arize 8.0.0b1__py3-none-any.whl → 8.0.0b2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. arize/__init__.py +1 -1
  2. arize/_client_factory.py +50 -0
  3. arize/_flight/client.py +4 -4
  4. arize/_generated/api_client/api/datasets_api.py +6 -6
  5. arize/_generated/api_client/api/experiments_api.py +6 -6
  6. arize/_generated/api_client/api/projects_api.py +3 -3
  7. arize/_lazy.py +25 -9
  8. arize/client.py +6 -16
  9. arize/config.py +9 -36
  10. arize/constants/ml.py +9 -16
  11. arize/constants/spans.py +5 -10
  12. arize/datasets/client.py +13 -9
  13. arize/datasets/errors.py +1 -1
  14. arize/datasets/validation.py +2 -2
  15. arize/embeddings/auto_generator.py +2 -2
  16. arize/embeddings/errors.py +2 -2
  17. arize/embeddings/tabular_generators.py +1 -1
  18. arize/exceptions/base.py +0 -52
  19. arize/exceptions/parameters.py +0 -329
  20. arize/experiments/client.py +14 -7
  21. arize/experiments/evaluators/base.py +6 -6
  22. arize/experiments/evaluators/executors.py +10 -3
  23. arize/experiments/evaluators/types.py +2 -2
  24. arize/experiments/functions.py +18 -11
  25. arize/experiments/types.py +3 -5
  26. arize/logging.py +1 -1
  27. arize/ml/batch_validation/errors.py +10 -1004
  28. arize/ml/batch_validation/validator.py +273 -225
  29. arize/ml/casting.py +7 -7
  30. arize/ml/client.py +12 -11
  31. arize/ml/proto.py +6 -6
  32. arize/ml/stream_validation.py +2 -3
  33. arize/ml/surrogate_explainer/mimic.py +3 -3
  34. arize/ml/types.py +1 -55
  35. arize/pre_releases.py +6 -3
  36. arize/projects/client.py +9 -4
  37. arize/regions.py +2 -2
  38. arize/spans/client.py +13 -11
  39. arize/spans/columns.py +32 -36
  40. arize/spans/conversion.py +5 -6
  41. arize/spans/validation/common/argument_validation.py +3 -3
  42. arize/spans/validation/common/dataframe_form_validation.py +6 -6
  43. arize/spans/validation/common/value_validation.py +1 -1
  44. arize/spans/validation/evals/dataframe_form_validation.py +4 -4
  45. arize/spans/validation/evals/evals_validation.py +6 -6
  46. arize/spans/validation/metadata/dataframe_form_validation.py +1 -1
  47. arize/spans/validation/spans/dataframe_form_validation.py +2 -2
  48. arize/spans/validation/spans/spans_validation.py +6 -6
  49. arize/utils/arrow.py +2 -2
  50. arize/utils/cache.py +2 -2
  51. arize/utils/dataframe.py +4 -4
  52. arize/utils/online_tasks/dataframe_preprocessor.py +7 -7
  53. arize/utils/openinference_conversion.py +10 -10
  54. arize/utils/proto.py +1 -1
  55. arize/version.py +1 -1
  56. {arize-8.0.0b1.dist-info → arize-8.0.0b2.dist-info}/METADATA +23 -6
  57. {arize-8.0.0b1.dist-info → arize-8.0.0b2.dist-info}/RECORD +60 -59
  58. {arize-8.0.0b1.dist-info → arize-8.0.0b2.dist-info}/WHEEL +0 -0
  59. {arize-8.0.0b1.dist-info → arize-8.0.0b2.dist-info}/licenses/LICENSE +0 -0
  60. {arize-8.0.0b1.dist-info → arize-8.0.0b2.dist-info}/licenses/NOTICE +0 -0
@@ -17,10 +17,10 @@ if TYPE_CHECKING:
17
17
  def check_dataframe_index(
18
18
  dataframe: pd.DataFrame,
19
19
  ) -> list[InvalidDataFrameIndex]:
20
- """Validates that the DataFrame has a default integer index.
20
+ """Validates that the :class:`pandas.DataFrame` has a default integer index.
21
21
 
22
22
  Args:
23
- dataframe: The DataFrame to validate.
23
+ dataframe: The :class:`pandas.DataFrame` to validate.
24
24
 
25
25
  Returns:
26
26
  List of validation errors if index is not default (empty if valid).
@@ -34,10 +34,10 @@ def check_dataframe_required_column_set(
34
34
  df: pd.DataFrame,
35
35
  required_columns: list[str],
36
36
  ) -> list[InvalidDataFrameMissingColumns]:
37
- """Validates that the DataFrame contains all required columns.
37
+ """Validates that the :class:`pandas.DataFrame` contains all required columns.
38
38
 
39
39
  Args:
40
- df: The DataFrame to validate.
40
+ df: The :class:`pandas.DataFrame` to validate.
41
41
  required_columns: List of column names that must be present.
42
42
 
43
43
  Returns:
@@ -56,10 +56,10 @@ def check_dataframe_required_column_set(
56
56
  def check_dataframe_for_duplicate_columns(
57
57
  df: pd.DataFrame,
58
58
  ) -> list[InvalidDataFrameDuplicateColumns]:
59
- """Validates that the DataFrame has no duplicate column names.
59
+ """Validates that the :class:`pandas.DataFrame` has no duplicate column names.
60
60
 
61
61
  Args:
62
- df: The DataFrame to validate.
62
+ df: The :class:`pandas.DataFrame` to validate.
63
63
 
64
64
  Returns:
65
65
  List of validation errors if duplicate columns exist (empty if valid).
@@ -56,7 +56,7 @@ def check_invalid_model_version(
56
56
  model_version: The optional model version to validate.
57
57
 
58
58
  Returns:
59
- List of validation errors if model version is invalid (empty if valid or None).
59
+ List of validation errors if model version is invalid (empty if valid or :obj:`None`).
60
60
  """
61
61
  if model_version is None:
62
62
  return []
@@ -27,10 +27,10 @@ def log_info_dataframe_extra_column_names(
27
27
  """Logs informational message about columns that don't follow evaluation naming conventions.
28
28
 
29
29
  Args:
30
- df: DataFrame to check for extra column names, or None.
30
+ df: DataFrame to check for extra column names, or :obj:`None`.
31
31
 
32
32
  Returns:
33
- None.
33
+ :obj:`None`.
34
34
  """
35
35
  if df is None:
36
36
  return
@@ -57,13 +57,13 @@ def log_info_dataframe_extra_column_names(
57
57
  def check_dataframe_column_content_type(
58
58
  df: pd.DataFrame,
59
59
  ) -> list[InvalidDataFrameColumnContentTypes]:
60
- """Validates that evaluation DataFrame columns contain expected data types.
60
+ """Validates that evaluation :class:`pandas.DataFrame` columns contain expected data types.
61
61
 
