestmark = pytest.mark.skipif( # pylint: disable=invalid-name
18
- (importlib.util.find_spec("numba") is None) and not running_on_ci(),
19
- reason="test requires numba which is not installed",
20
- )
15
+ numba = importorskip("numba")
21
16
 
22
17
  rcParams["data.load"] = "eager"
23
18
 
@@ -8,13 +8,10 @@ import pytest
8
8
 
9
9
  from ...stats.stats_utils import stats_variance_2d as svar
10
10
  from ...utils import Numba, _numba_var, numba_check
11
- from ..helpers import running_on_ci
11
+ from ..helpers import importorskip
12
12
  from .test_utils import utils_with_numba_import_fail # pylint: disable=unused-import
13
13
 
14
- pytestmark = pytest.mark.skipif( # pylint: disable=invalid-name
15
- (importlib.util.find_spec("numba") is None) and not running_on_ci(),
16
- reason="test requires numba which is not installed",
17
- )
14
+ importorskip("numba")
18
15
 
19
16
 
20
17
  def test_utils_fixture(utils_with_numba_import_fail):
@@ -1,6 +1,7 @@
1
1
  # pylint: disable=no-member, invalid-name, redefined-outer-name, too-many-function-args
2
2
  import importlib
3
3
  from collections import OrderedDict
4
+ import os
4
5
 
5
6
  import numpy as np
6
7
  import pytest
@@ -16,19 +17,18 @@ from ..helpers import ( # pylint: disable=unused-import
16
17
  importorskip,
17
18
  load_cached_models,
18
19
  pystan_version,
19
- running_on_ci,
20
20
  )
21
21
 
22
22
  # Check if either pystan or pystan3 is installed
23
23
  pystan_installed = (importlib.util.find_spec("pystan") is not None) or (
24
24
  importlib.util.find_spec("stan") is not None
25
25
  )
26
- pytestmark = pytest.mark.skipif(
27
- not (pystan_installed | running_on_ci()),
28
- reason="test requires pystan/pystan3 which is not installed",
29
- )
30
26
 
31
27
 
28
+ @pytest.mark.skipif(
29
+ not (pystan_installed or "ARVIZ_REQUIRE_ALL_DEPS" in os.environ),
30
+ reason="test requires pystan/pystan3 which is not installed",
31
+ )
32
32
  class TestDataPyStan:
33
33
  @pytest.fixture(scope="class")
34
34
  def data(self, eight_schools_params, draws, chains):
arviz/tests/helpers.py CHANGED
@@ -6,6 +6,8 @@ import logging
6
6
  import os
7
7
  import sys
8
8
  from typing import Any, Dict, List, Optional, Tuple, Union
9
+ import warnings
10
+ from contextlib import contextmanager
9
11
 
10
12
  import cloudpickle
11
13
  import numpy as np
@@ -29,6 +31,18 @@ class RandomVariableTestClass:
29
31
  return self.name
30
32
 
31
33
 
34
+ @contextmanager
35
+ def does_not_warn(warning=Warning):
36
+ with warnings.catch_warnings(record=True) as caught_warnings:
37
+ warnings.simplefilter("always")
38
+ yield
39
+ for w in caught_warnings:
40
+ if issubclass(w.category, warning):
41
+ raise AssertionError(
42
+ f"Expected no {warning.__name__} but caught warning with message: {w.message}"
43
+ )
44
+
45
+
32
46
  @pytest.fixture(scope="module")
33
47
  def eight_schools_params():
34
48
  """Share setup for eight schools."""
@@ -620,11 +634,6 @@ def test_precompile_models(eight_schools_params, draws, chains):
620
634
  load_cached_models(eight_schools_params, draws, chains)
621
635
 
622
636
 
623
- def running_on_ci() -> bool:
624
- """Return True if running on CI machine."""
625
- return os.environ.get("ARVIZ_CI_MACHINE") is not None
626
-
627
-
628
637
  def importorskip(
629
638
  modname: str, minversion: Optional[str] = None, reason: Optional[str] = None
630
639
  ) -> Any:
@@ -643,11 +652,10 @@ def importorskip(
643
652
  Example::
644
653
  docutils = pytest.importorskip("docutils")
645
654
  """
646
- # ARVIZ_CI_MACHINE is True if tests run on CI, where ARVIZ_CI_MACHINE env variable exists
647
- ARVIZ_CI_MACHINE = running_on_ci()
648
- if not ARVIZ_CI_MACHINE:
655
+ # Unless ARVIZ_REQUIRE_ALL_DEPS is defined, tests that require a missing dependency are skipped
656
+ # if set, missing optional dependencies trigger failed tests.
657
+ if "ARVIZ_REQUIRE_ALL_DEPS" not in os.environ:
649
658
  return pytest.importorskip(modname=modname, minversion=minversion, reason=reason)
650
- import warnings
651
659
 
652
660
  compile(modname, "", "eval") # to catch syntaxerrors
653
661
 
arviz/utils.py CHANGED
@@ -17,6 +17,10 @@ from .rcparams import rcParams
17
17
  STATIC_FILES = ("static/html/icons-svg-inline.html", "static/css/style.css")
18
18
 
