arviz 0.17.1__py3-none-any.whl → 0.18.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (116) hide show
  1. arviz/__init__.py +3 -2
  2. arviz/data/__init__.py +5 -2
  3. arviz/data/base.py +102 -11
  4. arviz/data/converters.py +5 -0
  5. arviz/data/datasets.py +1 -0
  6. arviz/data/example_data/data_remote.json +10 -3
  7. arviz/data/inference_data.py +20 -22
  8. arviz/data/io_cmdstan.py +1 -3
  9. arviz/data/io_datatree.py +1 -0
  10. arviz/data/io_dict.py +5 -3
  11. arviz/data/io_emcee.py +1 -0
  12. arviz/data/io_numpyro.py +1 -0
  13. arviz/data/io_pyjags.py +1 -0
  14. arviz/data/io_pyro.py +1 -0
  15. arviz/data/utils.py +1 -0
  16. arviz/plots/__init__.py +1 -0
  17. arviz/plots/autocorrplot.py +1 -0
  18. arviz/plots/backends/bokeh/autocorrplot.py +1 -0
  19. arviz/plots/backends/bokeh/bpvplot.py +1 -0
  20. arviz/plots/backends/bokeh/compareplot.py +1 -0
  21. arviz/plots/backends/bokeh/densityplot.py +1 -0
  22. arviz/plots/backends/bokeh/distplot.py +1 -0
  23. arviz/plots/backends/bokeh/dotplot.py +1 -0
  24. arviz/plots/backends/bokeh/ecdfplot.py +1 -0
  25. arviz/plots/backends/bokeh/elpdplot.py +1 -0
  26. arviz/plots/backends/bokeh/energyplot.py +1 -0
  27. arviz/plots/backends/bokeh/hdiplot.py +1 -0
  28. arviz/plots/backends/bokeh/kdeplot.py +3 -3
  29. arviz/plots/backends/bokeh/khatplot.py +1 -0
  30. arviz/plots/backends/bokeh/lmplot.py +1 -0
  31. arviz/plots/backends/bokeh/loopitplot.py +1 -0
  32. arviz/plots/backends/bokeh/mcseplot.py +1 -0
  33. arviz/plots/backends/bokeh/pairplot.py +1 -0
  34. arviz/plots/backends/bokeh/parallelplot.py +1 -0
  35. arviz/plots/backends/bokeh/posteriorplot.py +1 -0
  36. arviz/plots/backends/bokeh/ppcplot.py +1 -0
  37. arviz/plots/backends/bokeh/rankplot.py +1 -0
  38. arviz/plots/backends/bokeh/separationplot.py +1 -0
  39. arviz/plots/backends/bokeh/traceplot.py +1 -0
  40. arviz/plots/backends/bokeh/violinplot.py +1 -0
  41. arviz/plots/backends/matplotlib/autocorrplot.py +1 -0
  42. arviz/plots/backends/matplotlib/bpvplot.py +1 -0
  43. arviz/plots/backends/matplotlib/compareplot.py +1 -0
  44. arviz/plots/backends/matplotlib/densityplot.py +1 -0
  45. arviz/plots/backends/matplotlib/distcomparisonplot.py +2 -3
  46. arviz/plots/backends/matplotlib/distplot.py +1 -0
  47. arviz/plots/backends/matplotlib/dotplot.py +1 -0
  48. arviz/plots/backends/matplotlib/ecdfplot.py +1 -0
  49. arviz/plots/backends/matplotlib/elpdplot.py +1 -0
  50. arviz/plots/backends/matplotlib/energyplot.py +1 -0
  51. arviz/plots/backends/matplotlib/essplot.py +6 -5
  52. arviz/plots/backends/matplotlib/forestplot.py +1 -0
  53. arviz/plots/backends/matplotlib/hdiplot.py +1 -0
  54. arviz/plots/backends/matplotlib/kdeplot.py +5 -3
  55. arviz/plots/backends/matplotlib/khatplot.py +1 -0
  56. arviz/plots/backends/matplotlib/lmplot.py +1 -0
  57. arviz/plots/backends/matplotlib/loopitplot.py +1 -0
  58. arviz/plots/backends/matplotlib/mcseplot.py +11 -10
  59. arviz/plots/backends/matplotlib/pairplot.py +2 -1
  60. arviz/plots/backends/matplotlib/parallelplot.py +1 -0
  61. arviz/plots/backends/matplotlib/posteriorplot.py +1 -0
  62. arviz/plots/backends/matplotlib/ppcplot.py +1 -0
  63. arviz/plots/backends/matplotlib/rankplot.py +1 -0
  64. arviz/plots/backends/matplotlib/separationplot.py +1 -0
  65. arviz/plots/backends/matplotlib/traceplot.py +1 -0
  66. arviz/plots/backends/matplotlib/tsplot.py +1 -0
  67. arviz/plots/backends/matplotlib/violinplot.py +2 -1
  68. arviz/plots/bpvplot.py +1 -0
  69. arviz/plots/compareplot.py +1 -0
  70. arviz/plots/densityplot.py +1 -0
  71. arviz/plots/distcomparisonplot.py +1 -0
  72. arviz/plots/dotplot.py +1 -0
  73. arviz/plots/ecdfplot.py +1 -0
  74. arviz/plots/elpdplot.py +1 -0
  75. arviz/plots/energyplot.py +1 -0
  76. arviz/plots/essplot.py +1 -0
  77. arviz/plots/forestplot.py +1 -0
  78. arviz/plots/hdiplot.py +1 -0
  79. arviz/plots/khatplot.py +1 -0
  80. arviz/plots/lmplot.py +1 -0
  81. arviz/plots/loopitplot.py +1 -0
  82. arviz/plots/mcseplot.py +1 -0
  83. arviz/plots/pairplot.py +1 -0
  84. arviz/plots/parallelplot.py +1 -0
  85. arviz/plots/plot_utils.py +1 -0
  86. arviz/plots/posteriorplot.py +1 -0
  87. arviz/plots/ppcplot.py +1 -0
  88. arviz/plots/rankplot.py +1 -0
  89. arviz/plots/separationplot.py +1 -0
  90. arviz/plots/traceplot.py +1 -0
  91. arviz/plots/tsplot.py +1 -0
  92. arviz/plots/violinplot.py +1 -0
  93. arviz/rcparams.py +1 -0
  94. arviz/sel_utils.py +1 -0
  95. arviz/static/css/style.css +2 -1
  96. arviz/stats/density_utils.py +2 -1
  97. arviz/stats/diagnostics.py +2 -2
  98. arviz/stats/ecdf_utils.py +1 -0
  99. arviz/stats/stats_refitting.py +1 -0
  100. arviz/stats/stats_utils.py +5 -1
  101. arviz/tests/base_tests/test_data.py +14 -0
  102. arviz/tests/base_tests/test_diagnostics.py +1 -0
  103. arviz/tests/base_tests/test_diagnostics_numba.py +1 -0
  104. arviz/tests/base_tests/test_labels.py +1 -0
  105. arviz/tests/base_tests/test_plots_matplotlib.py +6 -5
  106. arviz/tests/base_tests/test_stats.py +4 -4
  107. arviz/tests/base_tests/test_stats_utils.py +1 -0
  108. arviz/tests/base_tests/test_utils.py +3 -2
  109. arviz/tests/helpers.py +1 -1
  110. arviz/wrappers/__init__.py +1 -0
  111. {arviz-0.17.1.dist-info → arviz-0.18.0.dist-info}/METADATA +7 -7
  112. arviz-0.18.0.dist-info/RECORD +182 -0
  113. arviz-0.17.1.dist-info/RECORD +0 -182
  114. {arviz-0.17.1.dist-info → arviz-0.18.0.dist-info}/LICENSE +0 -0
  115. {arviz-0.17.1.dist-info → arviz-0.18.0.dist-info}/WHEEL +0 -0
  116. {arviz-0.17.1.dist-info → arviz-0.18.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,5 @@
1
1
  """Tests use the default backend."""
2
+
2
3
  # pylint: disable=redefined-outer-name,too-many-lines
3
4
  import os
4
5
  from copy import deepcopy
@@ -54,7 +55,7 @@ from ..helpers import ( # pylint: disable=unused-import
54
55
  eight_schools_params,
55
56
  models,
56
57
  multidim_models,
57
- TestRandomVariable,
58
+ RandomVariableTestClass,
58
59
  )
59
60
 
60
61
  rcParams["data.load"] = "eager"
@@ -168,9 +169,9 @@ def test_plot_density_no_subset():
168
169
 
169
170
  def test_plot_density_nonstring_varnames():
170
171
  """Test plot_density works when variables are not strings."""
171
- rv1 = TestRandomVariable("a")
172
- rv2 = TestRandomVariable("b")
173
- rv3 = TestRandomVariable("c")
172
+ rv1 = RandomVariableTestClass("a")
173
+ rv2 = RandomVariableTestClass("b")
174
+ rv3 = RandomVariableTestClass("c")
174
175
  model_ab = from_dict(
175
176
  {
176
177
  rv1: np.random.normal(size=200),
@@ -752,7 +753,7 @@ def test_plot_ppc_transposed():
752
753
  )
753
754
  x, y = ax.get_lines()[2].get_data()
754
755
  assert not np.isclose(y[0], 0)
755
- assert np.all(np.array([40, 43, 10, 9]) == x)
756
+ assert np.all(np.array([47, 44, 15, 11]) == x)
756
757
 
757
758
 
758
759
  @pytest.mark.parametrize("kind", ["kde", "cumulative", "scatter"])
@@ -89,25 +89,25 @@ def test_hdi_idata(centered_eight):
89
89
  data = centered_eight.posterior
90
90
  result = hdi(data)
91
91
  assert isinstance(result, Dataset)
92
- assert dict(result.dims) == {"school": 8, "hdi": 2}
92
+ assert dict(result.sizes) == {"school": 8, "hdi": 2}
93
93
 