62
62
  Checks that label columns contain strings, score columns contain numbers,
63
63
  and explanation columns contain strings.
64
64
 
65
65
  Args:
66
- df: The DataFrame to validate.
66
+ df: The :class:`pandas.DataFrame` to validate.
67
67
 
68
68
  Returns:
69
69
  List of validation errors for columns with incorrect types.
@@ -55,13 +55,13 @@ def validate_argument_types(
55
55
  def validate_dataframe_form(
56
56
  evals_dataframe: pd.DataFrame,
57
57
  ) -> list[ValidationError]:
58
- """Validate the structure and form of an evaluations DataFrame.
58
+ """Validate the structure and form of an evaluations :class:`pandas.DataFrame`.
59
59
 
60
60
  Args:
61
- evals_dataframe: The DataFrame containing evaluation data to validate.
61
+ evals_dataframe: The :class:`pandas.DataFrame` containing evaluation data to validate.
62
62
 
63
63
  Returns:
64
- List of validation errors found in the DataFrame structure.
64
+ List of validation errors found in the :class:`pandas.DataFrame` structure.
65
65
  """
66
66
  df_validation.log_info_dataframe_extra_column_names(evals_dataframe)
67
67
  checks = chain(
@@ -84,15 +84,15 @@ def validate_values(
84
84
  project_name: str,
85
85
  model_version: str | None = None,
86
86
  ) -> list[ValidationError]:
87
- """Validate the values within an evaluations DataFrame.
87
+ """Validate the values within an evaluations :class:`pandas.DataFrame`.
88
88
 
89
89
  Args:
90
- evals_dataframe: The DataFrame containing evaluation data to validate.
90
+ evals_dataframe: The :class:`pandas.DataFrame` containing evaluation data to validate.
91
91
  project_name: The project name associated with the evaluations.
92
92
  model_version: Optional model version. Defaults to None.
93
93
 
94
94
  Returns:
95
- List of validation errors found in DataFrame values.
95
+ List of validation errors found in :class:`pandas.DataFrame` values.
96
96
  """
97
97
  checks = chain(
98
98
  # Common
@@ -7,7 +7,7 @@ from arize.spans.columns import SPAN_SPAN_ID_COL
7
7
 
8
8
 
9
9
  class MetadataFormError(ValidationError):
10
- """Raised when metadata DataFrame structure or format is invalid."""
10
+ """Raised when metadata :class:`pandas.DataFrame` structure or format is invalid."""
11
11
 
12
12
  def __init__(self, message: str, resolution: str) -> None:
13
13
  """Initialize the exception with metadata form error context.
@@ -50,13 +50,13 @@ def log_info_dataframe_extra_column_names(
50
50
  def check_dataframe_column_content_type(
51
51
  df: pd.DataFrame,
52
52
  ) -> list[InvalidDataFrameColumnContentTypes]:
53
- """Validates that span DataFrame columns contain data types matching Open Inference Specification.
53
+ """Validates span :class:`pandas.DataFrame` columns match OpenInference types.
54
54
 
55
55
  Checks that columns have appropriate data types: lists of dicts, dicts, numeric,
56
56
  boolean, timestamp, JSON strings, or plain strings based on column specifications.
57
57
 
58
58
  Args:
59
- df: The DataFrame to validate.
59
+ df: The :class:`pandas.DataFrame` to validate.
60
60
 
61
61
  Returns:
62
62
  List of validation errors for columns with incorrect types.
@@ -56,13 +56,13 @@ def validate_argument_types(
56
56
  def validate_dataframe_form(
57
57
  spans_dataframe: pd.DataFrame,
58
58
  ) -> list[ValidationError]:
59
- """Validate the structure and form of a spans DataFrame.
59
+ """Validate the structure and form of a spans :class:`pandas.DataFrame`.
60
60
 
61
61
  Args:
62
- spans_dataframe: The DataFrame containing spans data to validate.
62
+ spans_dataframe: The :class:`pandas.DataFrame` containing spans data to validate.
63
63
 
64
64
  Returns:
65
- List of validation errors found in the DataFrame structure.
65
+ List of validation errors found in the :class:`pandas.DataFrame` structure.
66
66
  """
67
67
  df_validation.log_info_dataframe_extra_column_names(spans_dataframe)
68
68
  checks = chain(
@@ -88,15 +88,15 @@ def validate_values(
88
88
  project_name: str,
89
89
  model_version: str | None = None,
90
90
  ) -> list[ValidationError]:
91
- """Validate the values within a spans DataFrame.
91
+ """Validate the values within a spans :class:`pandas.DataFrame`.
92
92
 
93
93
  Args:
94
- spans_dataframe: The DataFrame containing spans data to validate.
94
+ spans_dataframe: The :class:`pandas.DataFrame` containing spans data to validate.
95
95
  project_name: The project name associated with the spans.
96
96
  model_version: Optional model version. Defaults to None.
97
97
 
98
98
  Returns:
99
- List of validation errors found in DataFrame values.
99
+ List of validation errors found in :class:`pandas.DataFrame` values.
100
100
  """
101
101
  checks = chain(
102
102
  # Common
arize/utils/arrow.py CHANGED
@@ -1,6 +1,6 @@
1
+ # type: ignore[pb2]
1
2
  """Apache Arrow utilities for data serialization and file operations."""
2
3
 
3
- # type: ignore[pb2]
4
4
  from __future__ import annotations
5
5
 
6
6
  import base64
@@ -38,7 +38,7 @@ def post_arrow_table(
38
38
  pa_table: The PyArrow table containing the data.
39
39
  proto_schema: The protobuf schema for the data.
40
40
  headers: HTTP headers for the request.
41
- timeout: Request timeout in seconds, or None for no timeout.
41
+ timeout: Request timeout in seconds, or :obj:`None` for no timeout.
42
42
  verify: Whether to verify SSL certificates.
43
43
  max_chunksize: Maximum chunk size for splitting large tables.
44
44
  tmp_dir: Temporary directory for serialization. Defaults to "".
arize/utils/cache.py CHANGED
@@ -31,7 +31,7 @@ def load_cached_resource(
31
31
  format: File format for cached data. Defaults to "parquet".
32
32
 
33
33
  Returns:
34
- The cached DataFrame if found and valid, None otherwise.
34
+ The cached :class:`pandas.DataFrame` if found and valid, :obj:`None` otherwise.
35
35
  """
36
36
  key = _get_cache_key(resource, resource_id, resource_updated_at)
37
37
  filepath = _get_abs_file_path(cache_dir, f"{key}.{format}", resource)
@@ -59,7 +59,7 @@ def cache_resource(
59
59
  resource: Resource type name (e.g., "dataset", "experiment").
60
60
  resource_id: Unique identifier for the resource.
61
61
  resource_updated_at: Optional timestamp of last resource update.
62
- resource_data: DataFrame containing the resource data.
62
+ resource_data: :class:`pandas.DataFrame` containing the resource data.
63
63
  format: File format for cached data. Defaults to "parquet".
64
64
  """
65
65
  key = _get_cache_key(resource, resource_id, resource_updated_at)
arize/utils/dataframe.py CHANGED
@@ -9,10 +9,10 @@ from arize.ml.types import BaseSchema
9
9
 