19
19
 
20
+ class BehaviourChangeWarning(Warning):
21
+ """Custom warning to ease filtering it."""
22
+
23
+
20
24
  def _check_tilde_start(x):
21
25
  return bool(isinstance(x, str) and x.startswith("~"))
22
26
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: arviz
3
- Version: 0.18.0
3
+ Version: 0.19.0
4
4
  Summary: Exploratory analysis of Bayesian models
5
5
  Home-page: http://github.com/arviz-devs/arviz
6
6
  Author: ArviZ Developers
@@ -23,7 +23,7 @@ Description-Content-Type: text/markdown
23
23
  License-File: LICENSE
24
24
  Requires-Dist: setuptools >=60.0.0
25
25
  Requires-Dist: matplotlib >=3.5
26
- Requires-Dist: numpy <2.0,>=1.23.0
26
+ Requires-Dist: numpy >=1.23.0
27
27
  Requires-Dist: scipy >=1.9.0
28
28
  Requires-Dist: packaging
29
29
  Requires-Dist: pandas >=1.5.0
@@ -35,12 +35,16 @@ Requires-Dist: xarray-einstats >=0.3
35
35
  Provides-Extra: all
36
36
  Requires-Dist: numba ; extra == 'all'
37
37
  Requires-Dist: netcdf4 ; extra == 'all'
38
- Requires-Dist: bokeh <3.0,>=1.4.0 ; extra == 'all'
38
+ Requires-Dist: bokeh >=3 ; extra == 'all'
39
39
  Requires-Dist: contourpy ; extra == 'all'
40
40
  Requires-Dist: ujson ; extra == 'all'
41
41
  Requires-Dist: dask[distributed] ; extra == 'all'
42
- Requires-Dist: zarr >=2.5.0 ; extra == 'all'
42
+ Requires-Dist: zarr <3,>=2.5.0 ; extra == 'all'
43
43
  Requires-Dist: xarray-datatree ; extra == 'all'
44
+ Provides-Extra: preview
45
+ Requires-Dist: arviz-base[h5netcdf] ; extra == 'preview'
46
+ Requires-Dist: arviz-stats[xarray] ; extra == 'preview'
47
+ Requires-Dist: arviz-plots ; extra == 'preview'
44
48
 