94
94
  result = hdi(data, input_core_dims=[["chain"]])
95
95
  assert isinstance(result, Dataset)
96
- assert result.dims == {"draw": 500, "hdi": 2, "school": 8}
96
+ assert result.sizes == {"draw": 500, "hdi": 2, "school": 8}
97
97
 
98
98
 
99
99
  def test_hdi_idata_varnames(centered_eight):
100
100
  data = centered_eight.posterior
101
101
  result = hdi(data, var_names=["mu", "theta"])
102
102
  assert isinstance(result, Dataset)
103
- assert result.dims == {"hdi": 2, "school": 8}
103
+ assert result.sizes == {"hdi": 2, "school": 8}
104
104
  assert list(result.data_vars.keys()) == ["mu", "theta"]
105
105
 
106
106
 
107
107
  def test_hdi_idata_group(centered_eight):
108
108
  result_posterior = hdi(centered_eight, group="posterior", var_names="mu")
109
109
  result_prior = hdi(centered_eight, group="prior", var_names="mu")
110
- assert result_prior.dims == {"hdi": 2}
110
+ assert result_prior.sizes == {"hdi": 2}
111
111
  range_posterior = result_posterior.mu.values[1] - result_posterior.mu.values[0]
112
112
  range_prior = result_prior.mu.values[1] - result_prior.mu.values[0]
113
113
  assert range_posterior < range_prior
@@ -1,4 +1,5 @@
1
1
  """Tests for stats_utils."""
2
+
2
3
  # pylint: disable=no-member
3
4
  import numpy as np
4
5
  import pytest
@@ -1,4 +1,5 @@
1
1
  """Tests for arviz.utils."""
2
+
2
3
  # pylint: disable=redefined-outer-name, no-member
3
4
  from unittest.mock import Mock
4
5
 
@@ -17,7 +18,7 @@ from ...utils import (
17
18
  one_de,
18
19
  two_de,
19
20
  )
20
- from ..helpers import TestRandomVariable
21
+ from ..helpers import RandomVariableTestClass
21
22
 
22
23
 
23
24
  @pytest.fixture(scope="session")
@@ -123,7 +124,7 @@ def test_var_names_filter(var_args):
123
124
 
124
125
  def test_nonstring_var_names():
125
126
  """Check that non-string variables are preserved"""
126
- mu = TestRandomVariable("mu")
127
+ mu = RandomVariableTestClass("mu")
127
128
  samples = np.random.randn(10)
128
129
  data = dict_to_dataset({mu: samples})
129
130
  assert _var_names([mu], data) == [mu]
arviz/tests/helpers.py CHANGED
@@ -18,7 +18,7 @@ from ..data import InferenceData, from_dict
18
18
  _log = logging.getLogger(__name__)
19
19
 
20
20
 
21
- class TestRandomVariable:
21
+ class RandomVariableTestClass:
22
22
  """Example class for random variables."""
23
23
 