10
10
  # Resets the dataframe index if it is not a RangeIndex
11
11
  def reset_dataframe_index(dataframe: pd.DataFrame) -> None:
12
- """Reset the DataFrame index in-place if it is not a RangeIndex.
12
+ """Reset the :class:`pandas.DataFrame` index in-place if it is not a RangeIndex.
13
13
 
14
14
  Args:
15
- dataframe: The pandas DataFrame to reset.
15
+ dataframe: The :class:`pandas.DataFrame` to reset.
16
16
  """
17
17
  if not isinstance(dataframe.index, pd.RangeIndex):
18
18
  drop = dataframe.index.name in dataframe.columns
@@ -25,10 +25,10 @@ def remove_extraneous_columns(
25
25
  column_list: list[str] | None = None,
26
26
  regex: str | None = None,
27
27
  ) -> pd.DataFrame:
28
- """Filter DataFrame to keep only relevant columns based on schema, list, or regex.
28
+ """Filter :class:`pandas.DataFrame` to keep only relevant columns based on schema, list, or regex.
29
29
 
30
30
  Args:
31
- df: The pandas DataFrame to filter.
31
+ df: The :class:`pandas.DataFrame` to filter.
32
32
  schema: Optional schema defining used columns. Defaults to None.
33
33
  column_list: Optional explicit list of columns to keep. Defaults to None.
34
34
  regex: Optional regex pattern to match column names. Defaults to None.
@@ -10,7 +10,7 @@ logger = logging.getLogger(__name__)
10
10
 
11
11
 
12
12
  class ColumnNotFoundError(Exception):
13
- """Raised when a specified column is not found in the DataFrame."""
13
+ """Raised when a specified column is not found in the :class:`pandas.DataFrame`."""
14
14
 
15
15
  def __init__(self, attribute: str) -> None:
16
16
  """Initialize with the attribute that couldn't be mapped to a column.
@@ -27,13 +27,13 @@ class ColumnNotFoundError(Exception):
27
27
  def extract_nested_data_to_column(
28
28
  attributes: list[str], df: pd.DataFrame
29
29
  ) -> pd.DataFrame:
30
- """Extract nested attributes from complex data structures into new DataFrame columns.
30
+ """Extract nested attributes from complex data structures into new :class:`pandas.DataFrame` columns.
31
31
 
32
32
  This function, used in Online Tasks, is typically run on data exported from Arize.
33
- It prepares the DataFrame by extracting relevant attributes from complex, deeply
33
+ It prepares the :class:`pandas.DataFrame` by extracting relevant attributes from complex, deeply
34
34
  nested data structures, such as those found in LLM outputs or JSON-like records.
35
35
  It helps extract specific values from these nested structures by identifying the
36
- longest matching column name in the DataFrame and recursively accessing the desired
36
+ longest matching column name in the :class:`pandas.DataFrame` and recursively accessing the desired
37
37
  attribute path within each row. This preprocessing step ensures that the extracted
38
38
  values are available as new columns, allowing evaluators to process and assess
39
39
  these values effectively.
@@ -127,7 +127,7 @@ def _introspect_arize_attribute(value: object, attribute: str) -> object:
127
127
  attribute: "0.message.content"
128
128
  Returns: 'The capital of China is Beijing.'
129
129
 
130
- - Returns None immediately when a key or index is not found
130
+ - Returns :obj:`None` immediately when a key or index is not found
131
131
  - Handles integer parts for lists
132
132
  - Parses JSON strings
133
133
  - Converts NumPy arrays to lists
@@ -174,10 +174,10 @@ def _parse_value(
174
174
  2) Else if `current_value` is a dict, check if `attribute_parts_unprocessed[0]` is a key.
175
175
  If not found, try combining `attribute_parts_unprocessed[0] + '.' + attribute_parts_unprocessed[1]`...
176
176
  to handle dotted keys in the dict.
177
- 3) If none match, return (None, 1) to signal "not found, consume 1 part."
177
+ 3) If none match, return (:obj:`None`, 1) to signal "not found, consume 1 part."
178
178
 
179
179
  Returns (parsed_value, num_parts_processed):
180
- - parsed_value: the found value or None if not found
180
+ - parsed_value: the found value or :obj:`None` if not found
181
181
  - num_parts_processed: how many parts were processed (1 or more)
182
182
  """
183
183
  if not attribute_parts_unprocessed:
@@ -11,13 +11,13 @@ logger = logging.getLogger(__name__)
11
11
 
12
12
 
13
13
  def convert_datetime_columns_to_int(df: pd.DataFrame) -> pd.DataFrame:
14
- """Convert datetime columns in a DataFrame to milliseconds since epoch.
14
+ """Convert datetime columns in a :class:`pandas.DataFrame` to milliseconds since epoch.
15
15
 
16
16
  Args:
17
- df: The pandas DataFrame to convert.
17
+ df: The :class:`pandas.DataFrame` to convert.
18
18
 
19
19
  Returns:
20
- The DataFrame with datetime columns converted to integers.
20
+ The :class:`pandas.DataFrame` with datetime columns converted to integers.
21
21
  """
22
22
  for col in df.select_dtypes(
23
23
  include=["datetime64[ns]", "datetime64[ns, UTC]"]
@@ -27,13 +27,13 @@ def convert_datetime_columns_to_int(df: pd.DataFrame) -> pd.DataFrame:
27
27
 
28
28
 
29
29
  def convert_boolean_columns_to_str(df: pd.DataFrame) -> pd.DataFrame:
30
- """Convert boolean columns in a DataFrame to string type.
30
+ """Convert boolean columns in a :class:`pandas.DataFrame` to string type.
31
31
 
32
32
  Args:
33
- df: The pandas DataFrame to convert.
33
+ df: The :class:`pandas.DataFrame` to convert.
34
34
 
35
35
  Returns:
36
- The DataFrame with boolean columns converted to strings.
36
+ The :class:`pandas.DataFrame` with boolean columns converted to strings.
37
37
  """
38
38
  for col in df.columns:
39
39
  if df[col].dtype == "bool":
@@ -45,10 +45,10 @@ def convert_default_columns_to_json_str(df: pd.DataFrame) -> pd.DataFrame:
45
45
  """Convert dictionary values in specific columns to JSON strings.
46
46
 
47
47
  Args:
48
- df: The pandas DataFrame to convert.
48
+ df: The :class:`pandas.DataFrame` to convert.
49
49
 