45
49
  <img src="https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ.png#gh-light-mode-only" width=200></img>
46
50
  <img src="https://raw.githubusercontent.com/arviz-devs/arviz-project/main/arviz_logos/ArviZ_white.png#gh-dark-mode-only" width=200></img>
@@ -1,23 +1,24 @@
1
- arviz/__init__.py,sha256=RonvewMTummPp8kbFl2F7_ThadjAr1W6xdbBpi-9bko,10375
1
+ arviz/__init__.py,sha256=kcqBQn8wiV7gkzQvnJTezqtgI1IqPWYylkiz6Uvg9YQ,10397
2
2
  arviz/labels.py,sha256=w4-t0qdJzjKrqRyhzbtk6ucoMIAxle1HpHYlH7up06Q,6828
3
+ arviz/preview.py,sha256=5HwHycvbSAkWsAEYHBfd3Crwmeq8T06ysSgB528iQnA,375
3
4
  arviz/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- arviz/rcparams.py,sha256=dcAnWsKiVjnbbHklWczg9tIKecr-qEPB2kfVORZkJJ0,20149
5
+ arviz/rcparams.py,sha256=lQnBprbDihEcsP5FujoJetGna4T8nc20JnuVf1Wn-1k,21031
5
6
  arviz/sel_utils.py,sha256=xvAYENhGXDTrhaT4Itlk1SJQUUGZ6BGcR04fPFgvzdM,6951
6
- arviz/utils.py,sha256=Yuiq0ccCHc93cYFFjZlOuVUUV1X0CY5jF19BJwckDhM,26337
7
+ arviz/utils.py,sha256=sOUIkqmWtwY3PM-rQpN6arW9MsPt-MfvzdwAe78rT8U,26425
7
8
  arviz/data/__init__.py,sha256=SG2umdZ8uVNYKVBoVYPy5tNxJnzLdyw0spPMjMTae5k,1558
8
9
  arviz/data/base.py,sha256=7GhA20dlU2t4J2VfAPavfHT_ZyF_fU8gQMsvHnWed6g,21026
9
10
  arviz/data/converters.py,sha256=vyzQWlEnuBiCRQNiLe7sXWfE6po1USnMNChtJ0VG48A,7831
10
11
  arviz/data/datasets.py,sha256=wPi23KZI-w4HrhjmY1LUg0Rj0aJobSJ4WO3LBrjfZQc,5392
11
12
  arviz/data/inference_data.py,sha256=ZUR-GgxWJ-mGPr9PvhS2mKT5j0U6ZkhxsUIkJTJ4loY,92455
12
13
  arviz/data/io_beanmachine.py,sha256=QQVBD6rftvs6_kLIb4Vm1QzQ6BsS0J9DTrzw2Jj4ob8,3745
13
- arviz/data/io_cmdstan.py,sha256=ScwvigP3yxN0rSaZEC-CgXz9igaFYGOmBI-MB9-oq8w,38752
14
+ arviz/data/io_cmdstan.py,sha256=8YX9Nfkx4LqjfKms4s4GTOkOjZNelb6SukvRZRHY6iM,38994
14
15
  arviz/data/io_cmdstanpy.py,sha256=iSr8ciKBFoIa1tJGHEX-2JKkUJRyaTXzRXf-5mu8q5U,42991
15
16
  arviz/data/io_datatree.py,sha256=Ag_7LHAejqt0Zxbu350u8WBY44nGsFY7eyhKa0Wi7FE,502
16
17
  arviz/data/io_dict.py,sha256=HM4ke-NuopsPnIdU-UGMtppAnj3vcbkBti8eROpMRTs,17698
17
18
  arviz/data/io_emcee.py,sha256=zsJJqwlyXLN_TfI6hgKz97p4N30NYTVvQSrIIpiLmB0,11844
18
19
  arviz/data/io_json.py,sha256=lrSP_9abfUW_5E8TwnG4hsS5HNHzAHZQCJTynl_tXKY,1256
19
20
  arviz/data/io_netcdf.py,sha256=cCxVnXSCTzWP3SU7cM4SqBiRRK9txFOsm-MchzNUzM4,2336
20
- arviz/data/io_numpyro.py,sha256=pcxl0N_dstuBhUITOlpquWSxIBl5XzGyAUgsHFB3HrM,14236
21
+ arviz/data/io_numpyro.py,sha256=_U6owmsY5hrQU7C5NPw43s76Swmy_YqXw4UZYfZwzU4,14241
21
22
  arviz/data/io_pyjags.py,sha256=AG2ckAuygSxbjULVFQCJQSM72GnUoTMi3T94aQRJYKQ,13271
22
23
  arviz/data/io_pyro.py,sha256=JYywUGUU1Qil_ahLuDYhYFafQAKB-y1kIipXdfH_vnQ,12740
23
24
  arviz/data/io_pystan.py,sha256=nRTU6yujilQCKERxzN7LIVwZplfvFNb-Y9Jk9YVJQLk,41700
@@ -31,33 +32,33 @@ arviz/data/example_data/data/non_centered_eight.nc,sha256=r7kyd10HyJTTRQs4OlSCXP
31
32
  arviz/plots/__init__.py,sha256=atWhfLXHAD6zaTjbdWdTaJrPTNBl3XpcSCY4etgw_cY,1514
32
33
  arviz/plots/autocorrplot.py,sha256=f-rYtnZtxgOns5sIT6pdw-EdU74lAVmAeV9b6rKLsgw,5666
33
34
  arviz/plots/bfplot.py,sha256=s8bizLCkF5uZnz66UKmuUJs_AXuMVrgGObTa2ofUF-Q,5124
34