24
24
  def __init__(self, name):
@@ -1,4 +1,5 @@
1
1
  """Sampling wrappers."""
2
+
2
3
  from .base import SamplingWrapper
3
4
  from .wrap_stan import PyStan2SamplingWrapper, PyStanSamplingWrapper, CmdStanPySamplingWrapper
4
5
  from .wrap_pymc import PyMCSamplingWrapper
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: arviz
3
- Version: 0.17.1
3
+ Version: 0.18.0
4
4
  Summary: Exploratory analysis of Bayesian models
5
5
  Home-page: http://github.com/arviz-devs/arviz
6
6
  Author: ArviZ Developers
@@ -12,23 +12,23 @@ Classifier: Intended Audience :: Education
12
12
  Classifier: License :: OSI Approved :: Apache Software License
13
13
  Classifier: Programming Language :: Python
14
14
  Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.9
16
15
  Classifier: Programming Language :: Python :: 3.10
17
16
  Classifier: Programming Language :: Python :: 3.11
18
17
  Classifier: Programming Language :: Python :: 3.12
19
18
  Classifier: Topic :: Scientific/Engineering
20
19
  Classifier: Topic :: Scientific/Engineering :: Visualization
21
20
  Classifier: Topic :: Scientific/Engineering :: Mathematics
22
- Requires-Python: >=3.9
21
+ Requires-Python: >=3.10
23
22
  Description-Content-Type: text/markdown
24
23
  License-File: LICENSE
25
24
  Requires-Dist: setuptools >=60.0.0
26
25
  Requires-Dist: matplotlib >=3.5
27
- Requires-Dist: numpy <2.0,>=1.22.0
28
- Requires-Dist: scipy >=1.8.0
26
+ Requires-Dist: numpy <2.0,>=1.23.0
27
+ Requires-Dist: scipy >=1.9.0
29
28
  Requires-Dist: packaging
30
- Requires-Dist: pandas >=1.4.0
31
- Requires-Dist: xarray >=0.21.0
29
+ Requires-Dist: pandas >=1.5.0
30
+ Requires-Dist: dm-tree >=0.1.8
31
+ Requires-Dist: xarray >=2022.6.0
32
32
  Requires-Dist: h5netcdf >=1.0.2
33
33
  Requires-Dist: typing-extensions >=4.1.0
34
34
  Requires-Dist: xarray-einstats >=0.3
@@ -0,0 +1,182 @@
1
+ arviz/__init__.py,sha256=RonvewMTummPp8kbFl2F7_ThadjAr1W6xdbBpi-9bko,10375
2
+ arviz/labels.py,sha256=w4-t0qdJzjKrqRyhzbtk6ucoMIAxle1HpHYlH7up06Q,6828
3
+ arviz/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ arviz/rcparams.py,sha256=dcAnWsKiVjnbbHklWczg9tIKecr-qEPB2kfVORZkJJ0,20149
5
+ arviz/sel_utils.py,sha256=xvAYENhGXDTrhaT4Itlk1SJQUUGZ6BGcR04fPFgvzdM,6951
6
+ arviz/utils.py,sha256=Yuiq0ccCHc93cYFFjZlOuVUUV1X0CY5jF19BJwckDhM,26337
7
+ arviz/data/__init__.py,sha256=SG2umdZ8uVNYKVBoVYPy5tNxJnzLdyw0spPMjMTae5k,1558
8
+ arviz/data/base.py,sha256=7GhA20dlU2t4J2VfAPavfHT_ZyF_fU8gQMsvHnWed6g,21026
9
+ arviz/data/converters.py,sha256=vyzQWlEnuBiCRQNiLe7sXWfE6po1USnMNChtJ0VG48A,7831
10
+ arviz/data/datasets.py,sha256=wPi23KZI-w4HrhjmY1LUg0Rj0aJobSJ4WO3LBrjfZQc,5392
11
+ arviz/data/inference_data.py,sha256=ZUR-GgxWJ-mGPr9PvhS2mKT5j0U6ZkhxsUIkJTJ4loY,92455
12
+ arviz/data/io_beanmachine.py,sha256=QQVBD6rftvs6_kLIb4Vm1QzQ6BsS0J9DTrzw2Jj4ob8,3745
13
+ arviz/data/io_cmdstan.py,sha256=ScwvigP3yxN0rSaZEC-CgXz9igaFYGOmBI-MB9-oq8w,38752
14
+ arviz/data/io_cmdstanpy.py,sha256=iSr8ciKBFoIa1tJGHEX-2JKkUJRyaTXzRXf-5mu8q5U,42991
15
+ arviz/data/io_datatree.py,sha256=Ag_7LHAejqt0Zxbu350u8WBY44nGsFY7eyhKa0Wi7FE,502
16
+ arviz/data/io_dict.py,sha256=HM4ke-NuopsPnIdU-UGMtppAnj3vcbkBti8eROpMRTs,17698
17
+ arviz/data/io_emcee.py,sha256=zsJJqwlyXLN_TfI6hgKz97p4N30NYTVvQSrIIpiLmB0,11844
18
+ arviz/data/io_json.py,sha256=lrSP_9abfUW_5E8TwnG4hsS5HNHzAHZQCJTynl_tXKY,1256
19
+ arviz/data/io_netcdf.py,sha256=cCxVnXSCTzWP3SU7cM4SqBiRRK9txFOsm-MchzNUzM4,2336
20
+ arviz/data/io_numpyro.py,sha256=pcxl0N_dstuBhUITOlpquWSxIBl5XzGyAUgsHFB3HrM,14236
21
+ arviz/data/io_pyjags.py,sha256=AG2ckAuygSxbjULVFQCJQSM72GnUoTMi3T94aQRJYKQ,13271
22
+ arviz/data/io_pyro.py,sha256=JYywUGUU1Qil_ahLuDYhYFafQAKB-y1kIipXdfH_vnQ,12740
23
+ arviz/data/io_pystan.py,sha256=nRTU6yujilQCKERxzN7LIVwZplfvFNb-Y9Jk9YVJQLk,41700
24
+ arviz/data/io_zarr.py,sha256=PeSBz-zHDzmwJq3sWzxASnjrfbd-hULJsl8FjK46YQQ,1163
25
+ arviz/data/utils.py,sha256=gw1AtkCgdPA9bJsI1UTRi1h5xxFxv8erKlU_S48Nff8,4770
26
+ arviz/data/example_data/data_local.json,sha256=8WwyEWriDDfcVT79GNQ412QDkSoOZF6FYJ7cbyGpONI,1088
27
+ arviz/data/example_data/data_remote.json,sha256=UNI3hyjcICG_MtpLxAicY04Y4mQf3M-kESxRWGl9kgw,5340
28
+ arviz/data/example_data/code/radon/radon.json,sha256=XwpiyGRrqkBP02zWz00s6z-d00Vv_vSqfx7ZLlb4lz0,24382
29
+ arviz/data/example_data/data/centered_eight.nc,sha256=jvw6uv4MeW65rqe2lJDU4kAKM8V1BO9JMuHHEFhJF28,654694
30
+ arviz/data/example_data/data/non_centered_eight.nc,sha256=r7kyd10HyJTTRQs4OlSCXPVt3T-nLsPd3g-bcPYnPmA,836647
31
+ arviz/plots/__init__.py,sha256=atWhfLXHAD6zaTjbdWdTaJrPTNBl3XpcSCY4etgw_cY,1514
32
+ arviz/plots/autocorrplot.py,sha256=f-rYtnZtxgOns5sIT6pdw-EdU74lAVmAeV9b6rKLsgw,5666
33
+ arviz/plots/bfplot.py,sha256=s8bizLCkF5uZnz66UKmuUJs_AXuMVrgGObTa2ofUF-Q,5124
34
+ arviz/plots/bpvplot.py,sha256=I_BGzg-hJQ-nApmGAG0CA68vnkYWZeBite9iUChBsTc,12100
35
+ arviz/plots/compareplot.py,sha256=DQ1ebXSHGnP9A5y5iABq6PB8hO7Pn_ZlUH0ujNY_dc8,6074
36
+ arviz/plots/densityplot.py,sha256=gQkz2dWjePisRdSCXheR8LslxlJwIqydMie6XLV9lSQ,10896
37
+ arviz/plots/distcomparisonplot.py,sha256=gVNQUN0VX7hC527fcUk1oxtQRdIl5mrltU95c0Nra9k,7184
38
+ arviz/plots/distplot.py,sha256=xWXOsN-pPBwhHrEjC6lbIJdn-17DtpMueSnj6YzWlX4,8472
39
+ arviz/plots/dotplot.py,sha256=muaDPDxQgLexHlqMT1lNRVSEj9HxZ4DBSizJuSWxjdY,7738
40
+ arviz/plots/ecdfplot.py,sha256=GpIpKLCF-ugWNlR_-6jX0ljcos1DBZourMTgX3Zx3Hg,8719
41
+ arviz/plots/elpdplot.py,sha256=NKqPkwTj9BWDzwMnG0cPeLmYBGMX_meP9F6bqvTwLKY,6433
42
+ arviz/plots/energyplot.py,sha256=znEDPYpWaTIX0XpdVoyhXOITJ4A8BYkI9t1TVhJq4Qo,4797
43
+ arviz/plots/essplot.py,sha256=hVfzojpfKgmCXAAiRl8835G48q6uUTDmkwY0ZOLesMw,11739
44
+ arviz/plots/forestplot.py,sha256=GA4odvgYwK_5bjQopSkO3gOkPXiq7iWxaWLtJyuJzg8,11897
45
+ arviz/plots/hdiplot.py,sha256=-lnvIV2hrginHNpGANAFgVkv5oXukD9Fu-FGRPOjmxs,7591
46
+ arviz/plots/kdeplot.py,sha256=eQze22vHcZdjJT_Z6P8IJweNMWJMXRM6Ei5S4vx0m54,11749
47
+ arviz/plots/khatplot.py,sha256=KzXE3P14Nu_rVkZKQ6_kOPhNtEUeeRDlxiYkLUbzkVY,7566
48
+ arviz/plots/lmplot.py,sha256=LxR7RXkaAi5J8076isebVrtdk6UwbcTRekEymM9S6cY,11726
49
+ arviz/plots/loopitplot.py,sha256=S14E3m9O8sIWwZrDlPzX4sFOABsP7uYNrkXOG-4c-XA,8322
50
+ arviz/plots/mcseplot.py,sha256=BeeCJ4n5qjgy5aFF9u0V9CvLEUElTskzH-bijEj_ZJU,6711
