arthur-client 1.4.1197__py3-none-any.whl → 1.4.1199__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -9,11 +9,11 @@ Name | Type | Description | Notes
9
9
  **optional** | **bool** | Boolean denoting if the parameter is optional. | [optional] [default to False]
10
10
  **friendly_name** | **str** | User facing name of the parameter. |
11
11
  **description** | **str** | Description of the parameter. |
12
- **parameter_type** | **str** | | [optional] [default to 'column_list']
13
12
  **tag_hints** | [**List[ScopeSchemaTag]**](ScopeSchemaTag.md) | List of tags that are applicable to this parameter. Datasets with columns that have matching tags can be inferred this way. | [optional] [default to []]
14
13
  **source_dataset_parameter_key** | **str** | Name of the parameter that provides the dataset to be used for this column. |
15
14
  **allowed_column_types** | [**List[MetricsColumnListParameterSchemaAllowedColumnTypesInner]**](MetricsColumnListParameterSchemaAllowedColumnTypesInner.md) | | [optional]
16
15
  **allow_any_column_type** | **bool** | Indicates if this metric parameter can accept any column type. | [optional] [default to False]
16
+ **parameter_type** | **str** | | [optional] [default to 'column_list']
17
17
 
18
18
  ## Example
19
19
 
@@ -9,11 +9,11 @@ Name | Type | Description | Notes
9
9
  **optional** | **bool** | Boolean denoting if the parameter is optional. | [optional] [default to False]
10
10
  **friendly_name** | **str** | User facing name of the parameter. |
11
11
  **description** | **str** | Description of the parameter. |
12
- **parameter_type** | **str** | | [optional] [default to 'column']
13
12
  **tag_hints** | [**List[ScopeSchemaTag]**](ScopeSchemaTag.md) | List of tags that are applicable to this parameter. Datasets with columns that have matching tags can be inferred this way. | [optional] [default to []]
14
13
  **source_dataset_parameter_key** | **str** | Name of the parameter that provides the dataset to be used for this column. |
15
14
  **allowed_column_types** | [**List[MetricsColumnListParameterSchemaAllowedColumnTypesInner]**](MetricsColumnListParameterSchemaAllowedColumnTypesInner.md) | | [optional]
16
15
  **allow_any_column_type** | **bool** | Indicates if this metric parameter can accept any column type. | [optional] [default to False]
16
+ **parameter_type** | **str** | | [optional] [default to 'column']
17
17
 
18
18
  ## Example
19
19
 
@@ -21,6 +21,8 @@
21
21
 
22
22
  * `PIN_IN_DEEP_DIVE` (value: `'pin_in_deep_dive'`)
23
23
 
24
+ * `POSSIBLE_SEGMENTATION` (value: `'possible_segmentation'`)
25
+
24
26
  [[Back to Model list]](../README.md#documentation-for-models) [[Back to API list]](../README.md#documentation-for-api-endpoints) [[Back to README]](../README.md)
25
27
 
26
28
 
@@ -32,12 +32,12 @@ class MetricsColumnListParameterSchema(BaseModel):
32
32
  optional: Optional[StrictBool] = Field(default=False, description="Boolean denoting if the parameter is optional.")
33
33
  friendly_name: StrictStr = Field(description="User facing name of the parameter.")
34
34
  description: StrictStr = Field(description="Description of the parameter.")
35
- parameter_type: Optional[StrictStr] = 'column_list'
36
35
  tag_hints: Optional[List[ScopeSchemaTag]] = Field(default=None, description="List of tags that are applicable to this parameter. Datasets with columns that have matching tags can be inferred this way.")
37
36
  source_dataset_parameter_key: StrictStr = Field(description="Name of the parameter that provides the dataset to be used for this column.")
38
37
  allowed_column_types: Optional[List[MetricsColumnListParameterSchemaAllowedColumnTypesInner]] = None
39
38
  allow_any_column_type: Optional[StrictBool] = Field(default=False, description="Indicates if this metric parameter can accept any column type.")
40
- __properties: ClassVar[List[str]] = ["parameter_key", "optional", "friendly_name", "description", "parameter_type", "tag_hints", "source_dataset_parameter_key", "allowed_column_types", "allow_any_column_type"]
39
+ parameter_type: Optional[StrictStr] = 'column_list'
40
+ __properties: ClassVar[List[str]] = ["parameter_key", "optional", "friendly_name", "description", "tag_hints", "source_dataset_parameter_key", "allowed_column_types", "allow_any_column_type", "parameter_type"]
41
41
 
