arize-phoenix 3.16.1__py3-none-any.whl → 7.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of arize-phoenix might be problematic. Click here for more details.

Files changed (338) hide show
  1. arize_phoenix-7.7.0.dist-info/METADATA +261 -0
  2. arize_phoenix-7.7.0.dist-info/RECORD +345 -0
  3. {arize_phoenix-3.16.1.dist-info → arize_phoenix-7.7.0.dist-info}/WHEEL +1 -1
  4. arize_phoenix-7.7.0.dist-info/entry_points.txt +3 -0
  5. phoenix/__init__.py +86 -14
  6. phoenix/auth.py +309 -0
  7. phoenix/config.py +675 -45
  8. phoenix/core/model.py +32 -30
  9. phoenix/core/model_schema.py +102 -109
  10. phoenix/core/model_schema_adapter.py +48 -45
  11. phoenix/datetime_utils.py +24 -3
  12. phoenix/db/README.md +54 -0
  13. phoenix/db/__init__.py +4 -0
  14. phoenix/db/alembic.ini +85 -0
  15. phoenix/db/bulk_inserter.py +294 -0
  16. phoenix/db/engines.py +208 -0
  17. phoenix/db/enums.py +20 -0
  18. phoenix/db/facilitator.py +113 -0
  19. phoenix/db/helpers.py +159 -0
  20. phoenix/db/insertion/constants.py +2 -0
  21. phoenix/db/insertion/dataset.py +227 -0
  22. phoenix/db/insertion/document_annotation.py +171 -0
  23. phoenix/db/insertion/evaluation.py +191 -0
  24. phoenix/db/insertion/helpers.py +98 -0
  25. phoenix/db/insertion/span.py +193 -0
  26. phoenix/db/insertion/span_annotation.py +158 -0
  27. phoenix/db/insertion/trace_annotation.py +158 -0
  28. phoenix/db/insertion/types.py +256 -0
  29. phoenix/db/migrate.py +86 -0
  30. phoenix/db/migrations/data_migration_scripts/populate_project_sessions.py +199 -0
  31. phoenix/db/migrations/env.py +114 -0
  32. phoenix/db/migrations/script.py.mako +26 -0
  33. phoenix/db/migrations/versions/10460e46d750_datasets.py +317 -0
  34. phoenix/db/migrations/versions/3be8647b87d8_add_token_columns_to_spans_table.py +126 -0
  35. phoenix/db/migrations/versions/4ded9e43755f_create_project_sessions_table.py +66 -0
  36. phoenix/db/migrations/versions/cd164e83824f_users_and_tokens.py +157 -0
  37. phoenix/db/migrations/versions/cf03bd6bae1d_init.py +280 -0
  38. phoenix/db/models.py +807 -0
  39. phoenix/exceptions.py +5 -1
  40. phoenix/experiments/__init__.py +6 -0
  41. phoenix/experiments/evaluators/__init__.py +29 -0
  42. phoenix/experiments/evaluators/base.py +158 -0
  43. phoenix/experiments/evaluators/code_evaluators.py +184 -0
  44. phoenix/experiments/evaluators/llm_evaluators.py +473 -0
  45. phoenix/experiments/evaluators/utils.py +236 -0
  46. phoenix/experiments/functions.py +772 -0
  47. phoenix/experiments/tracing.py +86 -0
  48. phoenix/experiments/types.py +726 -0
  49. phoenix/experiments/utils.py +25 -0
  50. phoenix/inferences/__init__.py +0 -0
  51. phoenix/{datasets → inferences}/errors.py +6 -5
  52. phoenix/{datasets → inferences}/fixtures.py +49 -42
  53. phoenix/{datasets/dataset.py → inferences/inferences.py} +121 -105
  54. phoenix/{datasets → inferences}/schema.py +11 -11
  55. phoenix/{datasets → inferences}/validation.py +13 -14
  56. phoenix/logging/__init__.py +3 -0
  57. phoenix/logging/_config.py +90 -0
  58. phoenix/logging/_filter.py +6 -0
  59. phoenix/logging/_formatter.py +69 -0
  60. phoenix/metrics/__init__.py +5 -4
  61. phoenix/metrics/binning.py +4 -3
  62. phoenix/metrics/metrics.py +2 -1
  63. phoenix/metrics/mixins.py +7 -6
  64. phoenix/metrics/retrieval_metrics.py +2 -1
  65. phoenix/metrics/timeseries.py +5 -4
  66. phoenix/metrics/wrappers.py +9 -3
  67. phoenix/pointcloud/clustering.py +5 -5
  68. phoenix/pointcloud/pointcloud.py +7 -5