51
+ arviz/plots/pairplot.py,sha256=yVxyLC7ms0SKpTunifacUyOblH8BW9CsQqE2Hv0ARP4,10407
52
+ arviz/plots/parallelplot.py,sha256=ZBEsHvnlmSXLRpSwP-KUwzgWBC2S4siKXFGJnLf7uAE,7125
53
+ arviz/plots/plot_utils.py,sha256=_ZwahbAqilsdn-q9KQxo-RnMSdLHol87Q8uiX7yapmE,18283
54
+ arviz/plots/posteriorplot.py,sha256=3gnKseBHT3jL2UBVBK0W5u-VeimQ1q8XO3MiXHKwgHc,10953
55
+ arviz/plots/ppcplot.py,sha256=UPTtXDWHf3wFAb-apNPGcz8qw9CQwINGml_2YkYI-iM,13967
56
+ arviz/plots/rankplot.py,sha256=OcMUFH8jyEy1K9yk95c4CIchpYv2mVo2RcCWHad4EbE,8662
57
+ arviz/plots/separationplot.py,sha256=Fx_QVeFUcF45fm7nn06pt0qubOzvH8QMU1cw5RLyaik,5491
58
+ arviz/plots/traceplot.py,sha256=dwcF7rsjMAIxZ_LPv7Z8os01uQZHXTkDFWEBtsbzI9k,10216
59
+ arviz/plots/tsplot.py,sha256=haTyvfGX5fA8Zle9bzllybG5n307BUJIxGywNAnOsU0,15925
60
+ arviz/plots/violinplot.py,sha256=4k6oXjWJURBqFSrSPLDpNgtJ0rka_PW9iR2DGa-p53E,7130
61
+ arviz/plots/backends/__init__.py,sha256=LZxXo7ogt7ZVrdUea0xkxpx5YV0wpV20MHwdItgk3oU,7752
62
+ arviz/plots/backends/bokeh/__init__.py,sha256=e2wfZNdGTFU5GjsLokCLpknweaNgjZ5v3k7NB0gry6g,4877
63
+ arviz/plots/backends/bokeh/autocorrplot.py,sha256=9CruVndfMnqsi4waav7Gcr7pn0nmUB0mkJxkzOjtGtw,2463
64
+ arviz/plots/backends/bokeh/bfplot.py,sha256=ydjomuA5iTw9LE2_eq9_u6Ox3MCy0ulE_DU4qgH0MO8,406
65
+ arviz/plots/backends/bokeh/bpvplot.py,sha256=btwA4qbO8iCtZ-vriscqNlwn0zEooObh7DD6-fsyM44,6642
66
+ arviz/plots/backends/bokeh/compareplot.py,sha256=52jOjhrRqB-Dgdw8odKfM4aPXk9med6MopCiHxKNgJM,4736
67
+ arviz/plots/backends/bokeh/densityplot.py,sha256=TQ5OkHHnihT1NBa4vtt6wJUsll_K3xaeEFzDtqrmcVU,6286
68
+ arviz/plots/backends/bokeh/distcomparisonplot.py,sha256=o8FHMb1ZzKPpt7fXhwBr6HGhqpclO1Qk9o6aTGypgv0,431
69
+ arviz/plots/backends/bokeh/distplot.py,sha256=a2yY4waIPdwGhDpUtYi87Ra-TJiAA67oQumIiU-nXiA,4851
70
+ arviz/plots/backends/bokeh/dotplot.py,sha256=qy8B4QL6B_ZfoVtDDA6c7HcsQofQLlE1tTnkcJO1mPA,2828
71
+ arviz/plots/backends/bokeh/ecdfplot.py,sha256=IEwvIaXQACgxomUmmX8Nj8QebTplgTK02FsXy0i34qI,1699
72
+ arviz/plots/backends/bokeh/elpdplot.py,sha256=5bn_rH1Aixm0--BArAP4m4kuZMjWxR8ox-8T-xK_GMY,6487
73
+ arviz/plots/backends/bokeh/energyplot.py,sha256=FKPYRaWwM32Vw0AHE0MIWBn9wZQeoYdP_YpYZGijIq0,4571
74
+ arviz/plots/backends/bokeh/essplot.py,sha256=zghMEYUH3bAljqNt72-dRa8IFom27F7dMklHNQOrzBM,5494
75
+ arviz/plots/backends/bokeh/forestplot.py,sha256=DIoGzSIAMA9vmKwpoNxVoNKFpDBwpfjdGd6KTl9u_OY,27219
76
+ arviz/plots/backends/bokeh/hdiplot.py,sha256=bAhTPi9D7cw2ytSvjSIRD3g-PqpB9OFwusrQAnmKCYY,1538
77
+ arviz/plots/backends/bokeh/kdeplot.py,sha256=nKEgJfnP7NK2Y2cipF_RglEC6GpowaagH5wZP3iZq-U,9329
78
+ arviz/plots/backends/bokeh/khatplot.py,sha256=FGQJi7Uw1QlNXAMDgRcoh8UDyDGSXxhoRxVgwl_-Cu8,4542
79
+ arviz/plots/backends/bokeh/lmplot.py,sha256=kqfkQ1HAahi_XwkWxrub73zPM_4dXEFvKAd0TFKsoXQ,5392
80
+ arviz/plots/backends/bokeh/loopitplot.py,sha256=FWjcsSWGJNy4wM63_N2qpg5oECb3Cq-uLy3xDS5x6j4,7172
81
+ arviz/plots/backends/bokeh/mcseplot.py,sha256=teyAG-A4vIHor_Qr4iB3l5nLJ--EzvPvw1x44hUOVSI,5924
82
+ arviz/plots/backends/bokeh/pairplot.py,sha256=l82Fu4Siomw17b5bj5yaLQGZ4UNp24RfwJ2OgKSIKXg,13226
83
+ arviz/plots/backends/bokeh/parallelplot.py,sha256=SNChOLWvcKxXuuJsIfWs9CNj7qDuVb95UZyp4CP1BQE,2230
84
+ arviz/plots/backends/bokeh/posteriorplot.py,sha256=yBAlGo3lQpFBVro724eZtKnOHgVkY7LXupa-8_VtE7c,9380
85
+ arviz/plots/backends/bokeh/ppcplot.py,sha256=mfDzTXxJU26CcK8ZKno3Y_yK_y3VYeUT3vaJqUoGEq4,13269
86
+ arviz/plots/backends/bokeh/rankplot.py,sha256=UvzzzhOEnHTX4BkO30JO7iKyU0dwbq7kqo0rV6LlXEU,4474
87
+ arviz/plots/backends/bokeh/separationplot.py,sha256=_VhJUnPW03xVpy2y4h8npLyPPD49H76WQMmj3hOq2Hc,2416
88
+ arviz/plots/backends/bokeh/traceplot.py,sha256=mHyJQqj0IzwKzSsK0eJ7u05V-WObZCJKuLbJ9EpdPtM,14208
89
+ arviz/plots/backends/bokeh/violinplot.py,sha256=_GaLDsq6muqnDr1BQCFClCGqy7hyEk7moYpMd0MNwNA,4359
90
+ arviz/plots/backends/matplotlib/__init__.py,sha256=LBEWakXN4QFoIXp_aPXPMTzXnA8VJt24k5RaowPCQoY,3629
91
+ arviz/plots/backends/matplotlib/autocorrplot.py,sha256=ahyNnwyNrLubZTsxNvTi5hAZ5gV9dmo_wecrTYyMMDI,1807
92
+ arviz/plots/backends/matplotlib/bfplot.py,sha256=00-xGO_VpmTxCkYiC1cGGsAW0HNO3bhQJkFxA6ssMh0,1828
93
+ arviz/plots/backends/matplotlib/bpvplot.py,sha256=SeAGSOxhUFMIlQcluVnGEF5SnW2qjg1HGx4St-aiFz8,6262
94
+ arviz/plots/backends/matplotlib/compareplot.py,sha256=qvjSkNDBTZh3vxIw4pNEyRnaAM8qFG9vWw0X23hscsI,3695
95
+ arviz/plots/backends/matplotlib/densityplot.py,sha256=zlqzYvH3VXWPiiIvL--fxtMp3hIGrcttKkQxKPV1U2s,5479
96
+ arviz/plots/backends/matplotlib/distcomparisonplot.py,sha256=XZY2jITNKtcIMsg5tl_lzuwI-2DcdUdCWqrK7bsdvWE,3568
97
+ arviz/plots/backends/matplotlib/distplot.py,sha256=V0CeyAPah5RzHXW9I5tssVXlZgj2NHPkg-k15ayEdVw,4581
98
+ arviz/plots/backends/matplotlib/dotplot.py,sha256=WHrf_lpEKaJlTPKKZzkQrXzIy_ngxjOGUulInIQBI_M,2934
99
+ arviz/plots/backends/matplotlib/ecdfplot.py,sha256=jYVT-4GCQXJKTLwLr2Xq3dN2TL_A9Gw2OK2A9mRxUi0,1753
100
+ arviz/plots/backends/matplotlib/elpdplot.py,sha256=LAB3PqxbWgvnyr-CIOFSO6egosCtYZmKsmCelFaNywY,6682
101
+ arviz/plots/backends/matplotlib/energyplot.py,sha256=VDM8aZQ-SZzcZB9cv4EU0zQFk1L2JEJXL246mVALIwo,3317
102
+ arviz/plots/backends/matplotlib/essplot.py,sha256=C5RH8MNIOGpCPKHUsGfZ03aQ3CaXI8xOLw6vDv6fSbE,6448
103
+ arviz/plots/backends/matplotlib/forestplot.py,sha256=TWmJqmoH8Rn2bc-g3Tx1QTb_RIfNUKN5PxPFRnF3flA,23228
104
+ arviz/plots/backends/matplotlib/hdiplot.py,sha256=7KawWKFahxILp0dxodkhRni9oJMCkulLhLhRD9qoH60,1521
105
+ arviz/plots/backends/matplotlib/kdeplot.py,sha256=wsTBABG3MLkMAoAzu22otJdXCVzUnUu3McIt9_Hjldc,5323
106
+ arviz/plots/backends/matplotlib/khatplot.py,sha256=qzejxGITeXdPmKyjvLeuBHXqgsZ2AH4Ds44ReArlsPQ,7381
107
+ arviz/plots/backends/matplotlib/lmplot.py,sha256=EeXiqQhfQBaKAhmzRMLLV5gNGELo_QPZ24MkGnDWUfM,5288
108
+ arviz/plots/backends/matplotlib/loopitplot.py,sha256=glK-BP4NftmdZEK5sB7kM8SzoGWsDnBdDVDzV-fDdCg,4632
109
+ arviz/plots/backends/matplotlib/mcseplot.py,sha256=kGuRHRnyQKZPxoiHp8S30RzK7qbL83AaFGbn7BNVOZo,5810
110
+ arviz/plots/backends/matplotlib/pairplot.py,sha256=82MfXs8Gxt40pGqsj48hvyM0Xvc44Eskj2fQC-0AasM,13793
111
+ arviz/plots/backends/matplotlib/parallelplot.py,sha256=zxtO6CNsK_HSl7E2sH40x8OYoO9a5bPNJ6VPJTuDQbk,1450
