arize-phoenix 4.1.1__py3-none-any.whl → 4.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of arize-phoenix might be problematic. Click here for more details.

@@ -0,0 +1,177 @@
1
+ Metadata-Version: 2.3
2
+ Name: arize-phoenix
3
+ Version: 4.1.2
4
+ Summary: AI Observability and Evaluation
5
+ Project-URL: Documentation, https://docs.arize.com/phoenix/
6
+ Project-URL: Issues, https://github.com/Arize-ai/phoenix/issues
7
+ Project-URL: Source, https://github.com/Arize-ai/phoenix
8
+ Author-email: Arize AI <phoenix-devs@arize.com>
9
+ License: Elastic-2.0
10
+ License-File: IP_NOTICE
11
+ License-File: LICENSE
12
+ Keywords: Explainability,Monitoring,Observability
13
+ Classifier: Programming Language :: Python
14
+ Classifier: Programming Language :: Python :: 3.8
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Requires-Python: <3.13,>=3.8
20
+ Requires-Dist: aioitertools
21
+ Requires-Dist: aiosqlite
22
+ Requires-Dist: alembic<2,>=1.3.0
23
+ Requires-Dist: cachetools
24
+ Requires-Dist: grpcio
25
+ Requires-Dist: hdbscan>=0.8.33
26
+ Requires-Dist: jinja2
27
+ Requires-Dist: numpy
28
+ Requires-Dist: openinference-instrumentation
29
+ Requires-Dist: openinference-instrumentation-langchain>=0.1.12
30
+ Requires-Dist: openinference-instrumentation-llama-index>=1.2.0
31
+ Requires-Dist: openinference-instrumentation-openai>=0.1.4
32
+ Requires-Dist: openinference-semantic-conventions>=0.1.5
33
+ Requires-Dist: opentelemetry-exporter-otlp
34
+ Requires-Dist: opentelemetry-proto>=1.12.0
35
+ Requires-Dist: opentelemetry-sdk
36
+ Requires-Dist: opentelemetry-semantic-conventions
37
+ Requires-Dist: pandas
38
+ Requires-Dist: protobuf<6.0,>=3.20
39
+ Requires-Dist: psutil
40
+ Requires-Dist: pyarrow
41
+ Requires-Dist: requests
42
+ Requires-Dist: scikit-learn
43
+ Requires-Dist: scipy
44
+ Requires-Dist: sqlalchemy[asyncio]<3,>=2.0.4
45
+ Requires-Dist: sqlean-py>=3.45.1
46
+ Requires-Dist: starlette
47
+ Requires-Dist: strawberry-graphql==0.227.2
48
+ Requires-Dist: tqdm
49
+ Requires-Dist: typing-extensions>=4.5; python_version < '3.12'
50
+ Requires-Dist: typing-extensions>=4.6; python_version >= '3.12'
51
+ Requires-Dist: umap-learn
52
+ Requires-Dist: uvicorn
53
+ Requires-Dist: wrapt
54
+ Provides-Extra: container
55
+ Requires-Dist: opentelemetry-exporter-otlp; extra == 'container'
56
+ Requires-Dist: opentelemetry-instrumentation-grpc; extra == 'container'
57
+ Requires-Dist: opentelemetry-instrumentation-sqlalchemy; extra == 'container'
58
+ Requires-Dist: opentelemetry-instrumentation-starlette; extra == 'container'
59
+ Requires-Dist: opentelemetry-proto>=1.12.0; extra == 'container'
60
+ Requires-Dist: opentelemetry-sdk; extra == 'container'
61
+ Requires-Dist: opentelemetry-semantic-conventions; extra == 'container'
62
+ Requires-Dist: prometheus-client; extra == 'container'
63
+ Requires-Dist: py-grpc-prometheus; extra == 'container'
64
+ Requires-Dist: strawberry-graphql[opentelemetry]==0.227.2; extra == 'container'
65
+ Requires-Dist: uvloop; (platform_system != 'Windows') and extra == 'container'
66
+ Provides-Extra: dev
67
+ Requires-Dist: anthropic; extra == 'dev'
68
+ Requires-Dist: arize[autoembeddings,llm-evaluation]; extra == 'dev'
69
+ Requires-Dist: asyncpg; extra == 'dev'
70
+ Requires-Dist: gcsfs; extra == 'dev'
71
+ Requires-Dist: google-cloud-aiplatform>=1.3; extra == 'dev'
72
+ Requires-Dist: hatch; extra == 'dev'
73
+ Requires-Dist: jupyter; extra == 'dev'
74
+ Requires-Dist: langchain>=0.0.334; extra == 'dev'
75
+ Requires-Dist: litellm>=1.0.3; extra == 'dev'
76
+ Requires-Dist: llama-index>=0.10.3; extra == 'dev'
77
+ Requires-Dist: nbqa; extra == 'dev'
78
+ Requires-Dist: pandas-stubs<=2.0.2.230605; extra == 'dev'
79
+ Requires-Dist: pre-commit; extra == 'dev'
80
+ Requires-Dist: prometheus-client; extra == 'dev'
81
+ Requires-Dist: psycopg[binary]; extra == 'dev'
82
+ Requires-Dist: pytest-asyncio; extra == 'dev'
83
+ Requires-Dist: pytest-cov; extra == 'dev'
84
+ Requires-Dist: pytest-lazy-fixture; extra == 'dev'
85
+ Requires-Dist: pytest-postgresql; extra == 'dev'
86
+ Requires-Dist: pytest==7.4.4; extra == 'dev'
87
+ Requires-Dist: ruff==0.3.0; extra == 'dev'
88
+ Requires-Dist: strawberry-graphql[debug-server,opentelemetry]==0.227.2; extra == 'dev'
89
+ Provides-Extra: evals
90
+ Requires-Dist: arize-phoenix-evals>=0.3.0; extra == 'evals'
91
+ Provides-Extra: experimental
92
+ Requires-Dist: tenacity; extra == 'experimental'
93
+ Provides-Extra: llama-index
94
+ Requires-Dist: llama-index-callbacks-arize-phoenix>=0.1.2; extra == 'llama-index'
95
+ Requires-Dist: llama-index==0.10.3; extra == 'llama-index'
96
+ Requires-Dist: openinference-instrumentation-llama-index>=1.2.0; extra == 'llama-index'