- arviz/plots/bpvplot.py,sha256=I_BGzg-hJQ-nApmGAG0CA68vnkYWZeBite9iUChBsTc,12100
35
+ arviz/plots/bpvplot.py,sha256=QR4znezjiSLMyMagvnJLb9Y1SIlT99gJ52o4FnX5tZg,12098
35
36
  arviz/plots/compareplot.py,sha256=DQ1ebXSHGnP9A5y5iABq6PB8hO7Pn_ZlUH0ujNY_dc8,6074
36
- arviz/plots/densityplot.py,sha256=gQkz2dWjePisRdSCXheR8LslxlJwIqydMie6XLV9lSQ,10896
37
+ arviz/plots/densityplot.py,sha256=6477ZljpBCcZRw0SUwcTO4FYjxqw_qYsJupWNo-jCok,10895
37
38
  arviz/plots/distcomparisonplot.py,sha256=gVNQUN0VX7hC527fcUk1oxtQRdIl5mrltU95c0Nra9k,7184
38
39
  arviz/plots/distplot.py,sha256=xWXOsN-pPBwhHrEjC6lbIJdn-17DtpMueSnj6YzWlX4,8472
39
- arviz/plots/dotplot.py,sha256=muaDPDxQgLexHlqMT1lNRVSEj9HxZ4DBSizJuSWxjdY,7738
40
- arviz/plots/ecdfplot.py,sha256=GpIpKLCF-ugWNlR_-6jX0ljcos1DBZourMTgX3Zx3Hg,8719
40
+ arviz/plots/dotplot.py,sha256=9HTMeT1ZuZ4Vauxvg4TjsvvNnwORG8WWO2HistJwHiU,7736
41
+ arviz/plots/ecdfplot.py,sha256=BkukbyDUGMCW72b9ZFBCK9zrkavgGHwkcxRv76kQrzk,12734
41
42
  arviz/plots/elpdplot.py,sha256=NKqPkwTj9BWDzwMnG0cPeLmYBGMX_meP9F6bqvTwLKY,6433
42
43
  arviz/plots/energyplot.py,sha256=znEDPYpWaTIX0XpdVoyhXOITJ4A8BYkI9t1TVhJq4Qo,4797
43
- arviz/plots/essplot.py,sha256=hVfzojpfKgmCXAAiRl8835G48q6uUTDmkwY0ZOLesMw,11739
44
- arviz/plots/forestplot.py,sha256=GA4odvgYwK_5bjQopSkO3gOkPXiq7iWxaWLtJyuJzg8,11897
45
- arviz/plots/hdiplot.py,sha256=-lnvIV2hrginHNpGANAFgVkv5oXukD9Fu-FGRPOjmxs,7591
44
+ arviz/plots/essplot.py,sha256=ch0DjUQDILk4ohpSUR-9VHejGFb6Xmelly-qa-fKb9E,11741
45
+ arviz/plots/forestplot.py,sha256=WRgW6pg1kO4xrd412qKgbY8QAaFyALfJsNzmQIXMwTc,11896
46
+ arviz/plots/hdiplot.py,sha256=cNj2r0dPxtquZNoChgjFO-wmqgU-W-dq_ed1kWJ2vHI,7589
46
47
  arviz/plots/kdeplot.py,sha256=eQze22vHcZdjJT_Z6P8IJweNMWJMXRM6Ei5S4vx0m54,11749
47
- arviz/plots/khatplot.py,sha256=KzXE3P14Nu_rVkZKQ6_kOPhNtEUeeRDlxiYkLUbzkVY,7566
48
+ arviz/plots/khatplot.py,sha256=u03gmBG1xwxG07ASLZEJB-GsRhRHtUCtbglpC1N0aIg,8086
48
49
  arviz/plots/lmplot.py,sha256=LxR7RXkaAi5J8076isebVrtdk6UwbcTRekEymM9S6cY,11726
49
- arviz/plots/loopitplot.py,sha256=S14E3m9O8sIWwZrDlPzX4sFOABsP7uYNrkXOG-4c-XA,8322
50
- arviz/plots/mcseplot.py,sha256=BeeCJ4n5qjgy5aFF9u0V9CvLEUElTskzH-bijEj_ZJU,6711
50
+ arviz/plots/loopitplot.py,sha256=bFUO_Fy4z6u6E39GdaF4rIvc-COWNwF4A0n2kcmZBfA,8321
51
+ arviz/plots/mcseplot.py,sha256=rsiz4E9M9p58YetAaF75gbenGIj4M0hapWnh9UJOXzY,6829
51
52
  arviz/plots/pairplot.py,sha256=yVxyLC7ms0SKpTunifacUyOblH8BW9CsQqE2Hv0ARP4,10407
52
53
  arviz/plots/parallelplot.py,sha256=ZBEsHvnlmSXLRpSwP-KUwzgWBC2S4siKXFGJnLf7uAE,7125
53
- arviz/plots/plot_utils.py,sha256=_ZwahbAqilsdn-q9KQxo-RnMSdLHol87Q8uiX7yapmE,18283
54
- arviz/plots/posteriorplot.py,sha256=3gnKseBHT3jL2UBVBK0W5u-VeimQ1q8XO3MiXHKwgHc,10953
54
+ arviz/plots/plot_utils.py,sha256=mawuYnwb9AfdLQ9HAerTOGT9iKNjXrQraXvtDd9tFco,18243
55
+ arviz/plots/posteriorplot.py,sha256=pC-5SQZOGq1F4opM_sQLxn4ZG2we4Y9ULV8yhxjGVdo,10952
55
56
  arviz/plots/ppcplot.py,sha256=UPTtXDWHf3wFAb-apNPGcz8qw9CQwINGml_2YkYI-iM,13967
56
- arviz/plots/rankplot.py,sha256=OcMUFH8jyEy1K9yk95c4CIchpYv2mVo2RcCWHad4EbE,8662
57