112
+ arviz/plots/backends/matplotlib/posteriorplot.py,sha256=dUJfGYWYv5Lzlbz9Tr5d9virVfJb7JsnGiSYU7CdmsI,10092
113
+ arviz/plots/backends/matplotlib/ppcplot.py,sha256=3kPTVEUsGpMyr_P5OKgfAu_NHZNmdJWXvCmfhIlNieE,16134
114
+ arviz/plots/backends/matplotlib/rankplot.py,sha256=KU2EakKNv2oOr5zuNsM0dHLazyzBEbf_D95SBQhfnUA,3610
115
+ arviz/plots/backends/matplotlib/separationplot.py,sha256=Yfc-9cgEif-Tb4piGuzJavDYu63x8HvdnZ4dYEzeqxQ,2352
116
+ arviz/plots/backends/matplotlib/traceplot.py,sha256=EpRY7iHd9-SBiyDGqdGIxULXIVPcOkPxZ5C3b1z26j0,18882
117
+ arviz/plots/backends/matplotlib/tsplot.py,sha256=1iD5xcV3pAskAQz2ulLgYKFb6PdGpPKCAnLN_FPwO-8,4033
118
+ arviz/plots/backends/matplotlib/violinplot.py,sha256=Cm2jCLbrHOIV0mu1_v2on8Qt7HhN8w2CMgus4qEpErU,4253
119
+ arviz/plots/styles/arviz-bluish.mplstyle,sha256=v4b3UX15ufQCWbAW3aflE9jE0w1T_PbYmc-f8QRJsKQ,95
120
+ arviz/plots/styles/arviz-brownish.mplstyle,sha256=VqYcOVlcIQVGMk4smdAZg-ui9nI5xtY4vaNAbeQbhas,94
121
+ arviz/plots/styles/arviz-colors.mplstyle,sha256=0mqf46lb2-fujgLOJzlAbGLaubznA2ZZOUSoht6eoEc,218
122
+ arviz/plots/styles/arviz-cyanish.mplstyle,sha256=3LGyDCXD9MrUrCT40ncmkjuW2qVhpw1DbaYGKzBqsXw,93
123
+ arviz/plots/styles/arviz-darkgrid.mplstyle,sha256=E6OmaFLN4w1gzjtxCryihdHnx5pWeCZZOKvO5e-DEcQ,1078
124
+ arviz/plots/styles/arviz-doc.mplstyle,sha256=b1924an0wQ20mnQYnNlR3JIjPa5YPBw6cQ688MPKzjc,3392
125
+ arviz/plots/styles/arviz-docgrid.mplstyle,sha256=xGW8i9hsoJw1rkL0GbZjLBexoEmRhDXOROQf5pC0FX8,3384
126
+ arviz/plots/styles/arviz-grayscale.mplstyle,sha256=Bm9sLS1H9OqT6vQ2iOs6hZ_Jtjzqvsyho2zcgmCyzaE,1176
127
+ arviz/plots/styles/arviz-greenish.mplstyle,sha256=OszR3ik_s25COWfD_J6h03J72C-idq2xaB5KrCOxqTM,93
128
+ arviz/plots/styles/arviz-orangish.mplstyle,sha256=mgGSbJAqqCXeTeh9CmKPrDFyygeV3_SpcDOwPuN5P98,93
129
+ arviz/plots/styles/arviz-plasmish.mplstyle,sha256=zstAfMInqSWOake-8w2DOKYFZgRNjYq_XIl8Ky7HoU8,85
130
+ arviz/plots/styles/arviz-purplish.mplstyle,sha256=1S3QtqH3y3aExQl3eru_MfesG7y6-TS54yFF0srEBYc,93
131
+ arviz/plots/styles/arviz-redish.mplstyle,sha256=c39qCsdQR48CHTzUKm3ga8ZBxQxxYOANNEgw5yv1hE0,93
132
+ arviz/plots/styles/arviz-royish.mplstyle,sha256=1monU3L95dHMqL5SKGFzIKE3WjNbDf3cRrHNQJ8oq54,87
133
+ arviz/plots/styles/arviz-viridish.mplstyle,sha256=kuaaxoLou_BPiGKNXzu-Fw_ST0eVuRwdluyvKDoXaCM,85
134
+ arviz/plots/styles/arviz-white.mplstyle,sha256=p3dbvWzOKhA-u8r3BmTF-bR5bhKh87iIkkVLD_V6EdI,1083
135
+ arviz/plots/styles/arviz-whitegrid.mplstyle,sha256=IMjjlfG3wg7heUjcVrkez1SNoiMI6BLztGPmsUp1iws,1072
136
+ arviz/static/css/style.css,sha256=wcC7rvCT4E6TycEiw7YqxwyaaZ4tTRDGqMkYYjAqrao,5910
137
+ arviz/static/html/icons-svg-inline.html,sha256=t-ChbtS1Gv8uZxc31DCJS8SuXDsLGUHoKgwv8zu6j2M,1343
138
+ arviz/stats/__init__.py,sha256=jWXBXngHmYFy8m_3QJKYRvLszI4L5Q1aIBS79PC9Gms,700
139
+ arviz/stats/density_utils.py,sha256=WCEkXCQsaycY_usA6xkorhIqr3_5ru7wgwE9eJJgdH8,32216
140
+ arviz/stats/diagnostics.py,sha256=8gxVBCgpbf0zfKIowUWY2UGF5v6r52xaQwFqpH375Vk,32282
141
+ arviz/stats/ecdf_utils.py,sha256=od6qAzLRd-aU9dZALaUoO5uulkZiRcKKjZIF_y9bVIA,6357
142
+ arviz/stats/stats.py,sha256=tpidbgyqBmMJn9dZVDmwxFPr7u63k73dtwIJu_jZKHg,86042
143
+ arviz/stats/stats_refitting.py,sha256=trbPC7LCnsb-n5D6g7J0bzXJCPfcDukJDniB4ud1z9E,5415
144
+ arviz/stats/stats_utils.py,sha256=l-7aXSvACteiI--hYUp0KIDByTnms7g3va9NbrQUWYE,20047
145
+ arviz/tests/__init__.py,sha256=TiS6C1IzwAXmNa8u36Y2xzL1CTTZm2PwzAtmZgoqepE,18
146
+ arviz/tests/conftest.py,sha256=6U9WpKmYf38EVRoFZNBpV0CunQvESBFJG2SJ8IBEkL4,1270
147
+ arviz/tests/helpers.py,sha256=6tzVBM04CO7or8MrgARmmxTumbbWFqnMBtPhRDGj05E,23222
148
+ arviz/tests/base_tests/__init__.py,sha256=zg7V5_0DZrCz7ozETqET6bUpAvUUmmkSoLpJLwaIj2E,23
149
+ arviz/tests/base_tests/test_data.py,sha256=voUVeCwjcqEaj17MQeHidMu7LDJR4Z5RuaFIGxsBr7w,63037
150
+ arviz/tests/base_tests/test_data_zarr.py,sha256=JuiiajnCGhq6_zQlSmi3GlujSaNKffzslJ2WNRMqkDA,5460
151
+ arviz/tests/base_tests/test_diagnostics.py,sha256=w8yT2WxelnxH-ynAN9lvspQTRR_UlDmnXIRMe7fus1c,20219
152
+ arviz/tests/base_tests/test_diagnostics_numba.py,sha256=Mfs89mudLm2JMhcaddlxn6uQ2Q_TycJMXP0OiFxbKbo,3041
153
+ arviz/tests/base_tests/test_helpers.py,sha256=89mcfra3MDFGzQCpIsVti3svnMAGTpJDiswRodJnYCM,657
154
+ arviz/tests/base_tests/test_labels.py,sha256=X08vTMmcgXkYGbE2Qnu_UUDSTAIvSNKdnyqoWwmj008,1686
155
+ arviz/tests/base_tests/test_plot_utils.py,sha256=sDLrQ3V83-6AcMNwMDCOAwT_flszLkFkBr5_Ss2LH1g,11836
156
+ arviz/tests/base_tests/test_plots_bokeh.py,sha256=1JqUqLKUb1g4c4w41K3j_LCT4eqb3u1qGnYbUuJMHPE,39148
157
+ arviz/tests/base_tests/test_plots_matplotlib.py,sha256=qFJcrbrlsHbNl6Tw0w1uBZPOXT4H8wss945hfLXKDyY,62251
158
+ arviz/tests/base_tests/test_rcparams.py,sha256=guOXHGCa5SmCrqELMT179w41GRD3B67wmbH47cPzYD0,10283
159
+ arviz/tests/base_tests/test_stats.py,sha256=o-OoIb0XL5OcPpvCtfzu73NiWJHwu6XAhnvSKDXcXpM,32374
160
+ arviz/tests/base_tests/test_stats_ecdf_utils.py,sha256=_JIV1mJpG_VwQbRuorTN2nqBE4M8aiE8SIM65i9wTJk,5712
161
+ arviz/tests/base_tests/test_stats_numba.py,sha256=B_IE9g9QuWO-AoZJnpjyIksQWLyXGV_nrhHDmQsmO6U,1768
162
+ arviz/tests/base_tests/test_stats_utils.py,sha256=Udkw8tODs8mLt3_hO3HgNczrU0n09IJrML2agXF-upQ,13864
163
+ arviz/tests/base_tests/test_utils.py,sha256=Auggtvwv3Y9STS8Tbram-IQe5IhewkwFN14CTcjRd5M,12533
164
+ arviz/tests/base_tests/test_utils_numba.py,sha256=7gbLkvGMIG9L30yLAutSKUU-P0YKjB6OlrAO1E6uDUY,3019
165
+ arviz/tests/external_tests/__init__.py,sha256=W-G7ubGjIx9U2mudENOmdTrPiZ9XGrl5bge5rTbfAB4,26
166
+ arviz/tests/external_tests/test_data_beanmachine.py,sha256=nwOJNJLrk5rY4M5YW-LT6gKsz1sFV-SMebXigMFHjhM,2647
167
+ arviz/tests/external_tests/test_data_cmdstan.py,sha256=jHy-dZrY4M7F4uYWf71fOxVwfPxgRpM9E3JAvpk03qA,16829
168
+ arviz/tests/external_tests/test_data_cmdstanpy.py,sha256=uCSOJVowKXccCPLpAwCiihghx_WxnUVyR8r801Xhw_0,18753
169
+ arviz/tests/external_tests/test_data_emcee.py,sha256=w-tsP74-n688C9-v_KIf0YxZg7S1WrhOdJUvaHS9e6I,6270
170
+ arviz/tests/external_tests/test_data_numpyro.py,sha256=TB5IkxlU3pMsjIgnxyhQaCkRkPWaK_d_YHEcs7XaWNo,11366
171
+ arviz/tests/external_tests/test_data_pyjags.py,sha256=kqZfV8QRnAngO9obnAq5lKPIuJdVJ82sbkIfSr2tpqY,4547
172