  69. phoenix/pointcloud/projectors.py +5 -6
  70. phoenix/pointcloud/umap_parameters.py +53 -52
  71. phoenix/server/api/README.md +28 -0
  72. phoenix/server/api/auth.py +44 -0
  73. phoenix/server/api/context.py +152 -9
  74. phoenix/server/api/dataloaders/__init__.py +91 -0
  75. phoenix/server/api/dataloaders/annotation_summaries.py +139 -0
  76. phoenix/server/api/dataloaders/average_experiment_run_latency.py +54 -0
  77. phoenix/server/api/dataloaders/cache/__init__.py +3 -0
  78. phoenix/server/api/dataloaders/cache/two_tier_cache.py +68 -0
  79. phoenix/server/api/dataloaders/dataset_example_revisions.py +131 -0
  80. phoenix/server/api/dataloaders/dataset_example_spans.py +38 -0
  81. phoenix/server/api/dataloaders/document_evaluation_summaries.py +144 -0
  82. phoenix/server/api/dataloaders/document_evaluations.py +31 -0
  83. phoenix/server/api/dataloaders/document_retrieval_metrics.py +89 -0
  84. phoenix/server/api/dataloaders/experiment_annotation_summaries.py +79 -0
  85. phoenix/server/api/dataloaders/experiment_error_rates.py +58 -0
  86. phoenix/server/api/dataloaders/experiment_run_annotations.py +36 -0
  87. phoenix/server/api/dataloaders/experiment_run_counts.py +49 -0
  88. phoenix/server/api/dataloaders/experiment_sequence_number.py +44 -0
  89. phoenix/server/api/dataloaders/latency_ms_quantile.py +188 -0
  90. phoenix/server/api/dataloaders/min_start_or_max_end_times.py +85 -0
  91. phoenix/server/api/dataloaders/project_by_name.py +31 -0
  92. phoenix/server/api/dataloaders/record_counts.py +116 -0
  93. phoenix/server/api/dataloaders/session_io.py +79 -0
  94. phoenix/server/api/dataloaders/session_num_traces.py +30 -0
  95. phoenix/server/api/dataloaders/session_num_traces_with_error.py +32 -0
  96. phoenix/server/api/dataloaders/session_token_usages.py +41 -0
  97. phoenix/server/api/dataloaders/session_trace_latency_ms_quantile.py +55 -0
  98. phoenix/server/api/dataloaders/span_annotations.py +26 -0
  99. phoenix/server/api/dataloaders/span_dataset_examples.py +31 -0
  100. phoenix/server/api/dataloaders/span_descendants.py +57 -0
  101. phoenix/server/api/dataloaders/span_projects.py +33 -0
  102. phoenix/server/api/dataloaders/token_counts.py +124 -0
  103. phoenix/server/api/dataloaders/trace_by_trace_ids.py +25 -0
  104. phoenix/server/api/dataloaders/trace_root_spans.py +32 -0
  105. phoenix/server/api/dataloaders/user_roles.py +30 -0
  106. phoenix/server/api/dataloaders/users.py +33 -0
  107. phoenix/server/api/exceptions.py +48 -0
  108. phoenix/server/api/helpers/__init__.py +12 -0
  109. phoenix/server/api/helpers/dataset_helpers.py +217 -0
  110. phoenix/server/api/helpers/experiment_run_filters.py +763 -0
  111. phoenix/server/api/helpers/playground_clients.py +948 -0
  112. phoenix/server/api/helpers/playground_registry.py +70 -0
  113. phoenix/server/api/helpers/playground_spans.py +455 -0
  114. phoenix/server/api/input_types/AddExamplesToDatasetInput.py +16 -0
  115. phoenix/server/api/input_types/AddSpansToDatasetInput.py +14 -0
  116. phoenix/server/api/input_types/ChatCompletionInput.py +38 -0
  117. phoenix/server/api/input_types/ChatCompletionMessageInput.py +24 -0
  118. phoenix/server/api/input_types/ClearProjectInput.py +15 -0
  119. phoenix/server/api/input_types/ClusterInput.py +2 -2
  120. phoenix/server/api/input_types/CreateDatasetInput.py +12 -0
  121. phoenix/server/api/input_types/CreateSpanAnnotationInput.py +18 -0
  122. phoenix/server/api/input_types/CreateTraceAnnotationInput.py +18 -0