42
42
  @field_validator('parameter_type')
43
43
  def parameter_type_validate_enum(cls, value):
@@ -116,11 +116,11 @@ class MetricsColumnListParameterSchema(BaseModel):
116
116
  "optional": obj.get("optional") if obj.get("optional") is not None else False,
117
117
  "friendly_name": obj.get("friendly_name"),
118
118
  "description": obj.get("description"),
119
- "parameter_type": obj.get("parameter_type") if obj.get("parameter_type") is not None else 'column_list',
120
119
  "tag_hints": obj.get("tag_hints"),
121
120
  "source_dataset_parameter_key": obj.get("source_dataset_parameter_key"),
122
121
  "allowed_column_types": [MetricsColumnListParameterSchemaAllowedColumnTypesInner.from_dict(_item) for _item in obj["allowed_column_types"]] if obj.get("allowed_column_types") is not None else None,
123
- "allow_any_column_type": obj.get("allow_any_column_type") if obj.get("allow_any_column_type") is not None else False
122
+ "allow_any_column_type": obj.get("allow_any_column_type") if obj.get("allow_any_column_type") is not None else False,
123
+ "parameter_type": obj.get("parameter_type") if obj.get("parameter_type") is not None else 'column_list'
124
124
  })
125
125
  return _obj
126
126
 
@@ -32,12 +32,12 @@ class MetricsColumnParameterSchema(BaseModel):
32
32
  optional: Optional[StrictBool] = Field(default=False, description="Boolean denoting if the parameter is optional.")
33
33
  friendly_name: StrictStr = Field(description="User facing name of the parameter.")
34
34
  description: StrictStr = Field(description="Description of the parameter.")
35
- parameter_type: Optional[StrictStr] = 'column'
36
35
  tag_hints: Optional[List[ScopeSchemaTag]] = Field(default=None, description="List of tags that are applicable to this parameter. Datasets with columns that have matching tags can be inferred this way.")
37
36
  source_dataset_parameter_key: StrictStr = Field(description="Name of the parameter that provides the dataset to be used for this column.")
38
37
  allowed_column_types: Optional[List[MetricsColumnListParameterSchemaAllowedColumnTypesInner]] = None
39
38
  allow_any_column_type: Optional[StrictBool] = Field(default=False, description="Indicates if this metric parameter can accept any column type.")
40
- __properties: ClassVar[List[str]] = ["parameter_key", "optional", "friendly_name", "description", "parameter_type", "tag_hints", "source_dataset_parameter_key", "allowed_column_types", "allow_any_column_type"]
39
+ parameter_type: Optional[StrictStr] = 'column'
40
+ __properties: ClassVar[List[str]] = ["parameter_key", "optional", "friendly_name", "description", "tag_hints", "source_dataset_parameter_key", "allowed_column_types", "allow_any_column_type", "parameter_type"]
41
41
 
42
42
  @field_validator('parameter_type')
43
43
  def parameter_type_validate_enum(cls, value):
@@ -116,11 +116,11 @@ class MetricsColumnParameterSchema(BaseModel):
116
116
  "optional": obj.get("optional") if obj.get("optional") is not None else False,
117
117
  "friendly_name": obj.get("friendly_name"),
118
118
  "description": obj.get("description"),
119
- "parameter_type": obj.get("parameter_type") if obj.get("parameter_type") is not None else 'column',
120
119
  "tag_hints": obj.get("tag_hints"),
121
120
  "source_dataset_parameter_key": obj.get("source_dataset_parameter_key"),
122
121
  "allowed_column_types": [MetricsColumnListParameterSchemaAllowedColumnTypesInner.from_dict(_item) for _item in obj["allowed_column_types"]] if obj.get("allowed_column_types") is not None else None,
123
- "allow_any_column_type": obj.get("allow_any_column_type") if obj.get("allow_any_column_type") is not None else False
122
+ "allow_any_column_type": obj.get("allow_any_column_type") if obj.get("allow_any_column_type") is not None else False,
123
+ "parameter_type": obj.get("parameter_type") if obj.get("parameter_type") is not None else 'column'
124
124
  })
125
125
  return _obj
126
126
 
@@ -35,6 +35,7 @@ class ScopeSchemaTag(str, Enum):
35
35
  PREDICTION = 'prediction'
36
36
  GROUND_TRUTH = 'ground_truth'
37
37
  PIN_IN_DEEP_DIVE = 'pin_in_deep_dive'
38
+ POSSIBLE_SEGMENTATION = 'possible_segmentation'
38
39
 