97
+ Provides-Extra: pg
98
+ Requires-Dist: asyncpg; extra == 'pg'
99
+ Description-Content-Type: text/markdown
100
+
101
+ <p align="center">
102
+ <a target="_blank" href="https://phoenix.arize.com" style="background:none">
103
+ <img alt="phoenix banner" src="https://github.com/Arize-ai/phoenix-assets/blob/main/images/socal/github-large-banner-phoenix.jpg?raw=true" width="auto" height="auto"></img>
104
+ </a>
105
+ <br/>
106
+ <br/>
107
+ <a href="https://docs.arize.com/phoenix/">
108
+ <img src="https://img.shields.io/static/v1?message=Docs&logo=&labelColor=grey&color=blue&logoColor=white&label=%20"/>
109
+ </a>
110
+ <a target="_blank" href="https://join.slack.com/t/arize-ai/shared_invite/zt-1px8dcmlf-fmThhDFD_V_48oU7ALan4Q">
111
+ <img src="https://img.shields.io/static/v1?message=Community&logo=slack&labelColor=grey&color=blue&logoColor=white&label=%20"/>
112
+ </a>
113
+ <a target="_blank" href="https://twitter.com/ArizePhoenix">
114
+ <img src="https://img.shields.io/badge/-ArizePhoenix-blue.svg?color=blue&labelColor=gray&logo=twitter">
115
+ </a>
116
+ <a target="_blank" href="https://pypi.org/project/arize-phoenix/">
117
+ <img src="https://img.shields.io/pypi/v/arize-phoenix?color=blue">
118
+ </a>
119
+ <a target="_blank" href="https://anaconda.org/conda-forge/arize-phoenix">
120
+ <img src="https://img.shields.io/conda/vn/conda-forge/arize-phoenix.svg?color=blue">
121
+ </a>
122
+ <a target="_blank" href="https://pypi.org/project/arize-phoenix/">
123
+ <img src="https://img.shields.io/pypi/pyversions/arize-phoenix">
124
+ </a>
125
+ <a target="_blank" href="https://hub.docker.com/r/arizephoenix/phoenix/tags">
126
+ <img src="https://img.shields.io/docker/v/arizephoenix/phoenix?sort=semver&logo=docker&label=image&color=blue">
127
+ </a>
128
+ </p>
129
+
130
+ Phoenix is an open-source AI observability platform designed for experimentation, evaluation, and troubleshooting. It provides:
131
+
132
+ - **_Tracing_** - Trace your LLM application's runtime using using OpenTelemetry-based instrumentation.
133
+ - **_Evaluation_** - Leverage LLMs to benchmark your application's performance using response and retrieval evals.
134
+ - **_Inference Analysis_** - Visualize inferences and embeddings using dimensionality reduction and clustering to identify drift and performance degradation.
135
+
136
+ Phoenix is vendor and language agnostic with out-of-the-box support for popular frameworks (🦙LlamaIndex, 🦜⛓LangChain, 🧩DSPy) and LLM providers (OpenAI, Bedrock, and more). For details on auto-instrumentation, check out the [OpenInference](https://github.com/Arize-ai/openinference) project.
137
+
138
+ Phoenix runs practically anywhere, including your Jupyter notebook, local machine, containerized deployment, or in the cloud.
139
+
140
+ ## Installation
141
+
142
+ Install Phoenix via `pip` or `conda` along with extra dependencies for running evals:
143
+
144
+ ```shell
145
+ pip install 'arize-phoenix[evals]'
146
+ ```
147
+
148
+ Phoenix container images are available via [Docker Hub](https://hub.docker.com/r/arizephoenix/phoenix) and can be deployed using Docker or Kubernetes.
149
+
150
+ ## Community
151
+
152
+ Join our community to connect with thousands of AI builders.
153
+
154
+ - 🌍 Join our [Slack community](https://join.slack.com/t/arize-ai/shared_invite/zt-1px8dcmlf-fmThhDFD_V_48oU7ALan4Q).
155
+ - 💡 Ask questions and provide feedback in the _#phoenix-support_ channel.
156
+ - 🌟 Leave a star on our [GitHub](https://github.com/Arize-ai/phoenix).
157
+ - 🐞 Report bugs with [GitHub Issues](https://github.com/Arize-ai/phoenix/issues).
158
+ - 𝕏 Follow us on [𝕏](https://twitter.com/ArizePhoenix).
159
+ - 💌️ Sign up for our [mailing list](https://phoenix.arize.com/#updates).
160
+ - 🗺️ Check out our [roadmap](https://github.com/orgs/Arize-ai/projects/45) to see where we're heading next.
161
+
162
+ ## Thanks
163
+
164
+ - [UMAP](https://github.com/lmcinnes/umap) For unlocking the ability to visualize and reason about embeddings
165
+ - [HDBSCAN](https://github.com/scikit-learn-contrib/hdbscan) For providing a clustering algorithm to aid in the discovery of drift and performance degradation
166
+
167
+ ## Breaking Changes
168
+
169
+ See the [migration guide](./MIGRATION.md) for a list of breaking changes.
170
+
171
+ ## Copyright, Patent, and License
172
+
173
+ Copyright 2023 Arize AI, Inc. All Rights Reserved.
174
+
175
+ Portions of this code are patent protected by one or more U.S. Patents. See [IP_NOTICE](https://github.com/Arize-ai/phoenix/blob/main/IP_NOTICE).
176
+
177
+ This software is licensed under the terms of the Elastic License 2.0 (ELv2). See [LICENSE](https://github.com/Arize-ai/phoenix/blob/main/LICENSE).
