arize 8.0.0a3__py3-none-any.whl → 8.0.0a4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
arize/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "8.0.
|
|
1
|
+
__version__ = "8.0.0a4"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: arize
|
|
3
|
-
Version: 8.0.
|
|
3
|
+
Version: 8.0.0a4
|
|
4
4
|
Summary: A helper library to interact with Arize AI APIs
|
|
5
5
|
Project-URL: Homepage, https://arize.com
|
|
6
6
|
Project-URL: Documentation, https://docs.arize.com/arize
|
|
@@ -120,13 +120,14 @@ tracer_provider = register(
|
|
|
120
120
|
OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)
|
|
121
121
|
```
|
|
122
122
|
|
|
123
|
-
|
|
124
|
-
### Logging Spans, Evaluations, and Annotations
|
|
123
|
+
### Operations on Spans
|
|
125
124
|
|
|
126
125
|
Use `arize.spans` to interact with spans: log spans into Arize, update the span's evaluations, annotations and metadata in bulk.
|
|
127
126
|
|
|
128
127
|
> **WARNING**: This is currently under an alpha release. Install with `pip install arize==8.0.0ax` where the `x` denotes the specific alpha version. Check the [pre-releases](https://pypi.org/project/arize/#history) page in PyPI.
|
|
129
128
|
|
|
129
|
+
#### Logging spans
|
|
130
|
+
|
|
130
131
|
```python
|
|
131
132
|
from arize import ArizeClient
|
|
132
133
|
|
|
@@ -138,22 +139,169 @@ client.spans.log(
|
|
|
138
139
|
space_id=SPACE_ID,
|
|
139
140
|
project_name=PROJECT_NAME,
|
|
140
141
|
dataframe=spans_df,
|
|
141
|
-
evals_df=evals_df, # Optionally pass the evaluations together with the spans
|
|
142
|
+
# evals_df=evals_df, # Optionally pass the evaluations together with the spans
|
|
142
143
|
)
|
|
144
|
+
```
|
|
145
|
+
|
|
146
|
+
#### Update spans Evaluations, Annotations, and Metadata
|
|
147
|
+
|
|
148
|
+
```python
|
|
149
|
+
from arize import ArizeClient
|
|
150
|
+
|
|
151
|
+
client = ArizeClient(api_key=API_KEY)
|
|
152
|
+
SPACE_ID = "<your-space-id>"
|
|
153
|
+
PROJECT_NAME = "<your-project-name>"
|
|
143
154
|
|
|
144
155
|
client.spans.update_evaluations(
|
|
156
|
+
space_id=SPACE_ID,
|
|
157
|
+
project_name=PROJECT_NAME,
|
|
145
158
|
dataframe=evals_df,
|
|
146
|
-
|
|
159
|
+
# force_http=... # Optionally pass force_http to update evaluations via HTTP instead of gRPC, defaults to False
|
|
147
160
|
)
|
|
148
161
|
|
|
149
162
|
client.spans.update_annotations(
|
|
163
|
+
space_id=SPACE_ID,
|
|
164
|
+
project_name=PROJECT_NAME,
|
|
150
165
|
dataframe=annotations_df,
|
|
151
|
-
project_name="your-llm-project",
|
|
152
166
|
)
|
|
153
167
|
|
|
154
168
|
client.spans.update_metadata(
|
|
155
|
-
|
|
156
|
-
project_name=
|
|
169
|
+
space_id=SPACE_ID,
|
|
170
|
+
project_name=PROJECT_NAME,
|
|
171
|
+
dataframe=metadata_df,
|
|
172
|
+
)
|
|
173
|
+
```
|
|
174
|
+
|
|
175
|
+
#### Exporting spans
|
|
176
|
+
|
|
177
|
+
Use the `export_to_df` or `export_to_parquet` to export large amounts of spans from Arize.
|
|
178
|
+
|
|
179
|
+
```python
|
|
180
|
+
from arize import ArizeClient
|
|
181
|
+
from datetime import datetime
|
|
182
|
+
|
|
183
|
+
FMT = "%Y-%m-%d"
|
|
184
|
+
start_time = datetime.strptime("2024-01-01",FMT)
|
|
185
|
+
end_time = datetime.strptime("2026-01-01",FMT)
|
|
186
|
+
|
|
187
|
+
client = ArizeClient(api_key=API_KEY)
|
|
188
|
+
SPACE_ID = "<your-space-id>"
|
|
189
|
+
PROJECT_NAME = "<your-project-name>"
|
|
190
|
+
|
|
191
|
+
df = client.spans.export_to_df(
|
|
192
|
+
space_id=SPACE_ID,
|
|
193
|
+
project_name=PROJECT_NAME,
|
|
194
|
+
start_time=start_time,
|
|
195
|
+
end_time=end_time,
|
|
196
|
+
)
|
|
197
|
+
```
|
|
198
|
+
|
|
199
|
+
### Operations on ML Models
|
|
200
|
+
|
|
201
|
+
Use `arize.models` to interact with ML models: log ML data (traininv, validation, production) into Arize, either streaming or in batches.