50
50
  Returns:
51
- The DataFrame with dictionaries in eligible columns converted to JSON strings.
51
+ The :class:`pandas.DataFrame` with dictionaries in eligible columns converted to JSON strings.
52
52
  """
53
53
  for col in df.columns:
54
54
  if _should_convert_json(col):
@@ -68,10 +68,10 @@ def convert_json_str_to_dict(df: pd.DataFrame) -> pd.DataFrame:
68
68
  """Convert JSON string values in specific columns to Python dictionaries.
69
69
 
70
70
  Args:
71
- df: The pandas DataFrame to convert.
71
+ df: The :class:`pandas.DataFrame` to convert.
72
72
 
73
73
  Returns:
74
- The DataFrame with JSON strings in eligible columns converted to dictionaries.
74
+ The :class:`pandas.DataFrame` with JSON strings in eligible columns converted to dictionaries.
75
75
  """
76
76
  for col in df.columns:
77
77
  if _should_convert_json(col):
arize/utils/proto.py CHANGED
@@ -1,6 +1,6 @@
1
+ # type: ignore[pb2]
1
2
  """Protocol buffer schema utilities for tracing data."""
2
3
 
3
- # type: ignore[pb2]
4
4
  from arize._generated.protocol.rec import public_pb2 as pb2
5
5
 
6
6
 
arize/version.py CHANGED
@@ -1,3 +1,3 @@
1
1
  """Version information for the Arize SDK."""
2
2
 
3
- __version__ = "8.0.0b1"
3
+ __version__ = "8.0.0b2"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: arize
3
- Version: 8.0.0b1
3
+ Version: 8.0.0b2
4
4
  Summary: A helper library to interact with Arize AI APIs
5
5
  Project-URL: Homepage, https://arize.com
6
6
  Project-URL: Documentation, https://docs.arize.com/arize
@@ -81,6 +81,8 @@ Description-Content-Type: text/markdown
81
81
  - [Overview](#overview)
82
82
  - [Key Features](#key-features)
83
83
  - [Installation](#installation)
84
+ - [Optional Dependencies](#optional-dependencies)
85
+ - [Migrating from Version 7](#migrating-from-version-7)
84
86
  - [Usage](#usage)
85
87
  - [Instrumentation](#instrumentation)
86
88
  - [Operations on Spans](#operations-on-spans)
@@ -140,19 +142,34 @@ We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 m
140
142
 
141
143
  # Installation
142
144
 
143
- Install Arize (version 8 is currently under beta release) via `pip`:
145
+ Install the base package:
144
146
 
145
147
  ```bash
146
- pip install --pre arize
148
+ pip install arize
147
149
  ```
148
150
 
149
- where `--pre` denotes the installation of pre-release versions. Install the
150
- `arize-otel` package for auto-instrumentation of your LLM library:
151
+ ## Optional Dependencies
152
+
153
+ The following optional extras provide specialized functionality:
154
+
155
+ > **Note:** The `otel` extra installs the `arize-otel` package, which is also available as a standalone package. If you only need auto-instrumentation without the full SDK, install `arize-otel` directly.
156
+
157
+ | Extra | Install Command | What It Provides |
158
+ |-------|----------------|------------------|
159
+ | **otel** | `pip install arize[otel]` | OpenTelemetry auto-instrumentation package (arize-otel) for automatic tracing |
160
+ | **embeddings** | `pip install arize[embeddings]` | Automatic embedding generation for NLP, CV, and structured data (Pillow, datasets, tokenizers, torch, transformers) |
161
+ | **mimic** | `pip install arize[mimic]` | MIMIC explainer for model interpretability |
162
+
163
+ Install multiple extras:
151
164
 
152
165
  ```bash
153
- pip install arize-otel
166
+ pip install arize[otel,embeddings,mimic]
154
167
  ```
155
168
 
169
+ ## Migrating from Version 7
170
+
171
+ If you're upgrading from version 7, please refer to the [Migration Guide](https://arize.com/docs/api-clients/python/version-8/migration) for detailed migration steps and breaking changes.
172
+
156
173
  # Usage
157
174
 