@@ -5,7 +5,7 @@ phoenix/exceptions.py,sha256=n2L2KKuecrdflB9MsCdAYCiSEvGJptIsfRkXMoJle7A,169
5
5
  phoenix/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
6
6
  phoenix/services.py,sha256=haZUWKuxfI5lm0o61HgW_4B6RTBg9CUbXC8y92ZMsw4,5121
7
7
  phoenix/settings.py,sha256=cO-qgis_S27nHirTobYI9hHPfZH18R--WMmxNdsVUwc,273
8
- phoenix/version.py,sha256=NtWqZUv_8plp1gndoYX_eAqe7K65oPMh-hIvB4Evdc8,22
8
+ phoenix/version.py,sha256=AyLvA6hLK9mzQgiHyEbmvYQ9t6-oye0gm_KltlPS_oc,22
9
9
  phoenix/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  phoenix/core/embedding_dimension.py,sha256=zKGbcvwOXgLf-yrJBpQyKtd-LEOPRKHnUToyAU8Owis,87
11
11
  phoenix/core/model.py,sha256=SBO8BZg_CeQuH5LrSgzlQfqMModzirkQePdhnbLw7dE,4756
@@ -166,7 +166,7 @@ phoenix/trace/utils.py,sha256=7LurVGXn245cjj4MJsc7v6jq4DSJkpK6YGBfIaSywuw,1307
166
166
  phoenix/trace/dsl/README.md,sha256=ihmP9zGUC5V-TDbzKla76LuyDqPDQIBUH2BORwxNI68,2902
167
167
  phoenix/trace/dsl/__init__.py,sha256=WIQIjJg362XD3s50OsPJJ0xbDsGp41bSv7vDllLrPuA,144
168
168
  phoenix/trace/dsl/filter.py,sha256=w4jHpzykdcpuk-3Z7diI6hXQjBKIuJ7vuS-bDIC_7Ck,31900
169
- phoenix/trace/dsl/helpers.py,sha256=vth40yFbNTAIbzOiZQJ79kjcZf_Zhqj4juU7kh6e3kA,3197
169
+ phoenix/trace/dsl/helpers.py,sha256=ULAhqWULPqYWCSNX7y50DVKIqfySx86nqb6hDvZPnVk,3896
170
170
  phoenix/trace/dsl/query.py,sha256=W0t-tiXh2WIVb96lzFAGQOQ-U46uKux78d4KL3rW-PE,30316
171
171
  phoenix/trace/langchain/__init__.py,sha256=F37GfD1pd5Kuw7R7iRUM1zXXpO8xEcycNZh5dwqBXNk,109
172
172
  phoenix/trace/langchain/instrumentor.py,sha256=isW3KRRP55t3JeaipAJ_aS7N_3HtwScPCO67ymSLr0Y,1372
@@ -183,8 +183,8 @@ phoenix/utilities/error_handling.py,sha256=7b5rpGFj9EWZ8yrZK1IHvxB89suWk3lggDayU
183
183
  phoenix/utilities/logging.py,sha256=lDXd6EGaamBNcQxL4vP1au9-i_SXe0OraUDiJOcszSw,222
184
184
  phoenix/utilities/project.py,sha256=qWsvKnG1oKhOFUowXf9qiOL2ia7jaFe_ijFFHEt8GJo,431
185
185
  phoenix/utilities/span_store.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
186
- arize_phoenix-4.1.1.dist-info/METADATA,sha256=PdPeUgt5sN4MgMN_FSNaAHxX_5uNLyHViDAlXxYC_SI,30464
187
- arize_phoenix-4.1.1.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
188
- arize_phoenix-4.1.1.dist-info/licenses/IP_NOTICE,sha256=JBqyyCYYxGDfzQ0TtsQgjts41IJoa-hiwDrBjCb9gHM,469
189
- arize_phoenix-4.1.1.dist-info/licenses/LICENSE,sha256=HFkW9REuMOkvKRACuwLPT0hRydHb3zNg-fdFt94td18,3794
190
- arize_phoenix-4.1.1.dist-info/RECORD,,
186
+ arize_phoenix-4.1.2.dist-info/METADATA,sha256=tzT6A4WMGsmhlKlHqZgkEoEMvv3DES0rG_lE4sy-aK8,11148
187
+ arize_phoenix-4.1.2.dist-info/WHEEL,sha256=zEMcRr9Kr03x1ozGwg5v9NQBKn3kndp6LSoSlVg-jhU,87
188
+ arize_phoenix-4.1.2.dist-info/licenses/IP_NOTICE,sha256=JBqyyCYYxGDfzQ0TtsQgjts41IJoa-hiwDrBjCb9gHM,469
189
+ arize_phoenix-4.1.2.dist-info/licenses/LICENSE,sha256=HFkW9REuMOkvKRACuwLPT0hRydHb3zNg-fdFt94td18,3794
190
+ arize_phoenix-4.1.2.dist-info/RECORD,,
@@ -1,6 +1,6 @@
1
1
  import warnings
2
2
  from datetime import datetime
3
- from typing import List, Optional, Protocol, Union, cast
3
+ from typing import List, Optional, Protocol, Tuple, Union, cast
4
4
 
5
5
  import pandas as pd
6
6
  from openinference.semconv.trace import DocumentAttributes, SpanAttributes
@@ -75,7 +75,7 @@ def get_qa_with_reference(
75
75
  project_name: Optional[str] = None,
76
76
  # Deprecated
77
77
  stop_time: Optional[datetime] = None,
78
- ) -> pd.DataFrame:
78
+ ) -> Optional[pd.DataFrame]:
79
79
  project_name = project_name or get_env_project_name()
80
80
  if stop_time:
81
81
  # Deprecated. Raise a warning
@@ -84,23 +84,35 @@ def get_qa_with_reference(
84
84
  DeprecationWarning,
85
85
  )
86
86
  end_time = end_time or stop_time
87
- return pd.concat(
88
- cast(
89
- List[pd.DataFrame],
90
- obj.query_spans(
91
- SpanQuery().select(**IO).where(IS_ROOT),
92
- SpanQuery()
93
- .where(IS_RETRIEVER)
94
- .select(span_id="parent_id")
95
- .concat(
96
- RETRIEVAL_DOCUMENTS,
97
- reference=DOCUMENT_CONTENT,
98
- ),
99
- start_time=start_time,
100
- end_time=end_time,
101
- project_name=project_name,
102
- ),
87
+ separator = "\n\n"
88
+ qa_query = SpanQuery().select("span_id", **IO).where(IS_ROOT).with_index("trace_id")
89
+ docs_query = (
90
+ SpanQuery()
91
+ .where(IS_RETRIEVER)
92
+ .concat(RETRIEVAL_DOCUMENTS, reference=DOCUMENT_CONTENT)
93
+ .with_concat_separator(separator=separator)
94
+ .with_index("trace_id")
95
+ )
96
+ df_qa, df_docs = cast(
97
+ Tuple[pd.DataFrame, pd.DataFrame],
98
+ obj.query_spans(
99
+ qa_query,
100
+ docs_query,
101
+ start_time=start_time,
102
+ end_time=end_time,
103
+ project_name=project_name,
103
104
  ),
104
- axis=1,
105
- join="inner",
106
105
  )
106
+ if df_qa is None or df_qa.empty:
107
+ print("No spans found.")