|
|
202
|
+
|
|
203
|
+
> **WARNING**: This is currently under an alpha release. Install with `pip install arize==8.0.0ax` where the `x` denotes the specific alpha version. Check the [pre-releases](https://pypi.org/project/arize/#history) page in PyPI.
|
|
204
|
+
|
|
205
|
+
#### Stream log ML Data for a Classification use-case
|
|
206
|
+
|
|
207
|
+
```python
|
|
208
|
+
from arize import ArizeClient
|
|
209
|
+
from arize.types import ModelTypes, Environments
|
|
210
|
+
|
|
211
|
+
client = ArizeClient(api_key=API_KEY)
|
|
212
|
+
SPACE_ID = "<your-space-id>"
|
|
213
|
+
MODEL_NAME = "<your-model-name>"
|
|
214
|
+
|
|
215
|
+
features=...
|
|
216
|
+
embedding_features=...
|
|
217
|
+
|
|
218
|
+
response = client.models.log_stream(
|
|
219
|
+
space_id=SPACE_ID,
|
|
220
|
+
model_name=MODEL_NAME,
|
|
221
|
+
model_type=ModelTypes.SCORE_CATEGORICAL,
|
|
222
|
+
environment=Environments.PRODUCTION,
|
|
223
|
+
prediction_label=("not fraud",0.3),
|
|
224
|
+
actual_label=("fraud",1.0),
|
|
225
|
+
features=features,
|
|
226
|
+
embedding_features=embedding_features,
|
|
227
|
+
)
|
|
228
|
+
```
|
|
229
|
+
|
|
230
|
+
#### Log a batch of ML Data for a Classification use-case
|
|
231
|
+
|
|
232
|
+
```python
|
|
233
|
+
from arize import ArizeClient
|
|
234
|
+
from arize.types import ModelTypes, Environments
|
|
235
|
+
|
|
236
|
+
client = ArizeClient(api_key=API_KEY)
|
|
237
|
+
SPACE_ID = "<your-space-id>"
|
|
238
|
+
MODEL_NAME = "<your-model-name>"
|
|
239
|
+
MODEL_VERSION = "1.0"
|
|
240
|
+
|
|
241
|
+
from arize.types import Schema, EmbeddingColumnNames, ObjectDetectionColumnNames, ModelTypes, Environments
|
|
242
|
+
|
|
243
|
+
tags = ["drift_type"]
|
|
244
|
+
embedding_feature_column_names = {
|
|
245
|
+
"image_embedding": EmbeddingColumnNames(
|
|
246
|
+
vector_column_name="image_vector", link_to_data_column_name="url"
|
|
247
|
+
)
|
|
248
|
+
}
|
|
249
|
+
object_detection_prediction_column_names = ObjectDetectionColumnNames(
|
|
250
|
+
bounding_boxes_coordinates_column_name="prediction_bboxes",
|
|
251
|
+
categories_column_name="prediction_categories",
|
|
252
|
+
scores_column_name="prediction_scores",
|
|
253
|
+
)
|
|
254
|
+
object_detection_actual_column_names = ObjectDetectionColumnNames(
|
|
255
|
+
bounding_boxes_coordinates_column_name="actual_bboxes",
|
|
256
|
+
categories_column_name="actual_categories",
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
# Define a Schema() object for Arize to pick up data from the correct columns for logging
|
|
260
|
+
schema = Schema(
|
|
261
|
+
prediction_id_column_name="prediction_id",
|
|
262
|
+
timestamp_column_name="prediction_ts",
|
|
263
|
+
tag_column_names=tags,
|
|
264
|
+
embedding_feature_column_names=embedding_feature_column_names,
|
|
265
|
+
object_detection_prediction_column_names=object_detection_prediction_column_names,
|
|
266
|
+
object_detection_actual_column_names=object_detection_actual_column_names,
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
# Logging Production DataFrame
|
|
270
|
+
response = client.models.log_batch(
|
|
271
|
+
space_id=SPACE_ID,
|
|
272
|
+
model_name=MODEL_NAME,
|
|
273
|
+
model_type=ModelTypes.OBJECT_DETECTION,
|
|
274
|
+
dataframe=prod_df,
|
|
275
|
+
schema=schema,
|
|
276
|
+
environment=Environments.PRODUCTION,
|
|
277
|
+
model_version = MODEL_VERSION, # Optionally pass a model version
|
|
278
|
+
)
|
|
279
|
+
```
|
|
280
|
+
|
|
281
|
+
#### Exporting ML Data
|
|
282
|
+
|
|
283
|
+
Use the `export_to_df` or `export_to_parquet` to export large amounts of spans from Arize.