158
175
  ## Instrumentation
@@ -1,18 +1,19 @@
1
- arize/__init__.py,sha256=C2NOiNcFL9TMu5NTkJwF88kL6PKAHHjBMG8HTAIQ5TU,3551
2
- arize/_lazy.py,sha256=aLdgSGxdfdV9QiLllxlLlkN5k44pFf_7jdKRV9Z9sgo,2864
3
- arize/client.py,sha256=XGOaze-rfvDscL9vpWohen9vUbTNwLsx27pF77p9zxA,13150
4
- arize/config.py,sha256=80iQgiaAhSqgE1Q-nKlivjQ2z3F7PifiPAsZlhQjozo,16471
5
- arize/logging.py,sha256=CZkgdpDKXoNNJ9fQMNwbCQEe-ipUg7fQf_CE1hRN1Qc,8574
6
- arize/pre_releases.py,sha256=QWZb5Kko-fHDKDKNk8HUwehMQuLrZPYnyD2c6_mnEqI,1216
7
- arize/regions.py,sha256=oEKJdZbW5r8X3fL3PaDVMdk-f2MoZ8OBvUvYZLMGBpw,1039
8
- arize/version.py,sha256=wAs5eLjhoEbU63izq_pHXyel5O0ilqn4QY6kj6xnago,70
1
+ arize/__init__.py,sha256=OfyXCqHa1f7wxO8zkkcMvlK4mTXwwxgeVyDCHCfb_z0,3560
2
+ arize/_client_factory.py,sha256=caSD8XXoyDnwcc1hAn0Jc1M6UC1n8wHzQRowK4TjNxI,1586
3
+ arize/_lazy.py,sha256=jhaF16Oj4Xmrto-RCQTyqE5EhB590HJ1Y000f_VqOoQ,3427
4
+ arize/client.py,sha256=fKFlNmlI6INL6tUzcLRJobzfTD1vAMczZa0VMvFhxM4,12673
5
+ arize/config.py,sha256=5aAP8dbJkMHytnZp42cME6lu6HBeNIWRsYnF7NG0q1I,15566
6
+ arize/logging.py,sha256=pg5rObeKGWAJN9RP7FejVQOtib1bdOttsP1X3mWujZw,8581
7
+ arize/pre_releases.py,sha256=XTPAfHbKAPoxgWupYmqHeWw-FbSDxNuCss8B-0_eUpk,1298
8
+ arize/regions.py,sha256=5LUXdQFf6CW2jMShttNE-FDH7OOrqeIX_T02trBhSII,1027
9
+ arize/version.py,sha256=YNJujn2TmkooamZsMjFZVNT0jipGor_ihAnDA0_2zy0,70
9
10
  arize/_exporter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
11
  arize/_exporter/client.py,sha256=DRxdREi4k0RiRI-kPvYCwX2zo6DGkdt1XMezF4ZhR08,16425
11
12
  arize/_exporter/validation.py,sha256=9gX4oHrZcChMfkwoBpe3Qp4aK-txy_zZ4azrKf-bEQw,1022
12
13
  arize/_exporter/parsers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
14
  arize/_exporter/parsers/tracing_data_parser.py,sha256=mgpIyKhUeUeW-HMR11Kmo2HSLrUXZJLuqk27aDnytwo,5716
14
15
  arize/_flight/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- arize/_flight/client.py,sha256=HpUu22Q2r-jnh_j0RaQtJLZnaXKGBNNjZlZ0dvX98xs,20391
16
+ arize/_flight/client.py,sha256=3opzhWI7540lAQ-mv4CG3LzlDQeARd7Zkc3HjDHBs1s,20453
16
17
  arize/_flight/types.py,sha256=GB_4dQu2ElIrcDGAcqhG7oI4g-b0ZdSlbrQkf0TFzVE,194
17
18
  arize/_generated/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
19
  arize/_generated/api_client_README.md,sha256=9UxtVJdMFIdV-_9NqUwg2ox3Many_5LIyXz7ZqYOdU0,7379
@@ -23,9 +24,9 @@ arize/_generated/api_client/configuration.py,sha256=EJ6DkTKzHWqjN0BwMEHQ1D9pEDdC
23
24
  arize/_generated/api_client/exceptions.py,sha256=EAN7PugiYwsF3Puj8S1iWGqptP6kheYykxvZLPEk4rw,6502
24
25
  arize/_generated/api_client/rest.py,sha256=OXfGpi__G1f4q3Edgbj4njQNBstouwHUIwrPLJBsVVE,9512
25
26
  arize/_generated/api_client/api/__init__.py,sha256=ycVTd-FBlPyFX82wbCQiuCTbj78pZbVv17kX9U3s5j0,261
26
- arize/_generated/api_client/api/datasets_api.py,sha256=pwS_NU7puzAdoqp49D24XjgcReptPue6K2ZI_C8DwYY,102867
27
- arize/_generated/api_client/api/experiments_api.py,sha256=xMMH-QA80mmXXPbGKKPIONMnxNowSGlf8wVdLKqzPss,65311
28
- arize/_generated/api_client/api/projects_api.py,sha256=SRMimrrXNZLlKD9zbTFs-iy2SeOHiVDdlMB0Hbp0ApE,48820
27
+ arize/_generated/api_client/api/datasets_api.py,sha256=ShqYTqw8Tf4LjyfeGoYtoe9SevseeoCiJO8fzYqSpmg,102861
28
+ arize/_generated/api_client/api/experiments_api.py,sha256=FyiudsxPl-ytJlEPTKV83BKxwgF6nGI_j2Fj6ovtkW4,65305
29
+ arize/_generated/api_client/api/projects_api.py,sha256=f0RKWOXUC5dAv0uALYkOpIwaoWQ6ar7F5De9UoVnPdU,48820
29
30
  arize/_generated/api_client/models/__init__.py,sha256=_kbyaJU4uC0Gdnc87FsdBDfb-QcH8LKID7YNsk11JSk,2183
30
31
  arize/_generated/api_client/models/dataset.py,sha256=eStUwLDPU7j3kMTdSO7RqMCScsGU9rOZtU41xnSXUUs,4332
31
32
  arize/_generated/api_client/models/dataset_example.py,sha256=avmtSuitMruY7Yphw5gDpPbfkx_GKDhePBSoG6S_sc0,3825
@@ -78,96 +79,96 @@ arize/_generated/protocol/rec/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5N
78
79
  arize/_generated/protocol/rec/public_pb2.py,sha256=vgP-yTSZLeomVwfIzcOo6t3i1mPCCNJGgd41ZkfLNng,79898
79
80
  arize/constants/__init__.py,sha256=QYJ_twp380ASZP1eJzEHru-utxKwxL6wTyiRM575RXM,68
80
81
  arize/constants/config.py,sha256=GzyD4z5pw6ZXc1VbUcEPAsxKGmPsFMYbbJFVltPtAP8,1731
81
- arize/constants/ml.py,sha256=LzkvxpFk7VdEZxOxjJq19OkDwo1wywCgRAVpsl5ZcAk,2457
82
+ arize/constants/ml.py,sha256=_Y6aGoz9Q35DxCggYON3AEcVJxBRTsL96vY1A_Dfmq4,2203
82
83
  arize/constants/model_mapping.json,sha256=OPE54rBATzmwRhx0tycsxnGae1jBhtqEmQqQvzleTSc,5725
83
84