108
+ return None
109
+ if df_docs is None or df_docs.empty:
110
+ print("No retrieval documents found.")
111
+ return None
112
+ # Consolidate duplicate rows via concatenation. This can happen if there are multiple
113
+ # retriever spans in the same trace. We simply concatenate all of them (in no particular
114
+ # order) into a single row.
115
+ ref = df_docs.groupby("context.trace_id")["reference"].apply(lambda x: separator.join(x))
116
+ df_ref = pd.DataFrame({"reference": ref})
117
+ df_qa_ref = pd.concat([df_qa, df_ref], axis=1, join="inner").set_index("context.span_id")
118
+ return df_qa_ref
phoenix/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "4.1.1"
1
+ __version__ = "4.1.2"
@@ -1,520 +0,0 @@
1
- Metadata-Version: 2.3
2
- Name: arize-phoenix
3
- Version: 4.1.1
4
- Summary: AI Observability and Evaluation
5
- Project-URL: Documentation, https://docs.arize.com/phoenix/
6
- Project-URL: Issues, https://github.com/Arize-ai/phoenix/issues
7
- Project-URL: Source, https://github.com/Arize-ai/phoenix
8
- Author-email: Arize AI <phoenix-devs@arize.com>
9
- License: Elastic-2.0
10
- License-File: IP_NOTICE
11
- License-File: LICENSE
12
- Keywords: Explainability,Monitoring,Observability
13
- Classifier: Programming Language :: Python
14
- Classifier: Programming Language :: Python :: 3.8
15
- Classifier: Programming Language :: Python :: 3.9
16
- Classifier: Programming Language :: Python :: 3.10
17
- Classifier: Programming Language :: Python :: 3.11
18
- Classifier: Programming Language :: Python :: 3.12
19
- Requires-Python: <3.13,>=3.8
20
- Requires-Dist: aioitertools
21
- Requires-Dist: aiosqlite
22
- Requires-Dist: alembic<2,>=1.3.0
23
- Requires-Dist: cachetools
24
- Requires-Dist: grpcio
25
- Requires-Dist: hdbscan>=0.8.33
26
- Requires-Dist: jinja2
27
- Requires-Dist: numpy
28
- Requires-Dist: openinference-instrumentation
29
- Requires-Dist: openinference-instrumentation-langchain>=0.1.12
30
- Requires-Dist: openinference-instrumentation-llama-index>=1.2.0
31
- Requires-Dist: openinference-instrumentation-openai>=0.1.4
32
- Requires-Dist: openinference-semantic-conventions>=0.1.5
33
- Requires-Dist: opentelemetry-exporter-otlp
34
- Requires-Dist: opentelemetry-proto>=1.12.0
35
- Requires-Dist: opentelemetry-sdk
36
- Requires-Dist: opentelemetry-semantic-conventions
37
- Requires-Dist: pandas
38
- Requires-Dist: protobuf<6.0,>=3.20
39
- Requires-Dist: psutil
40
- Requires-Dist: pyarrow
41
- Requires-Dist: requests
42
- Requires-Dist: scikit-learn
43
- Requires-Dist: scipy
44
- Requires-Dist: sqlalchemy[asyncio]<3,>=2.0.4
45
- Requires-Dist: sqlean-py>=3.45.1
46
- Requires-Dist: starlette
47
- Requires-Dist: strawberry-graphql==0.227.2
48
- Requires-Dist: tqdm
49
- Requires-Dist: typing-extensions>=4.5; python_version < '3.12'
50
- Requires-Dist: typing-extensions>=4.6; python_version >= '3.12'
51
- Requires-Dist: umap-learn
52
- Requires-Dist: uvicorn
53
- Requires-Dist: wrapt
54
- Provides-Extra: container
55
- Requires-Dist: opentelemetry-exporter-otlp; extra == 'container'
56
- Requires-Dist: opentelemetry-instrumentation-grpc; extra == 'container'
57
- Requires-Dist: opentelemetry-instrumentation-sqlalchemy; extra == 'container'
58
- Requires-Dist: opentelemetry-instrumentation-starlette; extra == 'container'
59
- Requires-Dist: opentelemetry-proto>=1.12.0; extra == 'container'
60
- Requires-Dist: opentelemetry-sdk; extra == 'container'
61
- Requires-Dist: opentelemetry-semantic-conventions; extra == 'container'
62
- Requires-Dist: prometheus-client; extra == 'container'
63
- Requires-Dist: py-grpc-prometheus; extra == 'container'
64
- Requires-Dist: strawberry-graphql[opentelemetry]==0.227.2; extra == 'container'
65
- Requires-Dist: uvloop; (platform_system != 'Windows') and extra == 'container'
66
- Provides-Extra: dev
67
- Requires-Dist: anthropic; extra == 'dev'
68
- Requires-Dist: arize[autoembeddings,llm-evaluation]; extra == 'dev'
69
- Requires-Dist: asyncpg; extra == 'dev'
70
- Requires-Dist: gcsfs; extra == 'dev'
71
- Requires-Dist: google-cloud-aiplatform>=1.3; extra == 'dev'
72
- Requires-Dist: hatch; extra == 'dev'
73
- Requires-Dist: jupyter; extra == 'dev'
74
- Requires-Dist: langchain>=0.0.334; extra == 'dev'
75
- Requires-Dist: litellm>=1.0.3; extra == 'dev'
76
- Requires-Dist: llama-index>=0.10.3; extra == 'dev'
77
- Requires-Dist: nbqa; extra == 'dev'
78
- Requires-Dist: pandas-stubs<=2.0.2.230605; extra == 'dev'
79
- Requires-Dist: pre-commit; extra == 'dev'
80
- Requires-Dist: prometheus-client; extra == 'dev'
81
- Requires-Dist: psycopg[binary]; extra == 'dev'
82
- Requires-Dist: pytest-asyncio; extra == 'dev'
83
- Requires-Dist: pytest-cov; extra == 'dev'
84
- Requires-Dist: pytest-lazy-fixture; extra == 'dev'
85
- Requires-Dist: pytest-postgresql; extra == 'dev'
86
- Requires-Dist: pytest==7.4.4; extra == 'dev'