+ arviz/tests/external_tests/test_data_pyro.py,sha256=EaD_hZGALaSKQKK4OFgmuJ_1SsIYKessHQ7Jl9AKbw0,10771
173
+ arviz/tests/external_tests/test_data_pystan.py,sha256=gtNp-l4ooeE3draJyn5dayF-gXoRvZOUmY56tocuYfg,11789
174
+ arviz/wrappers/__init__.py,sha256=d8GTUuBW_30LyDyk6qn2MAnvg-GZCeUw_i5SUPqaa1w,354
175
+ arviz/wrappers/base.py,sha256=Vvh330pdzIvBEaikHsDP1ej6L2jCZZ0Dqj5TvUbYesI,9134
176
+ arviz/wrappers/wrap_pymc.py,sha256=ltKv55aG0WTWXVDJuff5TXkgJJ_ESLvlT-JPlh3yHAg,1143
177
+ arviz/wrappers/wrap_stan.py,sha256=c40brlajoPcc3xk00xI9Hqc-y0xcbAmFAIZOtfXWeqo,5525
178
+ arviz-0.18.0.dist-info/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
179
+ arviz-0.18.0.dist-info/METADATA,sha256=UUKfx2eXV1ETVfHg8q_RVxt-Gu9fagf6At9MfsFAi_4,8681
180
+ arviz-0.18.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
181
+ arviz-0.18.0.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
182
+ arviz-0.18.0.dist-info/RECORD,,
@@ -1,182 +0,0 @@
1
- arviz/__init__.py,sha256=xQN5AktoP7JnPEaCIV8D4Je_CkEE-A7DBl188Gg1Ybg,10326
2
- arviz/labels.py,sha256=w4-t0qdJzjKrqRyhzbtk6ucoMIAxle1HpHYlH7up06Q,6828
3
- arviz/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- arviz/rcparams.py,sha256=c-44DivLQWdtBylFHKXWuneYU8y2eJlRy8ZMg1uyH08,20148
5
- arviz/sel_utils.py,sha256=tTsjUn3vdxd3blFEMHzzcaZE9pdeRLCpjvrTuxOwwDk,6950
6
- arviz/utils.py,sha256=Yuiq0ccCHc93cYFFjZlOuVUUV1X0CY5jF19BJwckDhM,26337
7
- arviz/data/__init__.py,sha256=FEKqTEhJ-dPDH3UHHm7PHcQ2NEmJLBX0EBbr-B0-XA8,1481
8
- arviz/data/base.py,sha256=qBpGNEmyGGiK4vB2ykrbKkdClJvrCWtjlJqB59FQqIw,17473
9
- arviz/data/converters.py,sha256=nsjVC0LuAkeDM7B623VPuH73ZUQ8p6NCJ3PHxca7eVY,7662
10
- arviz/data/datasets.py,sha256=hUD0PSFV2iay9KjvzynD99hGhFrCz8qgxEUWcduJuyM,5391
11
- arviz/data/inference_data.py,sha256=NzrX4UIaU_jvwoKSyPY9L7KsaZALpntd0RbtwO73UyI,92382
12
- arviz/data/io_beanmachine.py,sha256=QQVBD6rftvs6_kLIb4Vm1QzQ6BsS0J9DTrzw2Jj4ob8,3745
13
- arviz/data/io_cmdstan.py,sha256=EvKz6ScFmGf5GNMPFIydnRb5-bWWfiJq1KNwFrgurAc,38784
14
- arviz/data/io_cmdstanpy.py,sha256=iSr8ciKBFoIa1tJGHEX-2JKkUJRyaTXzRXf-5mu8q5U,42991
15
- arviz/data/io_datatree.py,sha256=VKrZR6xAfBU2yQ5OK3gEs0GPSQSLuYyw_0DPjXaUJiA,501
16
- arviz/data/io_dict.py,sha256=CNDow8-TXrkNltr10O5vFp18jVr3UuJTNdPSVM4N5vw,17695
17
- arviz/data/io_emcee.py,sha256=WpWM6NlAscRFzWO7Gx2_M5foNboq5n6ySqxR_LurUcI,11843
18
- arviz/data/io_json.py,sha256=lrSP_9abfUW_5E8TwnG4hsS5HNHzAHZQCJTynl_tXKY,1256
19
- arviz/data/io_netcdf.py,sha256=cCxVnXSCTzWP3SU7cM4SqBiRRK9txFOsm-MchzNUzM4,2336
20
- arviz/data/io_numpyro.py,sha256=Z11L3zSZe_MqrCKaxQB7-x2Rfb3Wdp1k1ZuKEsUES-U,14235
21
- arviz/data/io_pyjags.py,sha256=qHCdghv3NmMnMi_LsAVuCzs6WqB6yQrZKVPDPmxpeDc,13270
22
- arviz/data/io_pyro.py,sha256=YjjO7-qOrFh0dxEWyTrYWDkmt3A_ZUgIPbaIDLcqvd8,12739
23
- arviz/data/io_pystan.py,sha256=nRTU6yujilQCKERxzN7LIVwZplfvFNb-Y9Jk9YVJQLk,41700
24
- arviz/data/io_zarr.py,sha256=PeSBz-zHDzmwJq3sWzxASnjrfbd-hULJsl8FjK46YQQ,1163
25
- arviz/data/utils.py,sha256=AQ4KTodlX4e90q5Z6J8jlCBvuaN2SATKSvirxBNsCpA,4769
26
- arviz/data/example_data/data_local.json,sha256=8WwyEWriDDfcVT79GNQ412QDkSoOZF6FYJ7cbyGpONI,1088
27
- arviz/data/example_data/data_remote.json,sha256=gNVLwtVpw-EYnfzKLV-1_PQM5ezD4pwqKVUDrZmqwjY,4442
28
- arviz/data/example_data/code/radon/radon.json,sha256=XwpiyGRrqkBP02zWz00s6z-d00Vv_vSqfx7ZLlb4lz0,24382
29
- arviz/data/example_data/data/centered_eight.nc,sha256=jvw6uv4MeW65rqe2lJDU4kAKM8V1BO9JMuHHEFhJF28,654694
30
- arviz/data/example_data/data/non_centered_eight.nc,sha256=r7kyd10HyJTTRQs4OlSCXPVt3T-nLsPd3g-bcPYnPmA,836647
31
- arviz/plots/__init__.py,sha256=9eIskiP0KZAfPiSfwSDwu9Oo9bmyILuaPVE73ps-y_I,1513
32
- arviz/plots/autocorrplot.py,sha256=TE92PnQa9BAqWj7eO0zW3mij6GLfTU3I84von_DMzo8,5665
33
- arviz/plots/bfplot.py,sha256=s8bizLCkF5uZnz66UKmuUJs_AXuMVrgGObTa2ofUF-Q,5124
34
- arviz/plots/bpvplot.py,sha256=puEz_xbLgL91OPQ_3ABSpk3TYJZI2fr8xxGN64RukQ8,12099
35
- arviz/plots/compareplot.py,sha256=qZnF52HfLCphTXq5S4IfzlHoIzP0ffZ6cGgRI98FDBs,6073
36
- arviz/plots/densityplot.py,sha256=dzEBDtj3lL66edhcnu4B7Kc73vr6FgIGCaP8GOxk2l8,10895
37
- arviz/plots/distcomparisonplot.py,sha256=dXnV6-paF8hUQK3WVaaIQ2t6LojYY3YK3vKAT7diXng,7183
38
- arviz/plots/distplot.py,sha256=xWXOsN-pPBwhHrEjC6lbIJdn-17DtpMueSnj6YzWlX4,8472
39
- arviz/plots/dotplot.py,sha256=-ZwrP8ghf7ZShFfbIIB94tDYUPe1LGMH92ABOaQhcpw,7737
40
- arviz/plots/ecdfplot.py,sha256=hh_HmiH_BBoz5JbzH1t-ferJZhQ_MLD3rfaFcHWTjxo,8718
41
- arviz/plots/elpdplot.py,sha256=-ZDYRqu1H7vIcCkxe45D56jKXViD0KBM5TBi4uUFVoo,6432
42
- arviz/plots/energyplot.py,sha256=YN9hWSwfV0VdwdCAGgOA_ENwqgsGk3dYb8eNOKMgPpM,4796
43
- arviz/plots/essplot.py,sha256=0nS3Z8qdZtVf_2BmJU87wtm_sAPMxoqDS2Ea60cuymk,11738
44
- arviz/plots/forestplot.py,sha256=EopY4wjLTf0gKubBtP99jOP8ctMRklV-RA4S1TLDraw,11896
45
- arviz/plots/hdiplot.py,sha256=aPWN63GCvY2pGuPT78hhDuUMILuqvAaEBuyGe8qBjFg,7590
46
- arviz/plots/kdeplot.py,sha256=eQze22vHcZdjJT_Z6P8IJweNMWJMXRM6Ei5S4vx0m54,11749
47
- arviz/plots/khatplot.py,sha256=GjKYGNZP3zPsD34WKmYOwnhuU8HX7QH8XnPiImjDyho,7565
48
- arviz/plots/lmplot.py,sha256=Fsfw_YnTJFucAwcuFNQC1vl_NSVAfR_T5u9dnZcid_w,11725
49
- arviz/plots/loopitplot.py,sha256=ENMC4qDFVjjvvaa6qmPGikapxyc2CYkQC56oz2o629o,8321
50
- arviz/plots/mcseplot.py,sha256=OBPdqWCdkSFfFaFhCn5e9SrEgMHBdsg5VXHw3g8b5e4,6710
51
- arviz/plots/pairplot.py,sha256=UKbnyCr94ZNY9JY4nJqsdGZtaR_nvEFPOxQbmHEucuI,10406
52
- arviz/plots/parallelplot.py,sha256=lMRLFSwYy-xH_ASpOxUTQAFjh-r2ihv5t8VWcj9gvSw,7124
53
- arviz/plots/plot_utils.py,sha256=vf99ZycmlIs6x0MWkr-vZeZooL_CGqYEhNclHxLg9dg,18282
54
- arviz/plots/posteriorplot.py,sha256=lcP5zdhEoT_5Q5VpAf66GlQZYWv_DnGIcJPxnvR4FZI,10952
55
- arviz/plots/ppcplot.py,sha256=b0yhEJnamY7va6ltg2borNxZJ50tK7GWo75es19hAl4,13966
56
- arviz/plots/rankplot.py,sha256=Ijv24OMDAIaLMbhgQIygr3Jo4-MBvUA3ssMQ2q0o68Q,8661
57
- arviz/plots/separationplot.py,sha256=KB_d4lERgoQDCIfONAi75oQYaH5TIinvNRCQ_KP5xyM,5490
58
- arviz/plots/traceplot.py,sha256=aPpuI3pjX72U34AoFajI9V_HY5fVf8bA_Jdw0wdT1_I,10215
59
- arviz/plots/tsplot.py,sha256=M75CuTHyjSXfgcqebBf1PVhlH6xQSIvA_kUZJWaiyeI,15924
60
- arviz/plots/violinplot.py,sha256=wwfqm0wGp4Kstl1pxKQHjVtg-jIlcaKnvMWMdpE0SA4,7129
61