  123. phoenix/server/api/input_types/DataQualityMetricInput.py +5 -2
  124. phoenix/server/api/input_types/DatasetExampleInput.py +14 -0
  125. phoenix/server/api/input_types/DatasetSort.py +17 -0
  126. phoenix/server/api/input_types/DatasetVersionSort.py +16 -0
  127. phoenix/server/api/input_types/DeleteAnnotationsInput.py +7 -0
  128. phoenix/server/api/input_types/DeleteDatasetExamplesInput.py +13 -0
  129. phoenix/server/api/input_types/DeleteDatasetInput.py +7 -0
  130. phoenix/server/api/input_types/DeleteExperimentsInput.py +7 -0
  131. phoenix/server/api/input_types/DimensionFilter.py +4 -4
  132. phoenix/server/api/input_types/GenerativeModelInput.py +17 -0
  133. phoenix/server/api/input_types/Granularity.py +1 -1
  134. phoenix/server/api/input_types/InvocationParameters.py +162 -0
  135. phoenix/server/api/input_types/PatchAnnotationInput.py +19 -0
  136. phoenix/server/api/input_types/PatchDatasetExamplesInput.py +35 -0
  137. phoenix/server/api/input_types/PatchDatasetInput.py +14 -0
  138. phoenix/server/api/input_types/PerformanceMetricInput.py +5 -2
  139. phoenix/server/api/input_types/ProjectSessionSort.py +29 -0
  140. phoenix/server/api/input_types/SpanAnnotationSort.py +17 -0
  141. phoenix/server/api/input_types/SpanSort.py +134 -69
  142. phoenix/server/api/input_types/TemplateOptions.py +10 -0
  143. phoenix/server/api/input_types/TraceAnnotationSort.py +17 -0
  144. phoenix/server/api/input_types/UserRoleInput.py +9 -0
  145. phoenix/server/api/mutations/__init__.py +28 -0
  146. phoenix/server/api/mutations/api_key_mutations.py +167 -0
  147. phoenix/server/api/mutations/chat_mutations.py +593 -0
  148. phoenix/server/api/mutations/dataset_mutations.py +591 -0
  149. phoenix/server/api/mutations/experiment_mutations.py +75 -0
  150. phoenix/server/api/{types/ExportEventsMutation.py → mutations/export_events_mutations.py} +21 -18
  151. phoenix/server/api/mutations/project_mutations.py +57 -0
  152. phoenix/server/api/mutations/span_annotations_mutations.py +128 -0
  153. phoenix/server/api/mutations/trace_annotations_mutations.py +127 -0
  154. phoenix/server/api/mutations/user_mutations.py +329 -0
  155. phoenix/server/api/openapi/__init__.py +0 -0
  156. phoenix/server/api/openapi/main.py +17 -0
  157. phoenix/server/api/openapi/schema.py +16 -0
  158. phoenix/server/api/queries.py +738 -0
  159. phoenix/server/api/routers/__init__.py +11 -0
  160. phoenix/server/api/routers/auth.py +284 -0
  161. phoenix/server/api/routers/embeddings.py +26 -0
  162. phoenix/server/api/routers/oauth2.py +488 -0
  163. phoenix/server/api/routers/v1/__init__.py +64 -0
  164. phoenix/server/api/routers/v1/datasets.py +1017 -0
  165. phoenix/server/api/routers/v1/evaluations.py +362 -0
  166. phoenix/server/api/routers/v1/experiment_evaluations.py +115 -0
  167. phoenix/server/api/routers/v1/experiment_runs.py +167 -0
  168. phoenix/server/api/routers/v1/experiments.py +308 -0
  169. phoenix/server/api/routers/v1/pydantic_compat.py +78 -0
  170. phoenix/server/api/routers/v1/spans.py +267 -0
  171. phoenix/server/api/routers/v1/traces.py +208 -0
  172. phoenix/server/api/routers/v1/utils.py +95 -0
  173. phoenix/server/api/schema.py +44 -241
  174. phoenix/server/api/subscriptions.py +597 -0
  175. phoenix/server/api/types/Annotation.py +21 -0
  176. phoenix/server/api/types/AnnotationSummary.py +55 -0
  177. phoenix/server/api/types/AnnotatorKind.py +16 -0
  178. phoenix/server/api/types/ApiKey.py +27 -0
  179. phoenix/server/api/types/AuthMethod.py +9 -0