87
- Requires-Dist: ruff==0.3.0; extra == 'dev'
88
- Requires-Dist: strawberry-graphql[debug-server,opentelemetry]==0.227.2; extra == 'dev'
89
- Provides-Extra: evals
90
- Requires-Dist: arize-phoenix-evals>=0.3.0; extra == 'evals'
91
- Provides-Extra: experimental
92
- Requires-Dist: tenacity; extra == 'experimental'
93
- Provides-Extra: llama-index
94
- Requires-Dist: llama-index-callbacks-arize-phoenix>=0.1.2; extra == 'llama-index'
95
- Requires-Dist: llama-index==0.10.3; extra == 'llama-index'
96
- Requires-Dist: openinference-instrumentation-llama-index>=1.2.0; extra == 'llama-index'
97
- Provides-Extra: pg
98
- Requires-Dist: asyncpg; extra == 'pg'
99
- Description-Content-Type: text/markdown
100
-
101
- <p align="center">
102
- <a target="_blank" href="https://phoenix.arize.com" style="background:none">
103
- <img alt="phoenix logo" src="https://storage.googleapis.com/arize-assets/phoenix/assets/phoenix-logo-light.svg" width="auto" height="200"></img>
104
- </a>
105
- <br/>
106
- <br/>
107
- <a href="https://docs.arize.com/phoenix/">
108
- <img src="https://img.shields.io/static/v1?message=Docs&logo=&labelColor=grey&color=blue&logoColor=white&label=%20"/>
109
- </a>
110
- <a target="_blank" href="https://join.slack.com/t/arize-ai/shared_invite/zt-1px8dcmlf-fmThhDFD_V_48oU7ALan4Q">
111
- <img src="https://img.shields.io/static/v1?message=Community&logo=slack&labelColor=grey&color=blue&logoColor=white&label=%20"/>
112
- </a>
113
- <a target="_blank" href="https://twitter.com/ArizePhoenix">
114
- <img src="https://img.shields.io/badge/-ArizePhoenix-blue.svg?color=blue&labelColor=gray&logo=twitter">
115
- </a>
116
- <a target="_blank" href="https://pypi.org/project/arize-phoenix/">
117
- <img src="https://img.shields.io/pypi/v/arize-phoenix?color=blue">
118
- </a>
119
- <a target="_blank" href="https://anaconda.org/conda-forge/arize-phoenix">
120
- <img src="https://img.shields.io/conda/vn/conda-forge/arize-phoenix.svg?color=blue">
121
- </a>
122
- <a target="_blank" href="https://pypi.org/project/arize-phoenix/">
123
- <img src="https://img.shields.io/pypi/pyversions/arize-phoenix">
124
- </a>
125
- <a target="_blank" href="https://hub.docker.com/r/arizephoenix/phoenix/tags">
126
- <img src="https://img.shields.io/docker/v/arizephoenix/phoenix?sort=semver&logo=docker&label=image&color=blue">
127
- </a>
128
- </p>
129
-
130
- ![a rotating UMAP point cloud of a computer vision model](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/image_classification_10mb.gif?raw=true)
131
-
132
- Phoenix provides MLOps and LLMOps insights at lightning speed with zero-config observability. Phoenix provides a notebook-first experience for monitoring your models and LLM Applications by providing:
133
-
134
- - **LLM Traces** - Trace through the execution of your LLM Application to understand the internals of your LLM Application and to troubleshoot problems related to things like retrieval and tool execution.
135
- - **LLM Evals** - Leverage the power of large language models to evaluate your generative model or application's relevance, toxicity, and more.
136
- - **Embedding Analysis** - Explore embedding point-clouds and identify clusters of high drift and performance degradation.
137
- - **RAG Analysis** - Visualize your generative application's search and retrieval process to identify problems and improve your RAG pipeline.
138
- - **Structured Data Analysis** - Statistically analyze your structured data by performing A/B analysis, temporal drift analysis, and more.
139
-
140
- **Table of Contents**
141
-
142
- - [Installation](#installation)
143
- - [LLM Traces](#llm-traces)
144
- - [Tracing with LlamaIndex](#tracing-with-llamaindex)
145
- - [Tracing with LangChain](#tracing-with-langchain)
146
- - [LLM Evals](#llm-evals)
147
- - [Embedding Analysis](#embedding-analysis)
148
- - [UMAP-based Exploratory Data Analysis](#umap-based-exploratory-data-analysis)
149
- - [Cluster-driven Drift and Performance Analysis](#cluster-driven-drift-and-performance-analysis)
150
- - [Exportable Clusters](#exportable-clusters)
151
- - [Retrieval-Augmented Generation Analysis](#retrieval-augmented-generation-analysis)
152
- - [Structured Data Analysis](#structured-data-analysis)
153
- - [Deploying Phoenix](#deploying-phoenix)
154
- - [Breaking Changes](#breaking-changes)
155
- - [Community](#community)
156
- - [Thanks](#thanks)
157
- - [Copyright, Patent, and License](#copyright-patent-and-license)
158
-
159
- ## Installation
160
-
161
- Install Phoenix via `pip` or or `conda` as well as any of its subpackages.
162
-
163
- ```shell
164
- pip install arize-phoenix[evals]
165
- ```
166
-
167
- > [!NOTE]
168
- > The above will install Phoenix and its `evals` subpackage. To just install phoenix's evaluation package, you can run `pip install arize-phoenix-evals` instead.