|
|
284
|
+
|
|
285
|
+
```python
|
|
286
|
+
from arize import ArizeClient
|
|
287
|
+
from datetime import datetime
|
|
288
|
+
|
|
289
|
+
FMT = "%Y-%m-%d"
|
|
290
|
+
start_time = datetime.strptime("2024-01-01",FMT)
|
|
291
|
+
end_time = datetime.strptime("2026-01-01",FMT)
|
|
292
|
+
|
|
293
|
+
client = ArizeClient(api_key=API_KEY)
|
|
294
|
+
SPACE_ID = "<your-space-id>"
|
|
295
|
+
MODEL_NAME = "<your-model-name>"
|
|
296
|
+
MODEL_VERSION = "1.0"
|
|
297
|
+
|
|
298
|
+
df = client.models.export_to_df(
|
|
299
|
+
space_id=SPACE_ID,
|
|
300
|
+
model_name=MODEL_NAME,
|
|
301
|
+
environment=Environments.TRAINING,
|
|
302
|
+
model_version=MODEL_VERSION,
|
|
303
|
+
start_time=start_time,
|
|
304
|
+
end_time=end_time,
|
|
157
305
|
)
|
|
158
306
|
```
|
|
159
307
|
|
|
@@ -4,7 +4,7 @@ arize/client.py,sha256=ntSYQSzM6MrvcYDxV-lFF-yoxoPjjCvBHKoN-2k1BGg,5688
|
|
|
4
4
|
arize/config.py,sha256=iynVEZhrOPdTNJTQ_KQmwKOPiwL0LfEP8AUIDYW86Xw,5801
|
|
5
5
|
arize/logging.py,sha256=2vwdta2-kR78GeBFGK2vpk51rQ2d06HoKzuARI9qFQk,7317
|
|
6
6
|
arize/types.py,sha256=z1yg5-brmTD4kVHDmmTVkYke53JpusXXeOOpdQw7rYg,69508
|
|
7
|
-
arize/version.py,sha256
|
|
7
|
+
arize/version.py,sha256=_tySepGbCqg_WMxEmmCuYp-OGXCcWr_Nn7pmjEpXZx8,24
|
|
8
8
|
arize/_exporter/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
9
9
|
arize/_exporter/client.py,sha256=eAxJX1sUfdpLrtaQ0ynMTd5jI37JOp9fbl3NWp4WFEA,15216
|
|
10
10
|
arize/_exporter/validation.py,sha256=6ROu5p7uaolxQ93lO_Eiwv9NVw_uyi3E5T--C5Klo5Q,1021
|
|
@@ -107,7 +107,7 @@ arize/utils/arrow.py,sha256=J7uwMsVR9K85myWcnKHb_pUz2H8Timk56U9gV2t5XnA,5477
|
|
|
107
107
|
arize/utils/casting.py,sha256=KUrPUQN6qJEVe39nxbr0T-0GjAJLHjf4xWuzV71QezI,12468
|
|
108
108
|
arize/utils/dataframe.py,sha256=I0FloPgNiqlKga32tMOvTE70598QA8Hhrgf-6zjYMAM,1120
|
|
109
109
|
arize/utils/proto.py,sha256=9vLo53INYjdF78ffjm3E48jFwK6LbPD2FfKei7VaDy8,35477
|
|
110
|
-
arize-8.0.
|
|
111
|
-
arize-8.0.
|
|
112
|
-
arize-8.0.
|
|
113
|
-
arize-8.0.
|
|
110
|
+
arize-8.0.0a4.dist-info/METADATA,sha256=KRy-y9Zf3bDwE_210OVOIBjJJnB1K59VdRwbHZUnq98,11573
|
|
111
|
+
arize-8.0.0a4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
112
|
+
arize-8.0.0a4.dist-info/licenses/LICENSE.md,sha256=8vLN8Gms62NCBorxIv9MUvuK7myueb6_-dhXHPmm4H0,1479
|
|
113
|
+
arize-8.0.0a4.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|