  arize/constants/openinference.py,sha256=mnjtbelFbJYJDZ65HQ3lZ6Xr0YyYudBIyTw5cLKA_CI,610
84
85
  arize/constants/pyarrow.py,sha256=4OXNqSYxWxkbmjJTwGxHst8Ch0cmCXsBjUuy1T7rSf4,78
85
- arize/constants/spans.py,sha256=fQpzvQBDGYDHg_48wymVwGSvAnMnUUopHBLwNAskP3Q,2597
86
+ arize/constants/spans.py,sha256=R97QbOzcdNX4B0P-EujTRZ5A_fpJ9dLG-voLBeRKnCI,2361
86
87
  arize/datasets/__init__.py,sha256=t-nswFsscEAy7ixz_g2gEdLN3TCNVdeD9JiOcPdBvwI,69
87
- arize/datasets/client.py,sha256=Lt0UU2QSMzTk7dREoaOsCv8MMztx20Ynw_w6Kq4WRzQ,18175
88
- arize/datasets/errors.py,sha256=Vx54dsl1TEXNch8dht49NXr1dZFDp6AGX-Yhw-Qxh9w,3078
89
- arize/datasets/validation.py,sha256=vnfSs3PrhtVD4nAeNL-Q2yk_6lHXGVfGekGPo9wHcVI,1684
88
+ arize/datasets/client.py,sha256=CdyjCzK4d1xvTNQJVl3PBeGXJLkcybe4wFU810T8Kx8,18346
89
+ arize/datasets/errors.py,sha256=m1zoZTrPu0LJkXBJ9iw3zN7Mez32Iu7AKNX1GzONAbY,3094
90
+ arize/datasets/validation.py,sha256=HVi2xDYAs8UhrvVedeiAnBkYj-kbwF-dT2IZhZ_8aPo,1709
90
91
  arize/embeddings/__init__.py,sha256=Dsh7Ncap6Q47M5_5n0vWzwKkPJtVhZBGke3ygXx02KE,226
91
- arize/embeddings/auto_generator.py,sha256=iFbU1pentuQCzqmb0PMEuTS7p2PyXzbE38OpmahfKH8,4518
92
+ arize/embeddings/auto_generator.py,sha256=xQoBLypSFVikjQngGp7Vs_7IhlNkv7rEvEjFb29nKgE,4550
92
93
  arize/embeddings/base_generators.py,sha256=MdQOMcSHhNUs-VygIPpOAcmsruaQzFfBe_dzzrHCXXQ,11452
93
94
  arize/embeddings/constants.py,sha256=oS7rM8Rqn03B76EKpg6uNtfP5dsx0ptCA34SI0X2RAA,1177
94
95
  arize/embeddings/cv_generators.py,sha256=U_MA7YVh4s1bDqCOHjIJkYE-y3SDRJ68Nw_HusRDKX8,1639
95
- arize/embeddings/errors.py,sha256=CcXjRUsQUq_1nQUVv9Qj8fLgQdAo9bzFq3ZEiEWFf9s,2366
96
+ arize/embeddings/errors.py,sha256=8dEGh6eaGfUmd1cEfkuVblyZB8U_asYbCmWZwcN4d3g,2398
96
97
  arize/embeddings/nlp_generators.py,sha256=_DE4qaTGPnHMPqlGn0HuBxCw-x5dzMFvBLKMJfZYCKU,4573
97
- arize/embeddings/tabular_generators.py,sha256=QPfVKfbvDghYEey7cfaC0D9MBkFgD2-7ODDlmflCXFc,6539
98
+ arize/embeddings/tabular_generators.py,sha256=wKIHV04IcOef8-rvOcrMDqDPjrzahOxA0nzHMpGktsQ,6555
98
99
  arize/embeddings/usecases.py,sha256=BAcEHTVF1abfe_Izf4eqCj5l-jPgLGs2phTfYVZ1nB0,850
99
100
  arize/exceptions/__init__.py,sha256=-16kxctvh4CU_PAekPti-UI7ZTVcCkUrttwoXBa-Eq4,59
100
101
  arize/exceptions/auth.py,sha256=ZCkJ15dW_3h7Fm4AawQaGJejrOEWn1wAXVoxBGA3XhA,749
101
- arize/exceptions/base.py,sha256=0D5fqNul3SBPh2tvVAwocZwiBNspeTh7umI1CTqISw8,4400
102
+ arize/exceptions/base.py,sha256=KsQUKsqfGeUAJAXQTbM-Vp4MOW4US7vkSLOXLSZBnk0,2696
102
103
  arize/exceptions/models.py,sha256=Pe9QzdPl7hAWkJwHVm0QXBzmG2WFi2Xa_GNQOqGAJeM,1259
103
- arize/exceptions/parameters.py,sha256=xbF38TNZI14PruYMor6DYVMB7uVhyusJfRPUn_YPHzU,15175
104
+ arize/exceptions/parameters.py,sha256=Am6lyucz3eeEJhVUe3yhDnAtezzae4GRaXn1ZtIeYeE,3089
104
105
  arize/exceptions/spaces.py,sha256=RZdXCnxkc-t5_jY2je7gVUDxaXhBQvKpXcUGXptO8mA,631
105
106
  arize/exceptions/types.py,sha256=ks-4B2YpiVxHVopWUh4Gv_iM2h-LhdJ_zZDXtN3Ctc0,9468
106
107
  arize/exceptions/values.py,sha256=rzT8sZbY2m2Vxc5vt5V-ZjsQyiGbxM0pxPi-bp9d-pU,27920
107
108
  arize/experiments/__init__.py,sha256=zQAEQggDaJqZaubqjCJfmqbhemMeY_WakWI4ul-wkk8,346
108
- arize/experiments/client.py,sha256=wRIVy2VtQ0LsvTRtfBz78cNnUkP1quzMCReUg2L1rHU,26220
109
- arize/experiments/functions.py,sha256=4rQEB7eB3fvmdjgbCPRRltWlGwXMj1qLSrnCWedP2qY,34663
109
+ arize/experiments/client.py,sha256=XwoAqgSlPU1ASRi1k_M-5nGBFTHSq8UpyFR3OFUpbDk,26554
110
+ arize/experiments/functions.py,sha256=20-DmWqfpsiRK79HnIo0RzlWZmxpUkzjfrnldL6qmAQ,35070
110
111
  arize/experiments/tracing.py,sha256=P3Q2DTUGNsRhvxRNAx_NXY30Id8y7cw9MV9piduSbB0,10207
111
- arize/experiments/types.py,sha256=N9FuJx4atV3VxpdVXch6gTI3ZH6guVrJQzfbeJnDxwQ,14087
112
+ arize/experiments/types.py,sha256=RZUKZ56Zl8q6O0XENyKcH5sHIH26uz_we4FWY7vUp-w,14070
112
113
  arize/experiments/evaluators/__init__.py,sha256=FUTfWRir8jaY8PC3pRHUy5m4RqrKRBPD1EJ4GYkIMLY,76
113
- arize/experiments/evaluators/base.py,sha256=m9Gk2efWyssSYnZIdSJouB6CNx1KkqHjHUrRWft1L54,10981
114
+ arize/experiments/evaluators/base.py,sha256=qalHV2Nsh9SRflBDmdg9tO-N99Gbh5FK_JMUmzkKiy0,11005
114
115
  arize/experiments/evaluators/exceptions.py,sha256=iqg5-OcGfRWY354OCcdmVC39cb3jEb-RO1LnVn7BD7M,376
115
- arize/experiments/evaluators/executors.py,sha256=G6StVzZDd5MbXWENiCgFd1eDgNgMs6IWRc-0OtRyKvk,20722
116
+ arize/experiments/evaluators/executors.py,sha256=NNAX_rGz9WGy4RmLz2t4rxRT5xrqs_Jl8z-iKizGwmc,21003
116
117