169
-
170
- ## LLM Traces
171
-
172
- ![LLM Application Tracing](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/langchain_rag_stuff_documents_chain_10mb.gif?raw=true)
173
-
174
- With the advent of powerful LLMs, it is now possible to build LLM Applications that can perform complex tasks like summarization, translation, question and answering, and more. However, these applications are often difficult to debug and troubleshoot as they have an extensive surface area: search and retrieval via vector stores, embedding generation, usage of external tools and so on. Phoenix provides a tracing framework that allows you to trace through the execution of your LLM Application hierarchically. This allows you to understand the internals of your LLM Application and to troubleshoot the complex components of your applicaition. Phoenix is built on top of the OpenInference tracing standard and uses it to trace, export, and collect critical information about your LLM Application in the form of `spans`. For more details on the OpenInference tracing standard, see the [OpenInference Specification](https://github.com/Arize-ai/openinference)
175
-
176
- ### Tracing with LlamaIndex
177
-
178
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/llama_index_tracing_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/llama_index_tracing_tutorial.ipynb)
179
-
180
- ![LLM Traces UI](https://storage.googleapis.com/arize-assets/phoenix/assets/images/trace_details_view.png)
181
-
182
- To extract traces from your LlamaIndex application, you will have to add Phoenix's `OpenInferenceTraceCallback` to your LlamaIndex application. A callback (in this case an OpenInference `Tracer`) is a class that automatically accumulates `spans` that trac your application as it executes. The OpenInference `Tracer` is a tracer that is specifically designed to work with Phoenix and by default exports the traces to a locally running phoenix server.
183
-
184
- ```shell
185
- # Install phoenix as well as llama_index and your LLM of choice
186
- pip install "arize-phoenix[evals]" "openai>=1" "llama-index>=0.10.3" "openinference-instrumentation-llama-index>=1.0.0" "llama-index-callbacks-arize-phoenix>=0.1.2" llama-index-llms-openai
187
- ```
188
-
189
- Launch Phoenix in a notebook and view the traces of your LlamaIndex application in the Phoenix UI.
190
-
191
- ```python
192
- import os
193
- import phoenix as px
194
- from llama_index.core import (
195
- Settings,
196
- VectorStoreIndex,
197
- SimpleDirectoryReader,
198
- set_global_handler,
199
- )
200
- from llama_index.embeddings.openai import OpenAIEmbedding
201
- from llama_index.llms.openai import OpenAI
202
-
203
- os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
204
-
205
- # To view traces in Phoenix, you will first have to start a Phoenix server. You can do this by running the following:
206
- session = px.launch_app()
207
-
208
-
209
- # Once you have started a Phoenix server, you can start your LlamaIndex application and configure it to send traces to Phoenix. To do this, you will have to add configure Phoenix as the global handler
210
-
211
- set_global_handler("arize_phoenix")
212
-
213
-
214
- # LlamaIndex application initialization may vary
215
- # depending on your application
216
- Settings.llm = OpenAI(model="gpt-4-turbo-preview")
217
- Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
218
-
219
-
220
- # Load your data and create an index. Note you usually want to store your index in a persistent store like a database or the file system
221
- documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
222
- index = VectorStoreIndex.from_documents(documents)
223
-
224
- query_engine = index.as_query_engine()
225
-
226
- # Query your LlamaIndex application
227
- query_engine.query("What is the meaning of life?")
228
- query_engine.query("Why did the cow jump over the moon?")
229
-
230
- # View the traces in the Phoenix UI
231
- px.active_session().url
232
- ```
233
-
234
- ### Tracing with LangChain
235
-
236
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain_tracing_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain_tracing_tutorial.ipynb)
237
-
238
- To extract traces from your LangChain application, you will have to add Phoenix's OpenInference Tracer to your LangChain application. A tracer is a class that automatically accumulates traces as your application executes. The OpenInference Tracer is a tracer that is specifically designed to work with Phoenix and by default exports the traces to a locally running phoenix server.
239
-
240
- ```shell
241
- # Install phoenix as well as langchain and your LLM of choice
242
- pip install arize-phoenix langchain openai
243
-
244
- ```
245
-
246
- Launch Phoenix in a notebook and view the traces of your LangChain application in the Phoenix UI.
247
-
248
- ```python
249
- import phoenix as px
250
- import pandas as pd
251
- import numpy as np
252
-
253
- # Launch phoenix
254
- session = px.launch_app()
255
-
256
- # Once you have started a Phoenix server, you can start your LangChain application with the OpenInferenceTracer as a callback. To do this, you will have to instrument your LangChain application with the tracer:
257
-
258
- from phoenix.trace.langchain import LangChainInstrumentor
259
-
260
- # By default, the traces will be exported to the locally running Phoenix server.
261
- LangChainInstrumentor().instrument()
262
-
263
- # Initialize your LangChain application
264
- from langchain.chains import RetrievalQA
265
- from langchain.chat_models import ChatOpenAI
266
- from langchain.embeddings import OpenAIEmbeddings
267
- from langchain.retrievers import KNNRetriever
268
-
269
- embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
270
- documents_df = pd.read_parquet(
271
- "http://storage.googleapis.com/arize-assets/phoenix/datasets/unstructured/llm/context-retrieval/langchain-pinecone/database.parquet"
272
- )
273
- knn_retriever = KNNRetriever(
274
- index=np.stack(documents_df["text_vector"]),
275
- texts=documents_df["text"].tolist(),
276
- embeddings=OpenAIEmbeddings(),
277
- )
278
- chain_type = "stuff" # stuff, refine, map_reduce, and map_rerank
279
- chat_model_name = "gpt-3.5-turbo"
280
- llm = ChatOpenAI(model_name=chat_model_name)
281
- chain = RetrievalQA.from_chain_type(
282
- llm=llm,
283
- chain_type=chain_type,
284
- retriever=knn_retriever,
285
- )
286
-
287
- # Instrument the execution of the runs with the tracer. By default the tracer uses an HTTPExporter
288
- query = "What is euclidean distance?"
289
- response = chain.run(query, callbacks=[tracer])
290
-
291
- # By adding the tracer to the callbacks of LangChain, we've created a one-way data connection between your LLM application and Phoenix.
292
-
293
- # To view the traces in Phoenix, simply open the UI in your browser.