  180. phoenix/server/api/types/ChatCompletionMessageRole.py +11 -0
  181. phoenix/server/api/types/ChatCompletionSubscriptionPayload.py +46 -0
  182. phoenix/server/api/types/Cluster.py +25 -24
  183. phoenix/server/api/types/CreateDatasetPayload.py +8 -0
  184. phoenix/server/api/types/DataQualityMetric.py +31 -13
  185. phoenix/server/api/types/Dataset.py +288 -63
  186. phoenix/server/api/types/DatasetExample.py +85 -0
  187. phoenix/server/api/types/DatasetExampleRevision.py +34 -0
  188. phoenix/server/api/types/DatasetVersion.py +14 -0
  189. phoenix/server/api/types/Dimension.py +32 -31
  190. phoenix/server/api/types/DocumentEvaluationSummary.py +9 -8
  191. phoenix/server/api/types/EmbeddingDimension.py +56 -49
  192. phoenix/server/api/types/Evaluation.py +25 -31
  193. phoenix/server/api/types/EvaluationSummary.py +30 -50
  194. phoenix/server/api/types/Event.py +20 -20
  195. phoenix/server/api/types/ExampleRevisionInterface.py +14 -0
  196. phoenix/server/api/types/Experiment.py +152 -0
  197. phoenix/server/api/types/ExperimentAnnotationSummary.py +13 -0
  198. phoenix/server/api/types/ExperimentComparison.py +17 -0
  199. phoenix/server/api/types/ExperimentRun.py +119 -0
  200. phoenix/server/api/types/ExperimentRunAnnotation.py +56 -0
  201. phoenix/server/api/types/GenerativeModel.py +9 -0
  202. phoenix/server/api/types/GenerativeProvider.py +85 -0
  203. phoenix/server/api/types/Inferences.py +80 -0
  204. phoenix/server/api/types/InferencesRole.py +23 -0
  205. phoenix/server/api/types/LabelFraction.py +7 -0
  206. phoenix/server/api/types/MimeType.py +2 -2
  207. phoenix/server/api/types/Model.py +54 -54
  208. phoenix/server/api/types/PerformanceMetric.py +8 -5
  209. phoenix/server/api/types/Project.py +407 -142
  210. phoenix/server/api/types/ProjectSession.py +139 -0
  211. phoenix/server/api/types/Segments.py +4 -4
  212. phoenix/server/api/types/Span.py +221 -176
  213. phoenix/server/api/types/SpanAnnotation.py +43 -0
  214. phoenix/server/api/types/SpanIOValue.py +15 -0
  215. phoenix/server/api/types/SystemApiKey.py +9 -0
  216. phoenix/server/api/types/TemplateLanguage.py +10 -0
  217. phoenix/server/api/types/TimeSeries.py +19 -15
  218. phoenix/server/api/types/TokenUsage.py +11 -0
  219. phoenix/server/api/types/Trace.py +154 -0
  220. phoenix/server/api/types/TraceAnnotation.py +45 -0
  221. phoenix/server/api/types/UMAPPoints.py +7 -7
  222. phoenix/server/api/types/User.py +60 -0
  223. phoenix/server/api/types/UserApiKey.py +45 -0
  224. phoenix/server/api/types/UserRole.py +15 -0
  225. phoenix/server/api/types/node.py +4 -112
  226. phoenix/server/api/types/pagination.py +156 -57
  227. phoenix/server/api/utils.py +34 -0
  228. phoenix/server/app.py +864 -115
  229. phoenix/server/bearer_auth.py +163 -0
  230. phoenix/server/dml_event.py +136 -0
  231. phoenix/server/dml_event_handler.py +256 -0
  232. phoenix/server/email/__init__.py +0 -0
  233. phoenix/server/email/sender.py +97 -0
  234. phoenix/server/email/templates/__init__.py +0 -0
  235. phoenix/server/email/templates/password_reset.html +19 -0
  236. phoenix/server/email/types.py +11 -0
  237. phoenix/server/grpc_server.py +102 -0
  238. phoenix/server/jwt_store.py +505 -0
  239. phoenix/server/main.py +305 -116
  240. phoenix/server/oauth2.py +52 -0
  241. phoenix/server/openapi/__init__.py +0 -0
  242. phoenix/server/prometheus.py +111 -0
  243. phoenix/server/rate_limiters.py +188 -0
  244. phoenix/server/static/.vite/manifest.json +87 -0