39
40
  @classmethod
40
41
  def from_json(cls, json_str: str) -> Self:
@@ -39,7 +39,6 @@ class TestMetricsColumnListParameterSchema(unittest.TestCase):
39
39
  optional = True,
40
40
  friendly_name = '',
41
41
  description = '',
42
- parameter_type = 'column_list',
43
42
  tag_hints = [
44
43
  'llm_context'
45
44
  ],
@@ -47,7 +46,8 @@ class TestMetricsColumnListParameterSchema(unittest.TestCase):
47
46
  allowed_column_types = [
48
47
  null
49
48
  ],
50
- allow_any_column_type = True
49
+ allow_any_column_type = True,
50
+ parameter_type = 'column_list'
51
51
  )
52
52
  else:
53
53
  return MetricsColumnListParameterSchema(
@@ -39,7 +39,6 @@ class TestMetricsColumnParameterSchema(unittest.TestCase):
39
39
  optional = True,
40
40
  friendly_name = '',
41
41
  description = '',
42
- parameter_type = 'column',
43
42
  tag_hints = [
44
43
  'llm_context'
45
44
  ],
@@ -47,7 +46,8 @@ class TestMetricsColumnParameterSchema(unittest.TestCase):
47
46
  allowed_column_types = [
48
47
  null
49
48
  ],
50
- allow_any_column_type = True
49
+ allow_any_column_type = True,
50
+ parameter_type = 'column'
51
51
  )
52
52
  else:
53
53
  return MetricsColumnParameterSchema(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: arthur-client
3
- Version: 1.4.1197
3
+ Version: 1.4.1199
4
4
  Summary: Arthur Python API Client Library
5
5
  License: MIT
6
6
  Keywords: api arthur client ArthurAI sdk ml model monitoring
@@ -157,9 +157,9 @@ arthur_client/api_bindings/docs/ListType.md,sha256=ztaokXUwUYWKNv8Z2A3i_MSdFBYAe
157
157
  arthur_client/api_bindings/docs/MetricFunctionsV1Api.md,sha256=dAeNGY1XG_DqdtJfU0DbvNOaQQ9qpBujJDGG0FfKVqw,2697
158
158
  arthur_client/api_bindings/docs/MetricsArgSpec.md,sha256=tXKn0IqDwU5F28UrdZ2xbDIAHd4IZIElvPm-fybDXTQ,953
159
159
  arthur_client/api_bindings/docs/MetricsCalculationJobSpec.md,sha256=XzInYXAf7yN861tKg3tqpGfpInLR8soASVTASdKFvAE,1338
160
- arthur_client/api_bindings/docs/MetricsColumnListParameterSchema.md,sha256=PW2yrQPHFfBXRB0xNOvRPjyKkWz1wI83-frWpNbeGok,2126
160
+ arthur_client/api_bindings/docs/MetricsColumnListParameterSchema.md,sha256=DDc1jrbFzqK_wamxmgiiXQ8NS7l0Bu8MBbJFBYIBayw,2126
161
161
  arthur_client/api_bindings/docs/MetricsColumnListParameterSchemaAllowedColumnTypesInner.md,sha256=5qhUcT0pXy6DP4wrcq3J3_17S4rjjner2jgXaiq3H1s,1674
162
- arthur_client/api_bindings/docs/MetricsColumnParameterSchema.md,sha256=L3I3xibjKz17UjEnPIZaVDn6jBLQt4pkY2FG5eevnaE,2063
162
+ arthur_client/api_bindings/docs/MetricsColumnParameterSchema.md,sha256=HC-s8a170ePABIkKdxa5Zej38ozkNKbTYtq2biGmdVA,2063
163
163
  arthur_client/api_bindings/docs/MetricsDatasetParameterSchema.md,sha256=dwNiK6-44gXMjF3URZXNsaUPw72Jt_OuX4KWU0OWN30,1516
164
164
  arthur_client/api_bindings/docs/MetricsLiteralParameterSchema.md,sha256=txuWGOEzA4KCPaeQckfyNRba5g9rrp1hjcYNF-PC1Y8,1507
165
165
  arthur_client/api_bindings/docs/MetricsQueryResult.md,sha256=GHdkcCH5JnrmFkAPimqvicgqt4AoGtGCoA6gcsPFQog,999
@@ -297,7 +297,7 @@ arthur_client/api_bindings/docs/RuleType.md,sha256=UOEPL7zNGE7VGVvxKOEFt099-axqw