+ arviz/plots/rankplot.py,sha256=lz0swHs6EBe-gXn4udP1Um3RS-EatsOAmguYqGMlIjU,8648
57
58
  arviz/plots/separationplot.py,sha256=Fx_QVeFUcF45fm7nn06pt0qubOzvH8QMU1cw5RLyaik,5491
58
59
  arviz/plots/traceplot.py,sha256=dwcF7rsjMAIxZ_LPv7Z8os01uQZHXTkDFWEBtsbzI9k,10216
59
60
  arviz/plots/tsplot.py,sha256=haTyvfGX5fA8Zle9bzllybG5n307BUJIxGywNAnOsU0,15925
60
- arviz/plots/violinplot.py,sha256=4k6oXjWJURBqFSrSPLDpNgtJ0rka_PW9iR2DGa-p53E,7130
61
+ arviz/plots/violinplot.py,sha256=yxoEMGTIt4CDinZaNHPYI5MqFvXB2J2gyKdKJ47PKdk,7129
61
62
  arviz/plots/backends/__init__.py,sha256=LZxXo7ogt7ZVrdUea0xkxpx5YV0wpV20MHwdItgk3oU,7752
62
63
  arviz/plots/backends/bokeh/__init__.py,sha256=e2wfZNdGTFU5GjsLokCLpknweaNgjZ5v3k7NB0gry6g,4877
63
64
  arviz/plots/backends/bokeh/autocorrplot.py,sha256=9CruVndfMnqsi4waav7Gcr7pn0nmUB0mkJxkzOjtGtw,2463
@@ -68,18 +69,18 @@ arviz/plots/backends/bokeh/densityplot.py,sha256=TQ5OkHHnihT1NBa4vtt6wJUsll_K3xa
68
69
  arviz/plots/backends/bokeh/distcomparisonplot.py,sha256=o8FHMb1ZzKPpt7fXhwBr6HGhqpclO1Qk9o6aTGypgv0,431
69
70
  arviz/plots/backends/bokeh/distplot.py,sha256=a2yY4waIPdwGhDpUtYi87Ra-TJiAA67oQumIiU-nXiA,4851
70
71
  arviz/plots/backends/bokeh/dotplot.py,sha256=qy8B4QL6B_ZfoVtDDA6c7HcsQofQLlE1tTnkcJO1mPA,2828
71
- arviz/plots/backends/bokeh/ecdfplot.py,sha256=IEwvIaXQACgxomUmmX8Nj8QebTplgTK02FsXy0i34qI,1699
72
+ arviz/plots/backends/bokeh/ecdfplot.py,sha256=Zrinhu6ViG3BbClxnRFZ_zIZm7S1nARiydHi-l1_i-g,1680
72
73
  arviz/plots/backends/bokeh/elpdplot.py,sha256=5bn_rH1Aixm0--BArAP4m4kuZMjWxR8ox-8T-xK_GMY,6487
73
74
  arviz/plots/backends/bokeh/energyplot.py,sha256=FKPYRaWwM32Vw0AHE0MIWBn9wZQeoYdP_YpYZGijIq0,4571
74
75
  arviz/plots/backends/bokeh/essplot.py,sha256=zghMEYUH3bAljqNt72-dRa8IFom27F7dMklHNQOrzBM,5494
75
76
  arviz/plots/backends/bokeh/forestplot.py,sha256=DIoGzSIAMA9vmKwpoNxVoNKFpDBwpfjdGd6KTl9u_OY,27219
76
77
  arviz/plots/backends/bokeh/hdiplot.py,sha256=bAhTPi9D7cw2ytSvjSIRD3g-PqpB9OFwusrQAnmKCYY,1538
77
78
  arviz/plots/backends/bokeh/kdeplot.py,sha256=nKEgJfnP7NK2Y2cipF_RglEC6GpowaagH5wZP3iZq-U,9329
78
- arviz/plots/backends/bokeh/khatplot.py,sha256=FGQJi7Uw1QlNXAMDgRcoh8UDyDGSXxhoRxVgwl_-Cu8,4542
79
+ arviz/plots/backends/bokeh/khatplot.py,sha256=J5m9vugSzpi9sE-T_2PRzI8pA100Hf8rUMhpmkTP8n4,4599
79
80
  arviz/plots/backends/bokeh/lmplot.py,sha256=kqfkQ1HAahi_XwkWxrub73zPM_4dXEFvKAd0TFKsoXQ,5392
80
81
  arviz/plots/backends/bokeh/loopitplot.py,sha256=FWjcsSWGJNy4wM63_N2qpg5oECb3Cq-uLy3xDS5x6j4,7172
81
82
  arviz/plots/backends/bokeh/mcseplot.py,sha256=teyAG-A4vIHor_Qr4iB3l5nLJ--EzvPvw1x44hUOVSI,5924
82
- arviz/plots/backends/bokeh/pairplot.py,sha256=l82Fu4Siomw17b5bj5yaLQGZ4UNp24RfwJ2OgKSIKXg,13226
83
+ arviz/plots/backends/bokeh/pairplot.py,sha256=2sByGaDuDT_ebyhPLIP3jRO1i43DLVDTPKWCpjd9MXc,13146
83
84
  arviz/plots/backends/bokeh/parallelplot.py,sha256=SNChOLWvcKxXuuJsIfWs9CNj7qDuVb95UZyp4CP1BQE,2230
84
85
  arviz/plots/backends/bokeh/posteriorplot.py,sha256=yBAlGo3lQpFBVro724eZtKnOHgVkY7LXupa-8_VtE7c,9380
85
86
  arviz/plots/backends/bokeh/ppcplot.py,sha256=mfDzTXxJU26CcK8ZKno3Y_yK_y3VYeUT3vaJqUoGEq4,13269