- arviz/plots/backends/__init__.py,sha256=LZxXo7ogt7ZVrdUea0xkxpx5YV0wpV20MHwdItgk3oU,7752
62
- arviz/plots/backends/bokeh/__init__.py,sha256=e2wfZNdGTFU5GjsLokCLpknweaNgjZ5v3k7NB0gry6g,4877
63
- arviz/plots/backends/bokeh/autocorrplot.py,sha256=iQTuSFyVjRHCjpAi4BocLi88eIY6nkde0wH4Hu15KJk,2462
64
- arviz/plots/backends/bokeh/bfplot.py,sha256=ydjomuA5iTw9LE2_eq9_u6Ox3MCy0ulE_DU4qgH0MO8,406
65
- arviz/plots/backends/bokeh/bpvplot.py,sha256=AXu18YMhmGck2M5TF9fKSrMBAjARcjEvs3KKT8gqWpw,6641
66
- arviz/plots/backends/bokeh/compareplot.py,sha256=AdIt_aRVOf14e2Glx1OrUbbM8YVh9S5E-X9ebf7d9yM,4735
67
- arviz/plots/backends/bokeh/densityplot.py,sha256=72zHRjRKrgmAo9xnuJ5-65mcn4dMhH8abrYsX_cl7Ds,6285
68
- arviz/plots/backends/bokeh/distcomparisonplot.py,sha256=o8FHMb1ZzKPpt7fXhwBr6HGhqpclO1Qk9o6aTGypgv0,431
69
- arviz/plots/backends/bokeh/distplot.py,sha256=0oprmqBLqe-HceBN_8IrUTH6JRPTv9x-zIY_H_5JTTs,4850
70
- arviz/plots/backends/bokeh/dotplot.py,sha256=IrbZ7azfIDO5kKrSjZ5W6HZI-2uKQZcMVIeDqmbtABI,2827
71
- arviz/plots/backends/bokeh/ecdfplot.py,sha256=zGcLSNJc8m-4rrMdoCCygBGmG0WLzQcKakcEyUNdjbo,1698
72
- arviz/plots/backends/bokeh/elpdplot.py,sha256=ICO0DfaUf8u0SH1i-KX9jOPerRzsLqcBxfEpZRvWZRs,6486
73
- arviz/plots/backends/bokeh/energyplot.py,sha256=Z9_9EMALIs0A2wMM7G4T5e08rsnVGkp5w_XzC0BSwYM,4570
74
- arviz/plots/backends/bokeh/essplot.py,sha256=zghMEYUH3bAljqNt72-dRa8IFom27F7dMklHNQOrzBM,5494
75
- arviz/plots/backends/bokeh/forestplot.py,sha256=DIoGzSIAMA9vmKwpoNxVoNKFpDBwpfjdGd6KTl9u_OY,27219
76
- arviz/plots/backends/bokeh/hdiplot.py,sha256=7lUQYYJDHHhNhXFoTHl6KtI0Tncr-_w32rIYlN1osVI,1537
77
- arviz/plots/backends/bokeh/kdeplot.py,sha256=nrj0GEF8TFsup0ZSNj4xfMGCkRVEnzLdTtpSIAtAPt4,9329
78
- arviz/plots/backends/bokeh/khatplot.py,sha256=8ppJ84p36IJopKwPcCFr38A1wUzfKMwLTS2B7Cy5cT4,4541
79
- arviz/plots/backends/bokeh/lmplot.py,sha256=8bG3KYfzFQYAgalSf7gYop3PYcqqnMXfSUjOyhVDVWU,5391
80
- arviz/plots/backends/bokeh/loopitplot.py,sha256=D1Ci6l-ZDu7cb8KTfph5h3yQRF0T1e2gs7qpz1nK3ZI,7171
81
- arviz/plots/backends/bokeh/mcseplot.py,sha256=_9HhhFW4rz82m1aEPyBoqqY23SxOkynitdtY5BRr1Vc,5923
82
- arviz/plots/backends/bokeh/pairplot.py,sha256=Y0OcDSjxt8JN05tTc7Uhv-TfaVQzQGxeF-XF_uxPmaU,13225
83
- arviz/plots/backends/bokeh/parallelplot.py,sha256=3FzZZ4KTiyuwkIvXX2FUqZCGnQcA5NsLbcMtlJD2o78,2229
84
- arviz/plots/backends/bokeh/posteriorplot.py,sha256=5_ZL3CTDd3HxmFSUiEI9KScA6FIf2FuWhX7T1HnBb9U,9379
85
- arviz/plots/backends/bokeh/ppcplot.py,sha256=L96X709xG2sMK_TFHXp-PrUBUL1zajfzapv1gB3hq6c,13268
86
- arviz/plots/backends/bokeh/rankplot.py,sha256=wmPkZvqHyX6fiZZTPeJkB2T2y_hx_97zFBFHojHZFwQ,4473
87
- arviz/plots/backends/bokeh/separationplot.py,sha256=b8ov7jaYRukRWReqAtfcAe3uFbgidRuW8h1ghz6ZpBg,2415
88
- arviz/plots/backends/bokeh/traceplot.py,sha256=9jlisIpHx8GXcgtLxpPAuCjutltM72gyRqFk60AL0Hc,14207
89
- arviz/plots/backends/bokeh/violinplot.py,sha256=6yA4zBiGYGwIwkjg4jfKNt7M4-dphHmH6nxuFtTBYHI,4358
90
- arviz/plots/backends/matplotlib/__init__.py,sha256=LBEWakXN4QFoIXp_aPXPMTzXnA8VJt24k5RaowPCQoY,3629
91
- arviz/plots/backends/matplotlib/autocorrplot.py,sha256=LG47XVF9fra9GGJ019KJKp0BIILMIRG600pHAUaJtxI,1806
92
- arviz/plots/backends/matplotlib/bfplot.py,sha256=00-xGO_VpmTxCkYiC1cGGsAW0HNO3bhQJkFxA6ssMh0,1828
93
- arviz/plots/backends/matplotlib/bpvplot.py,sha256=iQ_LUyPVGTGHzZWwGpxxvd9iOxH5aZ0BqOcRf84NILA,6261
94
- arviz/plots/backends/matplotlib/compareplot.py,sha256=wLQCRqMIxhwb-izfb2lBGVZVtHhFV0vvoiobzodkmMM,3694
95
- arviz/plots/backends/matplotlib/densityplot.py,sha256=IjDJA0Azvz6HGAXGhN5yPXatdUg_-H4bQQwHQFh8svk,5478
96
- arviz/plots/backends/matplotlib/distcomparisonplot.py,sha256=6MLTjI3CfrAhSuBhPhdUrlcCEVu2oSamNnStwURzdmU,3591
97
- arviz/plots/backends/matplotlib/distplot.py,sha256=3WPN9A77K0cCYEOQrxgI_ywyyf7bErI7_ZXw4C4naJU,4580
98
- arviz/plots/backends/matplotlib/dotplot.py,sha256=IGLGQ6y4oUQrs6kWWM82hAs35HDwGOOFOsZCRyBsHmI,2933
99
- arviz/plots/backends/matplotlib/ecdfplot.py,sha256=3wpSv0GaCUVsJzSdzFI65lEmmR93XdAwWkBLAC4ZbgA,1752
100
- arviz/plots/backends/matplotlib/elpdplot.py,sha256=p5Bn3ngWHmzJuhX94j9o6SOvU-O8Ds7pPXh6e5vYvJQ,6681
101
- arviz/plots/backends/matplotlib/energyplot.py,sha256=xzx09ZEzOdzZwce-tdaRnODOHVYMKyflsXANksyBSYI,3316
102
- arviz/plots/backends/matplotlib/essplot.py,sha256=6sT9QZpSeN-FnJCo5-Ye64BBOHiY7LAEX7FQ6_aH2hY,6431
103
- arviz/plots/backends/matplotlib/forestplot.py,sha256=spUOgiRBqBZOEfWstduwExwvab0pR_x96eTp3FUJCKk,23227
104
- arviz/plots/backends/matplotlib/hdiplot.py,sha256=jjpbV2djwMx8ghrgh4CpiGSY9TrIzY1wne_-_3vdBww,1520
105
- arviz/plots/backends/matplotlib/kdeplot.py,sha256=5g-RGswHmNyIAwQSbgtDrbQ_6n34yA_rJVKDOVCDUxU,5294
106
- arviz/plots/backends/matplotlib/khatplot.py,sha256=taoEbT-EQ2aC08V03XYpbSLFTTNyyTtNXaPFSxwky8g,7380
107
- arviz/plots/backends/matplotlib/lmplot.py,sha256=1W9BfuXHjG_y2926aiQRvTo5yzDkMb29dwpoKRyxdCU,5287
108
- arviz/plots/backends/matplotlib/loopitplot.py,sha256=Be-DkHc7hDrAapl-8Q-AJZKrJ7dNJXt9btLp0eO6HOg,4631
109
- arviz/plots/backends/matplotlib/mcseplot.py,sha256=qY_mjyakB5IQ4FDHodD8WwEYCWYTSKVzi2hpcvwQzmM,5777
110
- arviz/plots/backends/matplotlib/pairplot.py,sha256=o98S8EUpK4DND-tBSaYD8mUHFneQ6F2pCmcJE0Ov6Ms,13770
111
- arviz/plots/backends/matplotlib/parallelplot.py,sha256=p3_lfwjVXDCk0gTM-yZVGAZFHY8yKi2Xr_GQAzbiX74,1449
112
- arviz/plots/backends/matplotlib/posteriorplot.py,sha256=SRFBiA_ewk2MObZw9nS9itxxC-oiCQimCZvDyJAU8-0,10091
113
- arviz/plots/backends/matplotlib/ppcplot.py,sha256=Z5M0nkPU_wSMto6rNC8uwyquR6o2urMypX_QEy5foi4,16133
114
- arviz/plots/backends/matplotlib/rankplot.py,sha256=P4jBYMlwyFGRs_PlDLZta6qVRRCQ_iM9CXp3gqAAmU4,3609
115
- arviz/plots/backends/matplotlib/separationplot.py,sha256=lRkz9cdC1eT_aCzqavzRyCVa9G0lLc59-C_npr0yo3g,2351
116
- arviz/plots/backends/matplotlib/traceplot.py,sha256=DTsFQagVQ6KwrT__5s-etF8O6t9fE1-Ip4BDBws6DmY,18881
117
- arviz/plots/backends/matplotlib/tsplot.py,sha256=Q3bZ0kVWoCCPEr0SpaYlK5HPpciaHOj97Z4iEuM451M,4032
118
- arviz/plots/backends/matplotlib/violinplot.py,sha256=IsSvQKJoV1zDthAGgmZG57IECkfghoytrZXURe6Kqxg,4256
119
- arviz/plots/styles/arviz-bluish.mplstyle,sha256=v4b3UX15ufQCWbAW3aflE9jE0w1T_PbYmc-f8QRJsKQ,95
120
- arviz/plots/styles/arviz-brownish.mplstyle,sha256=VqYcOVlcIQVGMk4smdAZg-ui9nI5xtY4vaNAbeQbhas,94