297
297
  arthur_client/api_bindings/docs/ScalarType.md,sha256=8NcbDO8vrTAVvOF3rUySp_4ZL5DlpyswOks6l-FN9x0,853
298
298
  arthur_client/api_bindings/docs/ScheduleJobsJobSpec.md,sha256=p7jAx7W8yzL6TVwXyZUVBGb9ZrVXLpf3hvX4SdhnLZQ,1190
299
299
  arthur_client/api_bindings/docs/SchemaInspectionJobSpec.md,sha256=lR5aaMf0M8pvXSYA-6Z5IspLwxgp7O8J8P-9aBAmikg,1246
300
- arthur_client/api_bindings/docs/ScopeSchemaTag.md,sha256=oAFCFITngXLDqHKDeGpGlkaAAe7_dzzZ_smQsy3jtZ8,590
300
+ arthur_client/api_bindings/docs/ScopeSchemaTag.md,sha256=ZprETQFOJpjhFZOrPLPQ_NcohioiVe8g8ixIHfOsvmU,652
301
301
  arthur_client/api_bindings/docs/SensitiveDataPlane.md,sha256=3WUjO_tZ0qM_alnsN2mDLYiJHvd-Oj5Oyvv3eivW7oM,1584
302
302
  arthur_client/api_bindings/docs/SensitiveUser.md,sha256=u_Zchglj6RO4OPbYkXop2w6bbqrkNuRq3s6TFKYaNeM,1573
303
303
  arthur_client/api_bindings/docs/ServiceAccountCredentials.md,sha256=ZPNXYpztBVhKnnh8BSzzI40Mb7CmxBU9PiKT_WOxy2I,1142
@@ -447,9 +447,9 @@ arthur_client/api_bindings/models/list_datasets_job_spec.py,sha256=d9LF0Os3ysWWs
447
447
  arthur_client/api_bindings/models/list_type.py,sha256=fjOdliv8riPiKHJJUaAuJy885gTAjjyNXu3qOT7KOCk,2799
448
448
  arthur_client/api_bindings/models/metrics_arg_spec.py,sha256=wbR1Wnzq3gqhbEhmh3JYdUr_MBpFO7dfdvINNODLPhg,2859
449
449
  arthur_client/api_bindings/models/metrics_calculation_job_spec.py,sha256=MyFAelowMrhjTUm23x98GRvCZjlDbr38jak4S4rth-Y,3532
450
- arthur_client/api_bindings/models/metrics_column_list_parameter_schema.py,sha256=_afdM6UzsqxrA0ogUQUjIEATjqQTYd4TNGE_WdrkZjA,5810
450
+ arthur_client/api_bindings/models/metrics_column_list_parameter_schema.py,sha256=3aHecFi_uft2ESlLi_hqf15eLyaWG_tjCSxTW3nJCyc,5810
451
451
  arthur_client/api_bindings/models/metrics_column_list_parameter_schema_allowed_column_types_inner.py,sha256=dhciTOJ5kCINFmluY4s4-gyIGCY7rAToMzRwsS4DERE,5880
452
- arthur_client/api_bindings/models/metrics_column_parameter_schema.py,sha256=lrkAPYoVkHswBjxuih62LRu0OgwB01exxyDxwZItYc0,5774
452
+ arthur_client/api_bindings/models/metrics_column_parameter_schema.py,sha256=bu_EKJMUWTraYs_gr16gaWLboBzGh7vtw1hZ_JGLVUk,5774
453
453
  arthur_client/api_bindings/models/metrics_dataset_parameter_schema.py,sha256=EnwlhOkcsqb06wP4XOdaIlqBMPbAhFBKKUv-MrPsZQ4,4167
454
454
  arthur_client/api_bindings/models/metrics_literal_parameter_schema.py,sha256=CuKwkXqP9sJc7YXwrTNDK1qsC5fa0rScdE3qfIdHmcY,3900
455
455
  arthur_client/api_bindings/models/metrics_query_result.py,sha256=xnfYYBocFqpeRMOVqlrbRyvcd1NJREotAI-iFOFYoEo,2585
@@ -580,7 +580,7 @@ arthur_client/api_bindings/models/rule_type.py,sha256=uzSIk0G9q--MBKfda7N0Ooju_I
580
580
  arthur_client/api_bindings/models/scalar_type.py,sha256=uHj_BG0x3WwJWzzhOZ4M1i6JJ0KBjhIAgXFkwg1xC7o,2509
581
581
  arthur_client/api_bindings/models/schedule_jobs_job_spec.py,sha256=S75JHtQV3VvJ58TPEUoBtfQ68odSCySONyJ2Io5CYpA,3335
582
582
  arthur_client/api_bindings/models/schema_inspection_job_spec.py,sha256=yKpGEstb0ze_F-jajJd8V9Dfulr4wv5BDUoZ19gnNBk,3352
583