@@ -96,14 +97,14 @@ arviz/plots/backends/matplotlib/densityplot.py,sha256=zlqzYvH3VXWPiiIvL--fxtMp3h
96
97
  arviz/plots/backends/matplotlib/distcomparisonplot.py,sha256=XZY2jITNKtcIMsg5tl_lzuwI-2DcdUdCWqrK7bsdvWE,3568
97
98
  arviz/plots/backends/matplotlib/distplot.py,sha256=V0CeyAPah5RzHXW9I5tssVXlZgj2NHPkg-k15ayEdVw,4581
98
99
  arviz/plots/backends/matplotlib/dotplot.py,sha256=WHrf_lpEKaJlTPKKZzkQrXzIy_ngxjOGUulInIQBI_M,2934
99
- arviz/plots/backends/matplotlib/ecdfplot.py,sha256=jYVT-4GCQXJKTLwLr2Xq3dN2TL_A9Gw2OK2A9mRxUi0,1753
100
+ arviz/plots/backends/matplotlib/ecdfplot.py,sha256=yX46D9bjhBTX-XFH2QVUZoHpSHcs_Pb9Mm6P4jwVEB8,1734
100
101
  arviz/plots/backends/matplotlib/elpdplot.py,sha256=LAB3PqxbWgvnyr-CIOFSO6egosCtYZmKsmCelFaNywY,6682
101
102
  arviz/plots/backends/matplotlib/energyplot.py,sha256=VDM8aZQ-SZzcZB9cv4EU0zQFk1L2JEJXL246mVALIwo,3317
102
103
  arviz/plots/backends/matplotlib/essplot.py,sha256=C5RH8MNIOGpCPKHUsGfZ03aQ3CaXI8xOLw6vDv6fSbE,6448
103
104
  arviz/plots/backends/matplotlib/forestplot.py,sha256=TWmJqmoH8Rn2bc-g3Tx1QTb_RIfNUKN5PxPFRnF3flA,23228
104
105
  arviz/plots/backends/matplotlib/hdiplot.py,sha256=7KawWKFahxILp0dxodkhRni9oJMCkulLhLhRD9qoH60,1521
105
106
  arviz/plots/backends/matplotlib/kdeplot.py,sha256=wsTBABG3MLkMAoAzu22otJdXCVzUnUu3McIt9_Hjldc,5323
106
- arviz/plots/backends/matplotlib/khatplot.py,sha256=qzejxGITeXdPmKyjvLeuBHXqgsZ2AH4Ds44ReArlsPQ,7381
107
+ arviz/plots/backends/matplotlib/khatplot.py,sha256=JajJXlDXJce1DvB0Eh7ueB4N6ZkqKHgLaGhck8EsaXs,7437
107
108
  arviz/plots/backends/matplotlib/lmplot.py,sha256=EeXiqQhfQBaKAhmzRMLLV5gNGELo_QPZ24MkGnDWUfM,5288
108
109
  arviz/plots/backends/matplotlib/loopitplot.py,sha256=glK-BP4NftmdZEK5sB7kM8SzoGWsDnBdDVDzV-fDdCg,4632
109
110
  arviz/plots/backends/matplotlib/mcseplot.py,sha256=kGuRHRnyQKZPxoiHp8S30RzK7qbL83AaFGbn7BNVOZo,5810
@@ -113,7 +114,7 @@ arviz/plots/backends/matplotlib/posteriorplot.py,sha256=dUJfGYWYv5Lzlbz9Tr5d9vir
113
114
  arviz/plots/backends/matplotlib/ppcplot.py,sha256=3kPTVEUsGpMyr_P5OKgfAu_NHZNmdJWXvCmfhIlNieE,16134
114
115
  arviz/plots/backends/matplotlib/rankplot.py,sha256=KU2EakKNv2oOr5zuNsM0dHLazyzBEbf_D95SBQhfnUA,3610
115
116
  arviz/plots/backends/matplotlib/separationplot.py,sha256=Yfc-9cgEif-Tb4piGuzJavDYu63x8HvdnZ4dYEzeqxQ,2352
116
- arviz/plots/backends/matplotlib/traceplot.py,sha256=EpRY7iHd9-SBiyDGqdGIxULXIVPcOkPxZ5C3b1z26j0,18882
117
+ arviz/plots/backends/matplotlib/traceplot.py,sha256=ajAu1NSXZ7YX34cZkkTs3clMGzjs3AxKJywSnXvGTds,18882
117
118
  arviz/plots/backends/matplotlib/tsplot.py,sha256=1iD5xcV3pAskAQz2ulLgYKFb6PdGpPKCAnLN_FPwO-8,4033
118
119
  arviz/plots/backends/matplotlib/violinplot.py,sha256=Cm2jCLbrHOIV0mu1_v2on8Qt7HhN8w2CMgus4qEpErU,4253
119
120
  arviz/plots/styles/arviz-bluish.mplstyle,sha256=v4b3UX15ufQCWbAW3aflE9jE0w1T_PbYmc-f8QRJsKQ,95
@@ -137,31 +138,31 @@ arviz/static/css/style.css,sha256=wcC7rvCT4E6TycEiw7YqxwyaaZ4tTRDGqMkYYjAqrao,59
137
138
  arviz/static/html/icons-svg-inline.html,sha256=t-ChbtS1Gv8uZxc31DCJS8SuXDsLGUHoKgwv8zu6j2M,1343
138
139
  arviz/stats/__init__.py,sha256=jWXBXngHmYFy8m_3QJKYRvLszI4L5Q1aIBS79PC9Gms,700