  245. phoenix/server/static/assets/components-Cy9nwIvF.js +2125 -0
  246. phoenix/server/static/assets/index-BKvHIxkk.js +113 -0
  247. phoenix/server/static/assets/pages-CUi2xCVQ.js +4449 -0
  248. phoenix/server/static/assets/vendor-DvC8cT4X.js +894 -0
  249. phoenix/server/static/assets/vendor-DxkFTwjz.css +1 -0
  250. phoenix/server/static/assets/vendor-arizeai-Do1793cv.js +662 -0
  251. phoenix/server/static/assets/vendor-codemirror-BzwZPyJM.js +24 -0
  252. phoenix/server/static/assets/vendor-recharts-_Jb7JjhG.js +59 -0
  253. phoenix/server/static/assets/vendor-shiki-Cl9QBraO.js +5 -0
  254. phoenix/server/static/assets/vendor-three-DwGkEfCM.js +2998 -0
  255. phoenix/server/telemetry.py +68 -0
  256. phoenix/server/templates/index.html +82 -23
  257. phoenix/server/thread_server.py +3 -3
  258. phoenix/server/types.py +275 -0
  259. phoenix/services.py +27 -18
  260. phoenix/session/client.py +743 -68
  261. phoenix/session/data_extractor.py +31 -7
  262. phoenix/session/evaluation.py +3 -9
  263. phoenix/session/session.py +263 -219
  264. phoenix/settings.py +22 -0
  265. phoenix/trace/__init__.py +2 -22
  266. phoenix/trace/attributes.py +338 -0
  267. phoenix/trace/dsl/README.md +116 -0
  268. phoenix/trace/dsl/filter.py +663 -213
  269. phoenix/trace/dsl/helpers.py +73 -21
  270. phoenix/trace/dsl/query.py +574 -201
  271. phoenix/trace/exporter.py +24 -19
  272. phoenix/trace/fixtures.py +368 -32
  273. phoenix/trace/otel.py +71 -219
  274. phoenix/trace/projects.py +3 -2
  275. phoenix/trace/schemas.py +33 -11
  276. phoenix/trace/span_evaluations.py +21 -16
  277. phoenix/trace/span_json_decoder.py +6 -4
  278. phoenix/trace/span_json_encoder.py +2 -2
  279. phoenix/trace/trace_dataset.py +47 -32
  280. phoenix/trace/utils.py +21 -4
  281. phoenix/utilities/__init__.py +0 -26
  282. phoenix/utilities/client.py +132 -0
  283. phoenix/utilities/deprecation.py +31 -0
  284. phoenix/utilities/error_handling.py +3 -2
  285. phoenix/utilities/json.py +109 -0
  286. phoenix/utilities/logging.py +8 -0
  287. phoenix/utilities/project.py +2 -2
  288. phoenix/utilities/re.py +49 -0
  289. phoenix/utilities/span_store.py +0 -23
  290. phoenix/utilities/template_formatters.py +99 -0
  291. phoenix/version.py +1 -1
  292. arize_phoenix-3.16.1.dist-info/METADATA +0 -495
  293. arize_phoenix-3.16.1.dist-info/RECORD +0 -178
  294. phoenix/core/project.py +0 -619
  295. phoenix/core/traces.py +0 -96
  296. phoenix/experimental/evals/__init__.py +0 -73
  297. phoenix/experimental/evals/evaluators.py +0 -413
  298. phoenix/experimental/evals/functions/__init__.py +0 -4
  299. phoenix/experimental/evals/functions/classify.py +0 -453
  300. phoenix/experimental/evals/functions/executor.py +0 -353
  301. phoenix/experimental/evals/functions/generate.py +0 -138
  302. phoenix/experimental/evals/functions/processing.py +0 -76
  303. phoenix/experimental/evals/models/__init__.py +0 -14
  304. phoenix/experimental/evals/models/anthropic.py +0 -175
  305. phoenix/experimental/evals/models/base.py +0 -170
  306. phoenix/experimental/evals/models/bedrock.py +0 -221
  307. phoenix/experimental/evals/models/litellm.py +0 -134
  308. phoenix/experimental/evals/models/openai.py +0 -448
  309. phoenix/experimental/evals/models/rate_limiters.py +0 -246
  310. phoenix/experimental/evals/models/vertex.py +0 -173
  311. phoenix/experimental/evals/models/vertexai.py +0 -186
  312. phoenix/experimental/evals/retrievals.py +0 -96