  arize/experiments/evaluators/rate_limiters.py,sha256=9PextZkLHljvY9t1yR4Lx_ryFW5Eht00irB87dxnWeA,13567
117
- arize/experiments/evaluators/types.py,sha256=q_p5gaGiKvV14OgfDAI_Kn44Ribou3UfxizAJ9Bl5sM,4509
118
+ arize/experiments/evaluators/types.py,sha256=jfN7rzJGW_gFoFectjjYX1tODomwSS5MT7kNKUaURKg,4532
118
119
  arize/experiments/evaluators/utils.py,sha256=nzl7DtucZoIQTwDpcLJUSlTbCsnyLNLFmwvovWB6GOg,7884
119
120
  arize/ml/__init__.py,sha256=jWGnNLghA0TkmR033NewriFUleH46zCTC4MCoGADE5c,68
120
121
  arize/ml/bounded_executor.py,sha256=BZF19icwV8UaRm8Otw8leiAgjDYultDDmvuSPXw2sx8,1669
121
- arize/ml/casting.py,sha256=lNEDTremFv5R5IR2F8mSAD4ufDgawQOjFIWo5AyAGi0,14016
122
- arize/ml/client.py,sha256=SVLVjB4C3bk__LNlFQyfb4nb5v_7jiZudWR-kweI8lo,58403
123
- arize/ml/proto.py,sha256=_zzE2ESKU2NmRHjCU0lTUR55m9LKSi3s0DKTGhJFYcI,19077
124
- arize/ml/stream_validation.py,sha256=5P-OFUiXCvdEoHTTbr1VsI_PRmeMaWtrLpG_Fagf-CE,8287
125
- arize/ml/types.py,sha256=oSGmfIKxRZxX5FXsN0-sWRPHVjZUjkh58GV_zGwdeE8,71033
122
+ arize/ml/casting.py,sha256=hPiJX_WK_I4JTB8PcoFbf5v8Cy-myddmd9hk8EQAGkE,14094
123
+ arize/ml/client.py,sha256=XPnX97ye9pDZxcHG4KNfQHrnBtHcH0O0z-meeHUt5lg,58545
124
+ arize/ml/proto.py,sha256=zSARkmjRrP-7MXwEVw3AwqV_KAJUGy2VCPNb0n2anpQ,19119
125
+ arize/ml/stream_validation.py,sha256=f5DnbaNLJg9dM3Ij91_PMGwBqhxfuA46CNlVrRCMR9U,8293
126
+ arize/ml/types.py,sha256=_F8ZfMI1LE4Qk1o_dba8EeAc7rnZNAGAXz79BkLds-c,69336
126
127
  arize/ml/batch_validation/__init__.py,sha256=mvn_TLQvgL6lwLvaTedzH0GGABrJViDkh77M38aFXQ4,49
127
- arize/ml/batch_validation/errors.py,sha256=FXiQKRrWh-a_9siEOO6dc9xEn_onS7jtDvNT-eFWnp4,61681
128
- arize/ml/batch_validation/validator.py,sha256=Hz9ctp_iUHoS9kViPq5qBz5uTHIaHm4w4WILQngen1g,147757
128
+ arize/ml/batch_validation/errors.py,sha256=wbnvEUlCxy8PHOjDw5ftsHu0flsVubznimzzl16gmn8,23675
129
+ arize/ml/batch_validation/validator.py,sha256=1U0cjejhPFSiewCiGDmV4vsoLFescrWBFtYvLPpAo0o,148508
129
130
  arize/ml/surrogate_explainer/__init__.py,sha256=jxFXugcjhip4Lg5M1ikrnq5xODwS1Z5Tt30NeVkCpH0,70
130
- arize/ml/surrogate_explainer/mimic.py,sha256=Zx5idIHUyln0AxsU4K0NJoQ1HFOtKk0GoA6bZ4ctTLg,6214
131
+ arize/ml/surrogate_explainer/mimic.py,sha256=IxC4vC_yKtZQytlEyX5rkGpbi0HIkklaNgPu1Zhc59c,6262
131
132
  arize/projects/__init__.py,sha256=hx29_muM9ZJxH5j518QJ88-_VVRAFymF5WLRvQVpDH8,64
132
- arize/projects/client.py,sha256=hjyqg8yfINEIyorPIEwndurnaIfQimjxHQG6AQ_lt-U,4341
133
+ arize/projects/client.py,sha256=XOsERJBNiipWO3rcCcKwNzJCQ4shXyOQmkao-_q_1wY,4492
133
134
  arize/spans/__init__.py,sha256=rXRx4DshOoP9WmbVRUyYdM_QHtUmUTbfO2pZPkztKL0,57
134
- arize/spans/client.py,sha256=N3qa6jAd6JXMZr5pb8XbbVl58-6BgrSRmGSFGn3RdKk,48792
135
- arize/spans/columns.py,sha256=Sap8UrOeeFebxsI1LbelustuirAPmKrtjW8z3vHJVFk,13378
136
- arize/spans/conversion.py,sha256=9GrNd9puZtJJZma2C6UMmNEcTfkb4maG1BxkRiE7zZU,4937
135
+ arize/spans/client.py,sha256=bIo2J0M1MGZu8Du0ZK3Mq83b4XhTmBHCDLfpTMQ3bP0,49023
136
+ arize/spans/columns.py,sha256=_u9WrKvHc-uPdSl6g2TSz5HRnnLzcGG63ydJZL_hMSY,13127
137
+ arize/spans/conversion.py,sha256=Q2ED6-fhVIn2CvRfxCLZr8Rt-iY4ryIZ7ANkINLbvBA,4962
137
138
  arize/spans/validation/__init__.py,sha256=QSb0EFPBCI2riIrgtSaFXPDGDPQ_aYK4N1Dej499cu8,55
138
139
  arize/spans/validation/annotations/__init__.py,sha256=AW7uOEA-uBbM39cdy5SEyi6dC_oYUP_zzW72qkYoFlI,51
139
140
  arize/spans/validation/annotations/annotations_validation.py,sha256=WDChwwqiwlI-lPT7jGA7THllL3a93foZWnyjIkrUjUg,2763
140
141
  arize/spans/validation/annotations/dataframe_form_validation.py,sha256=V050mg0IW_rc6Iimv9E3ZEdfi7A14ZuacE3mfuDR45A,7079
141
142
  arize/spans/validation/annotations/value_validation.py,sha256=mZq9iQIfUl7YE-ctwYrt8vQvgDeKsgMhb-uPF1_PFZA,8650
142
143
  arize/spans/validation/common/__init__.py,sha256=oJ2KdLO6gpl0AUuA8zCuyU5kB_TFW0dPyVpBQtFk_EU,66
143
- arize/spans/validation/common/argument_validation.py,sha256=Xa0hzsC0YIkE7dF62_Bij4Km8QR41zFJ6fUTUlOPnag,2316
144
- arize/spans/validation/common/dataframe_form_validation.py,sha256=GmN0Tx_4Btsf1ChenTI0fEHT8-IhnzOEEQ4ek3T4Bmk,2023
144
+ arize/spans/validation/common/argument_validation.py,sha256=E3t-QSQng4PSFpXvpvAZ3PlVNOUNLoGx2_13YNkZeWk,2350
145
+ arize/spans/validation/common/dataframe_form_validation.py,sha256=KARbuf5wYiEOEYCTmv8EAQfpyEg3FShRH1f5hsxwGJU,2119
145
146
  arize/spans/validation/common/errors.py,sha256=pWkQlNuQiUcSNy1scQhbVpL7OiXo_bjYH7Su_R-9AP0,22388
146
- arize/spans/validation/common/value_validation.py,sha256=593mcfW73y9vvMZvFyhfqhs4TXHoKDxj_Aksu3IQzGg,9314