294
- session.url
295
- ```
296
-
297
- ## LLM Evals
298
-
299
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate_relevance_classifications.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate_relevance_classifications.ipynb)
300
-
301
- Phoenix provides tooling to evaluate LLM applications, including tools to determine the relevance or irrelevance of documents retrieved by retrieval-augmented generation (RAG) application, whether or not the response is toxic, and much more.
302
-
303
- Phoenix's approach to LLM evals is notable for the following reasons:
304
-
305
- - Includes pre-tested templates and convenience functions for a set of common Eval “tasks”
306
- - Data science rigor applied to the testing of model and template combinations
307
- - Designed to run as fast as possible on batches of data
308
- - Includes benchmark datasets and tests for each eval function
309
-
310
- Here is an example of running the RAG relevance eval on a dataset of Wikipedia questions and answers:
311
-
312
- ```shell
313
- # Install phoenix as well as the evals subpackage
314
- pip install 'arize-phoenix[evals]' ipython matplotlib openai pycm scikit-learn
315
- ```
316
-
317
- ```python
318
- from phoenix.evals import (
319
- RAG_RELEVANCY_PROMPT_TEMPLATE,
320
- RAG_RELEVANCY_PROMPT_RAILS_MAP,
321
- OpenAIModel,
322
- download_benchmark_dataset,
323
- llm_classify,
324
- )
325
- from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, ConfusionMatrixDisplay
326
-
327
- # Download the benchmark golden dataset
328
- df = download_benchmark_dataset(
329
- task="binary-relevance-classification", dataset_name="wiki_qa-train"
330
- )
331
- # Sample and re-name the columns to match the template
332
- df = df.sample(100)
333
- df = df.rename(
334
- columns={
335
- "query_text": "input",
336
- "document_text": "reference",
337
- },
338
- )
339
- model = OpenAIModel(
340
- model="gpt-4",
341
- temperature=0.0,
342
- )
343
- rails =list(RAG_RELEVANCY_PROMPT_RAILS_MAP.values())
344
- df[["eval_relevance"]] = llm_classify(df, model, RAG_RELEVANCY_PROMPT_TEMPLATE, rails)
345
- #Golden dataset has True/False map to -> "irrelevant" / "relevant"
346
- #we can then scikit compare to output of template - same format
347
- y_true = df["relevant"].map({True: "relevant", False: "irrelevant"})
348
- y_pred = df["eval_relevance"]
349
-
350
- # Compute Per-Class Precision, Recall, F1 Score, Support
351
- precision, recall, f1, support = precision_recall_fscore_support(y_true, y_pred)
352
- ```
353
-
354
- To learn more about LLM Evals, see the [Evals documentation](https://docs.arize.com/phoenix/concepts/llm-evals/).
355
-
356
- ## Embedding Analysis
357
-
358
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/image_classification_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/image_classification_tutorial.ipynb)
359
-
360
- Explore UMAP point-clouds at times of high drift and performance degredation and identify clusters of problematic data.
361
-
362
- ![Euclidean distance drift analysis](https://storage.googleapis.com/arize-assets/phoenix/assets/images/ner_color_by_correctness.png)
363
-
364
- Embedding analysis is critical for understanding the behavior of you NLP, CV, and LLM Apps that use embeddings. Phoenix provides an A/B testing framework to help you understand how your embeddings are changing over time and how they are changing between different versions of your model (`prod` vs `train`, `champion` vs `challenger`).
365
-
366
- ```python
367
- # Import libraries.
368
- from dataclasses import replace
369
- import pandas as pd
370
- import phoenix as px
371
-
372
- # Download curated datasets and load them into pandas DataFrames.
373
- train_df = pd.read_parquet(
374
- "https://storage.googleapis.com/arize-assets/phoenix/datasets/unstructured/cv/human-actions/human_actions_training.parquet"
375
- )
376
- prod_df = pd.read_parquet(
377
- "https://storage.googleapis.com/arize-assets/phoenix/datasets/unstructured/cv/human-actions/human_actions_production.parquet"
378
- )
379
-
380
- # Define schemas that tell Phoenix which columns of your DataFrames correspond to features, predictions, actuals (i.e., ground truth), embeddings, etc.
381
- train_schema = px.Schema(
382
- prediction_id_column_name="prediction_id",
383
- timestamp_column_name="prediction_ts",
384
- prediction_label_column_name="predicted_action",
385
- actual_label_column_name="actual_action",
386
- embedding_feature_column_names={
387
- "image_embedding": px.EmbeddingColumnNames(
388
- vector_column_name="image_vector",
389
- link_to_data_column_name="url",
390
- ),
391
- },
392
- )
393
- prod_schema = replace(train_schema, actual_label_column_name=None)
394
-
395
- # Define your production and training datasets.
396
- prod_inf = px.Inferences(prod_df, prod_schema)
397
- train_inf = px.Inferences(train_df, train_schema)
398
-
399
- # Launch Phoenix.
400
- session = px.launch_app(prod_inf, train_inf)
401
-
402
- # View the Phoenix UI in the browser
403
- session.url
404
- ```
405
-
406
- ### UMAP-based Exploratory Data Analysis
407
-
408
- Color your UMAP point-clouds by your model's dimensions, drift, and performance to identify problematic cohorts.
409
-
410
- ![UMAP-based EDA](https://storage.googleapis.com/arize-assets/phoenix/assets/images/cv_eda_selection.png)
411
-
412
- ### Cluster-driven Drift and Performance Analysis
413
-
414
- Break-apart your data into clusters of high drift or bad performance using HDBSCAN
415
-
416
- ![HDBSCAN clusters sorted by drift](https://storage.googleapis.com/arize-assets/phoenix/assets/images/HDBSCAN_drift_analysis.png)
417
-
418
- ### Exportable Clusters
419
-
420
- Export your clusters to `parquet` files or dataframes for further analysis and fine-tuning.
421
-
422
- ## Retrieval-Augmented Generation Analysis
423
-
424
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llama_index_search_and_retrieval_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llama_index_search_and_retrieval_tutorial.ipynb)
425
-
426
- ![RAG Analysis](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/corpus_search_and_retrieval.gif?raw=true)
427
-
428
- Search and retrieval is a critical component of many LLM Applications as it allows you to extend the LLM's capabilities to encompass knowledge about private data. This process is known as RAG (retrieval-augmented generation) and often times a vector store is leveraged to store chunks of documents encoded as embeddings so that they can be retrieved at inference time.