139
140
  arviz/stats/density_utils.py,sha256=WCEkXCQsaycY_usA6xkorhIqr3_5ru7wgwE9eJJgdH8,32216
140
- arviz/stats/diagnostics.py,sha256=8gxVBCgpbf0zfKIowUWY2UGF5v6r52xaQwFqpH375Vk,32282
141
- arviz/stats/ecdf_utils.py,sha256=od6qAzLRd-aU9dZALaUoO5uulkZiRcKKjZIF_y9bVIA,6357
142
- arviz/stats/stats.py,sha256=tpidbgyqBmMJn9dZVDmwxFPr7u63k73dtwIJu_jZKHg,86042
141
+ arviz/stats/diagnostics.py,sha256=qGIrq258E0vl_tJwZSCvmp0dbQxvysrdJ8zzIsaK50A,32501
142
+ arviz/stats/ecdf_utils.py,sha256=nQJAhX8BgAsY4c3aKBC1Et3mspXoei9Pc0hKblVfmgk,6252
143
+ arviz/stats/stats.py,sha256=aatvU_KqAwXTlZVCW0-JiJGf17OurkYqUrFjOmwk4Fw,86478
143
144
  arviz/stats/stats_refitting.py,sha256=trbPC7LCnsb-n5D6g7J0bzXJCPfcDukJDniB4ud1z9E,5415
144
- arviz/stats/stats_utils.py,sha256=l-7aXSvACteiI--hYUp0KIDByTnms7g3va9NbrQUWYE,20047
145
+ arviz/stats/stats_utils.py,sha256=XG8ILPVs8Jbh_v7jzLfwMkm2HraT2j2-Hxe_kEYlLjQ,20076
145
146
  arviz/tests/__init__.py,sha256=TiS6C1IzwAXmNa8u36Y2xzL1CTTZm2PwzAtmZgoqepE,18
146
147
  arviz/tests/conftest.py,sha256=6U9WpKmYf38EVRoFZNBpV0CunQvESBFJG2SJ8IBEkL4,1270
147
- arviz/tests/helpers.py,sha256=6tzVBM04CO7or8MrgARmmxTumbbWFqnMBtPhRDGj05E,23222
148
+ arviz/tests/helpers.py,sha256=qhsOhLtfyz-dC2yuT6ug0frYZlbims06BljJuEVDP6E,23593
148
149
  arviz/tests/base_tests/__init__.py,sha256=zg7V5_0DZrCz7ozETqET6bUpAvUUmmkSoLpJLwaIj2E,23
149
- arviz/tests/base_tests/test_data.py,sha256=voUVeCwjcqEaj17MQeHidMu7LDJR4Z5RuaFIGxsBr7w,63037
150
- arviz/tests/base_tests/test_data_zarr.py,sha256=JuiiajnCGhq6_zQlSmi3GlujSaNKffzslJ2WNRMqkDA,5460
150
+ arviz/tests/base_tests/test_data.py,sha256=EZN1W81LH7GrbtYxulSVxFfKoE7Rfl0BxYD_PWnVJEg,63041
151
+ arviz/tests/base_tests/test_data_zarr.py,sha256=sPWnIQ7vPhN5Ql3Dq4JENuSwQV5IeignQjy9BAYe1_A,5441
151
152
  arviz/tests/base_tests/test_diagnostics.py,sha256=w8yT2WxelnxH-ynAN9lvspQTRR_UlDmnXIRMe7fus1c,20219
152
- arviz/tests/base_tests/test_diagnostics_numba.py,sha256=Mfs89mudLm2JMhcaddlxn6uQ2Q_TycJMXP0OiFxbKbo,3041
153
- arviz/tests/base_tests/test_helpers.py,sha256=89mcfra3MDFGzQCpIsVti3svnMAGTpJDiswRodJnYCM,657
153
+ arviz/tests/base_tests/test_diagnostics_numba.py,sha256=2G5O-7Hz66DSaHIZtjs2XL45RezYnXQZH6Dg2Ow-p4Q,2847
154
+ arviz/tests/base_tests/test_helpers.py,sha256=PogHpWCMBEtkuzKt9jGQ8uIPg0cLDwztXxOnPSPNyVE,669
154
155
  arviz/tests/base_tests/test_labels.py,sha256=X08vTMmcgXkYGbE2Qnu_UUDSTAIvSNKdnyqoWwmj008,1686
155
- arviz/tests/base_tests/test_plot_utils.py,sha256=sDLrQ3V83-6AcMNwMDCOAwT_flszLkFkBr5_Ss2LH1g,11836
156
+ arviz/tests/base_tests/test_plot_utils.py,sha256=lwDZYDNrlEOKP-asJv6qu3sH_4y-FiHcFlqnMTpZyhw,11771
156
157
  arviz/tests/base_tests/test_plots_bokeh.py,sha256=1JqUqLKUb1g4c4w41K3j_LCT4eqb3u1qGnYbUuJMHPE,39148
157
- arviz/tests/base_tests/test_plots_matplotlib.py,sha256=qFJcrbrlsHbNl6Tw0w1uBZPOXT4H8wss945hfLXKDyY,62251
158
- arviz/tests/base_tests/test_rcparams.py,sha256=guOXHGCa5SmCrqELMT179w41GRD3B67wmbH47cPzYD0,10283
159
- arviz/tests/base_tests/test_stats.py,sha256=o-OoIb0XL5OcPpvCtfzu73NiWJHwu6XAhnvSKDXcXpM,32374
158
+ arviz/tests/base_tests/test_plots_matplotlib.py,sha256=CNIuR8wkz19MwDKJFnVSv0q7ljVNXGFb6zpHSXUeqy8,65620