147
+ arize/spans/validation/common/value_validation.py,sha256=sw1Ro5rprJcuX_mapU4n-HvksK2yc7VKGg1pQ9ELSWQ,9321
147
148
  arize/spans/validation/evals/__init__.py,sha256=RMMOzvDKk1c-X1OmFeMoezDom4LnhVELDfU5EmojqIY,56
148
- arize/spans/validation/evals/dataframe_form_validation.py,sha256=LBqIRUBDAGeDU313bb89Ng8J75U7eBQ3muVtInO2TqY,3957
149
- arize/spans/validation/evals/evals_validation.py,sha256=-FA2uyrpe9gKeZX9_AQayOMq9Am5ib8mZjDXwgf4MFI,3285
149
+ arize/spans/validation/evals/dataframe_form_validation.py,sha256=6yCaayV0wfRIoeof-MNXhJuF7geVezqfk5Dyg7SKNgQ,4003
150
+ arize/spans/validation/evals/evals_validation.py,sha256=LdaxXTy4txnRJkoXlqdCkztU1wf0gDo8KH5ALq-j4lU,3381
150
151
  arize/spans/validation/evals/value_validation.py,sha256=Gn0V_xhY0uk-qWtQLLV-1N4mi-3amOmbu7e2DvRHVGs,4080
151
152
  arize/spans/validation/metadata/__init__.py,sha256=gfKaohBZWKsZV2u0NImP-u8mziLHputqSRDwtdVgfnI,49
152
153
  arize/spans/validation/metadata/argument_validation.py,sha256=HY5j8S0SHCz4AzVy8bl2A5HeDIJESxwStnA39bACMX8,1953
153
- arize/spans/validation/metadata/dataframe_form_validation.py,sha256=CVoO0-8_0cGoFhsfYD2IpTuucAdpy13CbaTZcti0Ngs,4011
154
+ arize/spans/validation/metadata/dataframe_form_validation.py,sha256=2bzS_IyjuuRM_U5bh0n1Ngbr1N_ySdPO5j2eOfGCHTI,4027
154
155
  arize/spans/validation/metadata/value_validation.py,sha256=bUWpDPPiw42iMQuBfLw81ToauMOHduk8H7U_LK4nioc,10251
155
156
  arize/spans/validation/spans/__init__.py,sha256=hAgCnolxy6tyb6q1NBzGziezviJswtcnTsChwbkLIvA,44
156
- arize/spans/validation/spans/dataframe_form_validation.py,sha256=HdM5JUPef4uxyxZeTzjb5FDG7ntSAOashdiXfFxomFM,6377
157
- arize/spans/validation/spans/spans_validation.py,sha256=sULXzYMJ_INTiRlddJ7Z-iqTAszhIuMEmvaSPk-zrus,3485
157
+ arize/spans/validation/spans/dataframe_form_validation.py,sha256=0jcELmglsWQIPxz1H7_Y8bvbkdViBAX1fYczSO_LsFo,6373
158
+ arize/spans/validation/spans/spans_validation.py,sha256=TlL-TxXMdqCmL4RP_uo11Uz9BPY0mwGIuW1831-7es0,3581
158
159
  arize/spans/validation/spans/value_validation.py,sha256=nM2tHyt6nIf5yCjAUfDrzbDnXUBWPlAJ0Yht6MObQ2A,21430
159
160
  arize/utils/__init__.py,sha256=ScWPiN7pTi2-i6gqRryH9Nlp78zz6X_tbgu_RxLJTEM,62
160
- arize/utils/arrow.py,sha256=mX6aLjHYNPZrMKJD0Nc-rki_n10Mpq7w6CsSHnVIcLI,5955
161
- arize/utils/cache.py,sha256=a8jNEZx7R8t3UvmyyyPh2sbjiMaMQlmDRK2-1eLkUeU,3018
162
- arize/utils/dataframe.py,sha256=qSjT2b9K1gIBBOY7o5FpRMi-qTL1NrGIPp43buw3ito,1758
163
- arize/utils/openinference_conversion.py,sha256=cUUaWSu9FR99IF0hoIvijcBPrKcHVUuPu4tFoW0obrY,2912
164
- arize/utils/proto.py,sha256=cXxZr4UwZpEOlxZdZA8B-YY5herdFbZCnxLngGhtrZc,643
161
+ arize/utils/arrow.py,sha256=cMashwVmA5cKFqs3OmgxVZRm5MVKOiIrZmI1wuDPpEE,5962
162
+ arize/utils/cache.py,sha256=yzaQUVkT987aSNUgMmZlL_fhnpyqZkplWKUi0gaOOqA,3057
163
+ arize/utils/dataframe.py,sha256=CdrISsHx11Qt228QrcYhP6iKMxkH_tDQ7pyWNMBSQFE,1808
164
+ arize/utils/openinference_conversion.py,sha256=M2eKgqjrZpfiR63Jho-EtzogpEJDgE23wUvsfqS0B4E,3044
165
+ arize/utils/proto.py,sha256=YKz8tIig2gWPn7mzbOS4CfXp4ockr5AVSIGJsIID39E,643
165
166
  arize/utils/size.py,sha256=qIjUYYg-NttqK25ObX17_32MzkAepLJDDv8N7YxJwAo,805
166
167
  arize/utils/types.py,sha256=BxAQwrqRMeA5BaDZcmEczcKkd-T33mi25FL9kBroNXA,2892
167
168
  arize/utils/online_tasks/__init__.py,sha256=T7778_bgutP0U7h8e9NRPYfwBQSmHOi859M1K2fjpjw,213
168
- arize/utils/online_tasks/dataframe_preprocessor.py,sha256=-VcQSetJjZJamWyZryvkA1LhPOT7BdqDGOL4hP-wtik,9399
169
- arize-8.0.0b1.dist-info/METADATA,sha256=rkXsmAOix3klcDApv4J3sJbXyEO0cF8zsTWXzE_o_N8,27749
170
- arize-8.0.0b1.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
171
- arize-8.0.0b1.dist-info/licenses/LICENSE,sha256=Yseh419WQGiW16p8pS0MwNJyrAIrXSeW59aQXbijY2o,9723
172
- arize-8.0.0b1.dist-info/licenses/NOTICE,sha256=V9Mdpy_w2tgo5GxgjpsZFTu2WcltLQIh6wBVFwBnJuY,550
173
- arize-8.0.0b1.dist-info/RECORD,,
169
+ arize/utils/online_tasks/dataframe_preprocessor.py,sha256=7hrW2svP_Tjf3UP6cJe02JORHxfmCsHtdSyxq94h0QQ,9484
170
+ arize-8.0.0b2.dist-info/METADATA,sha256=-KRR5pWOcZL-gvsD8h_Zm8cbbDJvQwMCIbk3zA5JaMI,28699
171
+ arize-8.0.0b2.dist-info/WHEEL,sha256=WLgqFyCfm_KASv4WHyYy0P3pM_m7J5L9k2skdKLirC8,87
172
+ arize-8.0.0b2.dist-info/licenses/LICENSE,sha256=Yseh419WQGiW16p8pS0MwNJyrAIrXSeW59aQXbijY2o,9723
173
+ arize-8.0.0b2.dist-info/licenses/NOTICE,sha256=V9Mdpy_w2tgo5GxgjpsZFTu2WcltLQIh6wBVFwBnJuY,550
174
+ arize-8.0.0b2.dist-info/RECORD,,