- arthur_client/api_bindings/models/scope_schema_tag.py,sha256=nX8UlFlwoFyxV7cBviTCzPEjhrfx1ool8faqfXT0CzA,1024
583
+ arthur_client/api_bindings/models/scope_schema_tag.py,sha256=kVcBx2ws7QmkLrqtWIa55svx1H_IrzPOtNs4H7oymao,1076
584
584
  arthur_client/api_bindings/models/sensitive_data_plane.py,sha256=C48C6peIs78JfBj7Yj4s5ovW_C99sl0vrOeipywqoT8,4583
585
585
  arthur_client/api_bindings/models/sensitive_user.py,sha256=wPUerPmwvIoN0TE5fMIR7SRJxMzzlv4OjNSiiFwdDlo,5528
586
586
  arthur_client/api_bindings/models/service_account_credentials.py,sha256=jjnqsr-YyTFyOwi8jMx1ygyE1uzvyO83FZSe_5iA8R8,2772
@@ -739,9 +739,9 @@ arthur_client/api_bindings/test/test_list_type.py,sha256=wqrXlMWBg-m_5--hshlH3IT
739
739
  arthur_client/api_bindings/test/test_metric_functions_v1_api.py,sha256=IoTo744ERBSbo3N6Uqh7LmS5-Q6yCwSIGisUG5b--1I,876
740
740
  arthur_client/api_bindings/test/test_metrics_arg_spec.py,sha256=xywNmlrxNeLV6WGiEGOTuJVOlI3tLCXO6GcueXzR_EA,1500
741
741
  arthur_client/api_bindings/test/test_metrics_calculation_job_spec.py,sha256=edsaqFJ-B0TBDkbtQz3HgtGu-DpwVI5OcIP9C-9OQvk,2073
742
- arthur_client/api_bindings/test/test_metrics_column_list_parameter_schema.py,sha256=zT00t145k8OwBD8dPxyEwBHiTdje3d_50Gii6yF8JUg,2207
742
+ arthur_client/api_bindings/test/test_metrics_column_list_parameter_schema.py,sha256=S-qGu_5Cs9xm3Rrj5J-y3wWM-KzGa0oDRrBmyrgvEis,2207
743
743
  arthur_client/api_bindings/test/test_metrics_column_list_parameter_schema_allowed_column_types_inner.py,sha256=qbMlXegIXcXk4plabUO2NkRwqc0X3L9FXnj_AiJSuis,2170
744
- arthur_client/api_bindings/test/test_metrics_column_parameter_schema.py,sha256=_wAfRvsxiAvZ_6pU-jAMaebAzQtjB4GZS0vQG3V_S80,2153
744
+ arthur_client/api_bindings/test/test_metrics_column_parameter_schema.py,sha256=rBUTkgnJvJtNDV0wLW4VeQ_oQ1HymhH8cG4oy6fb8n0,2153
745
745
  arthur_client/api_bindings/test/test_metrics_dataset_parameter_schema.py,sha256=chri02qFy7j0gtdhNnNO6_bbq0KeoOLB9iSZaP6py6E,1893
746
746
  arthur_client/api_bindings/test/test_metrics_literal_parameter_schema.py,sha256=w5KQVVOlJ084IGTxHHOBjsoOZmnzt8S96dJvIHuWE5Y,1936
747
747
  arthur_client/api_bindings/test/test_metrics_query_result.py,sha256=-bw8wZoQs7lJfkWXV61_xnxqk1hYf7qGyl9rmrDHeWQ,1682
@@ -922,6 +922,6 @@ arthur_client/auth/device_authorizer.py,sha256=bJMIZRjkwQwoSWTLEp7OoXM2MytO3ADSD
922
922
  arthur_client/auth/discovery.py,sha256=hR0MglzRWHdwyi72If5hTnjO50fDJhquP_DD7OzjIQQ,1188
923
923
  arthur_client/auth/oauth_api_config.py,sha256=MB-bwm6Qo_USZD_4KVId6d_v5OtLBphwBjMjslVjTlo,1348
924
924
  arthur_client/auth/session.py,sha256=wCriib5ajfm1e1WTL_QXVCJmEOrGwQg_0v91e5qrC6g,2649
925
- arthur_client-1.4.1197.dist-info/METADATA,sha256=Mhs3N3zVwo7BxlTM_4fsq3Yor1GOBWIe4kiqLvTU-Q0,1731
926
- arthur_client-1.4.1197.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
927
- arthur_client-1.4.1197.dist-info/RECORD,,
925
+ arthur_client-1.4.1199.dist-info/METADATA,sha256=EWKJwmUXCsRcU0f4m_R20MmhuxMe4XCvn7mfw2w7qSk,1731
926
+ arthur_client-1.4.1199.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
927
+ arthur_client-1.4.1199.dist-info/RECORD,,