159
+ arviz/tests/base_tests/test_rcparams.py,sha256=b9ueOXd9C0xiUIqgS0qnzvalHFgTFK7sUqL8UAzgJNs,10851
160
+ arviz/tests/base_tests/test_stats.py,sha256=uBrlHdwLQ9w9bP4Cq454qoZ754Xll1kYOpxEr2AwZF4,32385
160
161
  arviz/tests/base_tests/test_stats_ecdf_utils.py,sha256=_JIV1mJpG_VwQbRuorTN2nqBE4M8aiE8SIM65i9wTJk,5712
161
- arviz/tests/base_tests/test_stats_numba.py,sha256=B_IE9g9QuWO-AoZJnpjyIksQWLyXGV_nrhHDmQsmO6U,1768
162
+ arviz/tests/base_tests/test_stats_numba.py,sha256=wGXgNuSO_gwJajoYtXSgpIe88PcBRyIkRihxC8paR-o,1582
162
163
  arviz/tests/base_tests/test_stats_utils.py,sha256=Udkw8tODs8mLt3_hO3HgNczrU0n09IJrML2agXF-upQ,13864
163
164
  arviz/tests/base_tests/test_utils.py,sha256=Auggtvwv3Y9STS8Tbram-IQe5IhewkwFN14CTcjRd5M,12533
164
- arviz/tests/base_tests/test_utils_numba.py,sha256=7gbLkvGMIG9L30yLAutSKUU-P0YKjB6OlrAO1E6uDUY,3019
165
+ arviz/tests/base_tests/test_utils_numba.py,sha256=phV5engLS9Qe680UWfCn-5hzrh2PReiRrXwYKjMWt6U,2843
165
166
  arviz/tests/external_tests/__init__.py,sha256=W-G7ubGjIx9U2mudENOmdTrPiZ9XGrl5bge5rTbfAB4,26
166
167
  arviz/tests/external_tests/test_data_beanmachine.py,sha256=nwOJNJLrk5rY4M5YW-LT6gKsz1sFV-SMebXigMFHjhM,2647
167
168
  arviz/tests/external_tests/test_data_cmdstan.py,sha256=jHy-dZrY4M7F4uYWf71fOxVwfPxgRpM9E3JAvpk03qA,16829
@@ -170,13 +171,13 @@ arviz/tests/external_tests/test_data_emcee.py,sha256=w-tsP74-n688C9-v_KIf0YxZg7S
170
171
  arviz/tests/external_tests/test_data_numpyro.py,sha256=TB5IkxlU3pMsjIgnxyhQaCkRkPWaK_d_YHEcs7XaWNo,11366
171
172
  arviz/tests/external_tests/test_data_pyjags.py,sha256=kqZfV8QRnAngO9obnAq5lKPIuJdVJ82sbkIfSr2tpqY,4547
172
173
  arviz/tests/external_tests/test_data_pyro.py,sha256=EaD_hZGALaSKQKK4OFgmuJ_1SsIYKessHQ7Jl9AKbw0,10771
173
- arviz/tests/external_tests/test_data_pystan.py,sha256=gtNp-l4ooeE3draJyn5dayF-gXoRvZOUmY56tocuYfg,11789
174
+ arviz/tests/external_tests/test_data_pystan.py,sha256=ebg_JXkmAhXRllP0otjyourGF_fUaKMkwRfrQO6Glwk,11792
174
175
  arviz/wrappers/__init__.py,sha256=d8GTUuBW_30LyDyk6qn2MAnvg-GZCeUw_i5SUPqaa1w,354
175
176
  arviz/wrappers/base.py,sha256=Vvh330pdzIvBEaikHsDP1ej6L2jCZZ0Dqj5TvUbYesI,9134
176
177
  arviz/wrappers/wrap_pymc.py,sha256=ltKv55aG0WTWXVDJuff5TXkgJJ_ESLvlT-JPlh3yHAg,1143
177
178
  arviz/wrappers/wrap_stan.py,sha256=c40brlajoPcc3xk00xI9Hqc-y0xcbAmFAIZOtfXWeqo,5525
178
- arviz-0.18.0.dist-info/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
179
- arviz-0.18.0.dist-info/METADATA,sha256=UUKfx2eXV1ETVfHg8q_RVxt-Gu9fagf6At9MfsFAi_4,8681
180
- arviz-0.18.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
181
- arviz-0.18.0.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
182
- arviz-0.18.0.dist-info/RECORD,,
179
+ arviz-0.19.0.dist-info/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
180
+ arviz-0.19.0.dist-info/METADATA,sha256=RlTHf-9M8LbhsQmURXX457_quT83XS_2LN7kCW95-28,8855
181
+ arviz-0.19.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
182
+ arviz-0.19.0.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
183
+ arviz-0.19.0.dist-info/RECORD,,
File without changes