429
-
430
- To help you better understand your RAG application, Phoenix allows you to upload a corpus of your knowledge base along with your LLM application's inferences to help you troubleshoot hard to find bugs with retrieval.
431
-
432
- ## Structured Data Analysis
433
-
434
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/credit_card_fraud_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/credit_card_fraud_tutorial.ipynb)
435
-
436
- Phoenix provides a suite of tools for analyzing structured data. These tools allow you to perform A/B analysis, temporal drift analysis, and more.
437
-
438
- ![Structured Data Analysis](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/cc_fraud_drift_10mb.gif?raw=true)
439
-
440
- ```python
441
- import pandas as pd
442
- import phoenix as px
443
-
444
- # Perform A/B analysis on your training and production datasets
445
- train_df = pd.read_parquet(
446
- "http://storage.googleapis.com/arize-assets/phoenix/datasets/structured/credit-card-fraud/credit_card_fraud_train.parquet",
447
- )
448
- prod_df = pd.read_parquet(
449
- "http://storage.googleapis.com/arize-assets/phoenix/datasets/structured/credit-card-fraud/credit_card_fraud_production.parquet",
450
- )
451
-
452
- # Describe the data for analysis
453
- schema = px.Schema(
454
- prediction_id_column_name="prediction_id",
455
- prediction_label_column_name="predicted_label",
456
- prediction_score_column_name="predicted_score",
457
- actual_label_column_name="actual_label",
458
- timestamp_column_name="prediction_timestamp",
459
- feature_column_names=feature_column_names,
460
- tag_column_names=["age"],
461
- )
462
-
463
- # Define your production and training datasets.
464
- prod_inf = px.Inferences(dataframe=prod_df, schema=schema, name="production")
465
- train_inf = px.Inferences(dataframe=train_df, schema=schema, name="training")
466
-
467
- # Launch Phoenix for analysis
468
- session = px.launch_app(primary=prod_inf, reference=train_inf)
469
- ```
470
-
471
- ## Deploying Phoenix
472
-
473
- <a target="_blank" href="https://hub.docker.com/repository/docker/arizephoenix/phoenix/general">
474
- <img src="https://img.shields.io/docker/v/arizephoenix/phoenix?sort=semver&logo=docker&label=image&color=blue">
475
- </a>
476
-
477
- <img src="https://storage.googleapis.com/arize-assets/phoenix/assets/images/deployment.png" title="How phoenix can collect traces from an LLM application"/>
478
-
479
- Phoenix's notebook-first approach to observability makes it a great tool to utilize during experimentation and pre-production. However at some point you are going to want to ship your application to production and continue to monitor your application as it runs. Phoenix is made up of two components that can be deployed independently:
480
-
481
- - **Trace Instrumentation**: These are a set of plugins that can be added to your application's startup process. These plugins (known as instrumentations) automatically collect spans for your application and export them for collection and visualization. For phoenix, all the instrumentors are managed via a single repository called [OpenInference](https://github.com/Arize-ai/openinference)
482
- - **Trace Collector**: The Phoenix server acts as a trace collector and application that helps you troubleshoot your application in real time. You can pull the latest images of Phoenix from the [Docker Hub](https://hub.docker.com/repository/docker/arizephoenix/phoenix/general)
483
-
484
- In order to run Phoenix tracing in production, you will have to follow these following steps:
485
-
486
- - **Setup a Server**: your LLM application to run on a server ([examples](https://github.com/Arize-ai/openinference/tree/main/python/examples))
487
- - **Instrument**: Add [OpenInference](https://github.com/Arize-ai/openinference) Instrumentation to your server
488
- - **Observe**: Run the Phoenix server as a side-car or a standalone instance and point your tracing instrumentation to the phoenix server
489
-
490
- For more information on deploying Phoenix, see the [Phoenix Deployment Guide](https://docs.arize.com/phoenix/deployment/deploying-phoenix).
491
-
492
- ## Breaking Changes
493
-
494
- see the [migration guide](./MIGRATION.md) for a list of breaking changes.
495
-
496
- ## Community
497
-
498
- Join our community to connect with thousands of machine learning practitioners and ML observability enthusiasts.
499
-
500
- - 🌍 Join our [Slack community](https://join.slack.com/t/arize-ai/shared_invite/zt-1px8dcmlf-fmThhDFD_V_48oU7ALan4Q).
501
- - 💡 Ask questions and provide feedback in the _#phoenix-support_ channel.
502
- - 🌟 Leave a star on our [GitHub](https://github.com/Arize-ai/phoenix).
503
- - 🐞 Report bugs with [GitHub Issues](https://github.com/Arize-ai/phoenix/issues).
504
- - 🐣 Follow us on [twitter](https://twitter.com/ArizePhoenix).
505
- - 💌️ Sign up for our [mailing list](https://phoenix.arize.com/#updates).
506
- - 🗺️ Check out our [roadmap](https://github.com/orgs/Arize-ai/projects/45) to see where we're heading next.
507
- - 🎓 Learn the fundamentals of ML observability with our [introductory](https://arize.com/ml-observability-fundamentals/) and [advanced](https://arize.com/blog-course/) courses.
508
-
509
- ## Thanks
510
-
511
- - [UMAP](https://github.com/lmcinnes/umap) For unlocking the ability to visualize and reason about embeddings
512
- - [HDBSCAN](https://github.com/scikit-learn-contrib/hdbscan) For providing a clustering algorithm to aid in the discovery of drift and performance degradation
513
-
514
- ## Copyright, Patent, and License
515
-
516
- Copyright 2023 Arize AI, Inc. All Rights Reserved.
517
-
518
- Portions of this code are patent protected by one or more U.S. Patents. See [IP_NOTICE](https://github.com/Arize-ai/phoenix/blob/main/IP_NOTICE).
519
-
520
- This software is licensed under the terms of the Elastic License 2.0 (ELv2). See [LICENSE](https://github.com/Arize-ai/phoenix/blob/main/LICENSE).