121
- arviz/plots/styles/arviz-colors.mplstyle,sha256=0mqf46lb2-fujgLOJzlAbGLaubznA2ZZOUSoht6eoEc,218
122
- arviz/plots/styles/arviz-cyanish.mplstyle,sha256=3LGyDCXD9MrUrCT40ncmkjuW2qVhpw1DbaYGKzBqsXw,93
123
- arviz/plots/styles/arviz-darkgrid.mplstyle,sha256=E6OmaFLN4w1gzjtxCryihdHnx5pWeCZZOKvO5e-DEcQ,1078
124
- arviz/plots/styles/arviz-doc.mplstyle,sha256=b1924an0wQ20mnQYnNlR3JIjPa5YPBw6cQ688MPKzjc,3392
125
- arviz/plots/styles/arviz-docgrid.mplstyle,sha256=xGW8i9hsoJw1rkL0GbZjLBexoEmRhDXOROQf5pC0FX8,3384
126
- arviz/plots/styles/arviz-grayscale.mplstyle,sha256=Bm9sLS1H9OqT6vQ2iOs6hZ_Jtjzqvsyho2zcgmCyzaE,1176
127
- arviz/plots/styles/arviz-greenish.mplstyle,sha256=OszR3ik_s25COWfD_J6h03J72C-idq2xaB5KrCOxqTM,93
128
- arviz/plots/styles/arviz-orangish.mplstyle,sha256=mgGSbJAqqCXeTeh9CmKPrDFyygeV3_SpcDOwPuN5P98,93
129
- arviz/plots/styles/arviz-plasmish.mplstyle,sha256=zstAfMInqSWOake-8w2DOKYFZgRNjYq_XIl8Ky7HoU8,85
130
- arviz/plots/styles/arviz-purplish.mplstyle,sha256=1S3QtqH3y3aExQl3eru_MfesG7y6-TS54yFF0srEBYc,93
131
- arviz/plots/styles/arviz-redish.mplstyle,sha256=c39qCsdQR48CHTzUKm3ga8ZBxQxxYOANNEgw5yv1hE0,93
132
- arviz/plots/styles/arviz-royish.mplstyle,sha256=1monU3L95dHMqL5SKGFzIKE3WjNbDf3cRrHNQJ8oq54,87
133
- arviz/plots/styles/arviz-viridish.mplstyle,sha256=kuaaxoLou_BPiGKNXzu-Fw_ST0eVuRwdluyvKDoXaCM,85
134
- arviz/plots/styles/arviz-white.mplstyle,sha256=p3dbvWzOKhA-u8r3BmTF-bR5bhKh87iIkkVLD_V6EdI,1083
135
- arviz/plots/styles/arviz-whitegrid.mplstyle,sha256=IMjjlfG3wg7heUjcVrkez1SNoiMI6BLztGPmsUp1iws,1072
136
- arviz/static/css/style.css,sha256=lIxdSUd_4Zf-s1HNnGCYfRLV_JCdQBt-5EprcBrEdBY,5900
137
- arviz/static/html/icons-svg-inline.html,sha256=t-ChbtS1Gv8uZxc31DCJS8SuXDsLGUHoKgwv8zu6j2M,1343
138
- arviz/stats/__init__.py,sha256=jWXBXngHmYFy8m_3QJKYRvLszI4L5Q1aIBS79PC9Gms,700
139
- arviz/stats/density_utils.py,sha256=es_0MlaaDxfvAyi2jt4kNyJ9ayAxXoR0kJCkQHAUlhs,32221
140
- arviz/stats/diagnostics.py,sha256=tYEscXT1uK56npUaFwFF_w-nc4fIWXNZiYo7D54ZQfo,32268
141
- arviz/stats/ecdf_utils.py,sha256=EbdkE6bKxUjqMu2j8OfPtfXecF0HkKXjLyKNr4UaDkc,6356
142
- arviz/stats/stats.py,sha256=tpidbgyqBmMJn9dZVDmwxFPr7u63k73dtwIJu_jZKHg,86042
143
- arviz/stats/stats_refitting.py,sha256=VUUC2mf7Pk6iYCV8D1QXMaeuFM0AMu9pmntM63kqxbk,5414
144
- arviz/stats/stats_utils.py,sha256=uxnxlK4jzvAVOTiAnBVVEhpEomiL2B7YA0dlLE3jazs,19940
145
- arviz/tests/__init__.py,sha256=TiS6C1IzwAXmNa8u36Y2xzL1CTTZm2PwzAtmZgoqepE,18
146
- arviz/tests/conftest.py,sha256=6U9WpKmYf38EVRoFZNBpV0CunQvESBFJG2SJ8IBEkL4,1270
147
- arviz/tests/helpers.py,sha256=43FidBgbR4slxS5vH6MLDw_FMA5cMxv_uXt4tt-tOWQ,23217
148
- arviz/tests/base_tests/__init__.py,sha256=zg7V5_0DZrCz7ozETqET6bUpAvUUmmkSoLpJLwaIj2E,23
149
- arviz/tests/base_tests/test_data.py,sha256=xoav2nshbJFi9rPjPxxcWgVu44nOah0BIK9EMstjhwY,62444
150
- arviz/tests/base_tests/test_data_zarr.py,sha256=JuiiajnCGhq6_zQlSmi3GlujSaNKffzslJ2WNRMqkDA,5460
151
- arviz/tests/base_tests/test_diagnostics.py,sha256=L3_U-offeOYeSEu_Voer737s2uA_M9Uq5ECjJ2l50HA,20218
152
- arviz/tests/base_tests/test_diagnostics_numba.py,sha256=2pDNPz2KHlEMMNqvHuzcW91Xx7NEDIpxuxop3FxORYk,3040
153
- arviz/tests/base_tests/test_helpers.py,sha256=89mcfra3MDFGzQCpIsVti3svnMAGTpJDiswRodJnYCM,657
154
- arviz/tests/base_tests/test_labels.py,sha256=jehXD8Hxdg3o1l_JfRsUItqdCi6r4JwPQ58z9rw-13U,1685
155
- arviz/tests/base_tests/test_plot_utils.py,sha256=sDLrQ3V83-6AcMNwMDCOAwT_flszLkFkBr5_Ss2LH1g,11836
156
- arviz/tests/base_tests/test_plots_bokeh.py,sha256=1JqUqLKUb1g4c4w41K3j_LCT4eqb3u1qGnYbUuJMHPE,39148
157
- arviz/tests/base_tests/test_plots_matplotlib.py,sha256=bzq7oNBhKLQ9gGwOG6pshJpzd8OEBYyrQWglmoLVUhU,62229
158
- arviz/tests/base_tests/test_rcparams.py,sha256=guOXHGCa5SmCrqELMT179w41GRD3B67wmbH47cPzYD0,10283
159
- arviz/tests/base_tests/test_stats.py,sha256=aVhrGti7nCfFHJpoVaj0Zq-rRglkr5pYral5tm6WHGc,32370
160
- arviz/tests/base_tests/test_stats_ecdf_utils.py,sha256=_JIV1mJpG_VwQbRuorTN2nqBE4M8aiE8SIM65i9wTJk,5712
161
- arviz/tests/base_tests/test_stats_numba.py,sha256=B_IE9g9QuWO-AoZJnpjyIksQWLyXGV_nrhHDmQsmO6U,1768
162
- arviz/tests/base_tests/test_stats_utils.py,sha256=pdg4ukZfcquPhVZuuR_a7aHQiQ3QuF2olR1pkKGCFvE,13863
163
- arviz/tests/base_tests/test_utils.py,sha256=anz7YsEHr89kHwpbRN3Xq33kwYG70g_9XwCqUDlDNcE,12522
164
- arviz/tests/base_tests/test_utils_numba.py,sha256=7gbLkvGMIG9L30yLAutSKUU-P0YKjB6OlrAO1E6uDUY,3019
165
- arviz/tests/external_tests/__init__.py,sha256=W-G7ubGjIx9U2mudENOmdTrPiZ9XGrl5bge5rTbfAB4,26
166
- arviz/tests/external_tests/test_data_beanmachine.py,sha256=nwOJNJLrk5rY4M5YW-LT6gKsz1sFV-SMebXigMFHjhM,2647
167
- arviz/tests/external_tests/test_data_cmdstan.py,sha256=jHy-dZrY4M7F4uYWf71fOxVwfPxgRpM9E3JAvpk03qA,16829
168
- arviz/tests/external_tests/test_data_cmdstanpy.py,sha256=uCSOJVowKXccCPLpAwCiihghx_WxnUVyR8r801Xhw_0,18753
169
- arviz/tests/external_tests/test_data_emcee.py,sha256=w-tsP74-n688C9-v_KIf0YxZg7S1WrhOdJUvaHS9e6I,6270
170
- arviz/tests/external_tests/test_data_numpyro.py,sha256=TB5IkxlU3pMsjIgnxyhQaCkRkPWaK_d_YHEcs7XaWNo,11366
171
- arviz/tests/external_tests/test_data_pyjags.py,sha256=kqZfV8QRnAngO9obnAq5lKPIuJdVJ82sbkIfSr2tpqY,4547
172
- arviz/tests/external_tests/test_data_pyro.py,sha256=EaD_hZGALaSKQKK4OFgmuJ_1SsIYKessHQ7Jl9AKbw0,10771
173
- arviz/tests/external_tests/test_data_pystan.py,sha256=gtNp-l4ooeE3draJyn5dayF-gXoRvZOUmY56tocuYfg,11789
174
- arviz/wrappers/__init__.py,sha256=_68sh68ZZ5kAqPtMrKErRqJNE0FYHXs45x_NCc0ZBxk,353
175
- arviz/wrappers/base.py,sha256=Vvh330pdzIvBEaikHsDP1ej6L2jCZZ0Dqj5TvUbYesI,9134
176
- arviz/wrappers/wrap_pymc.py,sha256=ltKv55aG0WTWXVDJuff5TXkgJJ_ESLvlT-JPlh3yHAg,1143
177
- arviz/wrappers/wrap_stan.py,sha256=c40brlajoPcc3xk00xI9Hqc-y0xcbAmFAIZOtfXWeqo,5525
178
- arviz-0.17.1.dist-info/LICENSE,sha256=xllut76FgcGL5zbIRvuRc7aezPbvlMUTWJPsVr2Sugg,11358
179
- arviz-0.17.1.dist-info/METADATA,sha256=HGeQUDTXPhzF02X6ALHvYxdCMRD3HADOZBWgy6vv2WY,8697
180
- arviz-0.17.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
181
- arviz-0.17.1.dist-info/top_level.txt,sha256=5MFvqrTtYRWsIx-SjKuFIUHtrnVJq0Ngd0Nc2_etQhE,6
182
- arviz-0.17.1.dist-info/RECORD,,
File without changes