  313. phoenix/experimental/evals/templates/__init__.py +0 -50
  314. phoenix/experimental/evals/templates/default_templates.py +0 -472
  315. phoenix/experimental/evals/templates/template.py +0 -195
  316. phoenix/experimental/evals/utils/__init__.py +0 -172
  317. phoenix/experimental/evals/utils/threads.py +0 -27
  318. phoenix/server/api/helpers.py +0 -11
  319. phoenix/server/api/routers/evaluation_handler.py +0 -109
  320. phoenix/server/api/routers/span_handler.py +0 -70
  321. phoenix/server/api/routers/trace_handler.py +0 -60
  322. phoenix/server/api/types/DatasetRole.py +0 -23
  323. phoenix/server/static/index.css +0 -6
  324. phoenix/server/static/index.js +0 -7447
  325. phoenix/storage/span_store/__init__.py +0 -23
  326. phoenix/storage/span_store/text_file.py +0 -85
  327. phoenix/trace/dsl/missing.py +0 -60
  328. phoenix/trace/langchain/__init__.py +0 -3
  329. phoenix/trace/langchain/instrumentor.py +0 -35
  330. phoenix/trace/llama_index/__init__.py +0 -3
  331. phoenix/trace/llama_index/callback.py +0 -102
  332. phoenix/trace/openai/__init__.py +0 -3
  333. phoenix/trace/openai/instrumentor.py +0 -30
  334. {arize_phoenix-3.16.1.dist-info → arize_phoenix-7.7.0.dist-info}/licenses/IP_NOTICE +0 -0
  335. {arize_phoenix-3.16.1.dist-info → arize_phoenix-7.7.0.dist-info}/licenses/LICENSE +0 -0
  336. /phoenix/{datasets → db/insertion}/__init__.py +0 -0
  337. /phoenix/{experimental → db/migrations}/__init__.py +0 -0
  338. /phoenix/{storage → db/migrations/data_migration_scripts}/__init__.py +0 -0
@@ -0,0 +1,99 @@
1
+ import re
2
+ from abc import ABC, abstractmethod
3
+ from collections.abc import Iterable
4
+ from string import Formatter
5
+ from typing import Any
6
+
7
+
8
+ class TemplateFormatter(ABC):
9
+ @abstractmethod
10
+ def parse(self, template: str) -> set[str]:
11
+ """
12
+ Parse the template and return a set of variable names.
13
+ """
14
+ raise NotImplementedError
15
+
16
+ def format(self, template: str, **variables: Any) -> str:
17
+ """
18
+ Formats the template with the given variables.
19
+ """
20
+ template_variable_names = self.parse(template)
21
+ if missing_template_variables := template_variable_names - set(variables.keys()):
22
+ raise TemplateFormatterError(
23
+ f"Missing template variable(s): {', '.join(missing_template_variables)}"
24
+ )
25
+ return self._format(template, template_variable_names, **variables)
26
+
27
+ @abstractmethod
28
+ def _format(self, template: str, variable_names: Iterable[str], **variables: Any) -> str:
29
+ raise NotImplementedError
30
+
31
+
32
+ class NoOpFormatter(TemplateFormatter):
33
+ """
34
+ No-op template formatter.
35
+
36
+ Examples:
37
+
38
+ >>> formatter = NoOpFormatter()
39
+ >>> formatter.format("hello")
40
+ 'hello'
41
+ """
42
+
43
+ def parse(self, template: str) -> set[str]:
44
+ return set()
45
+
46
+ def _format(self, template: str, *args: Any, **variables: Any) -> str:
47
+ return template
48
+
49
+
50
+ class FStringTemplateFormatter(TemplateFormatter):
51
+ """
52
+ Regular f-string template formatter.
53
+
54
+ Examples:
55
+
56
+ >>> formatter = FStringTemplateFormatter()
57
+ >>> formatter.format("{hello}", hello="world")
58
+ 'world'
59
+ """
60
+
61
+ def parse(self, template: str) -> set[str]:
62
+ return set(field_name for _, field_name, _, _ in Formatter().parse(template) if field_name)
63
+
64
+ def _format(self, template: str, variable_names: Iterable[str], **variables: Any) -> str:
65
+ return template.format(**variables)
66
+
67
+
68
+ class MustacheTemplateFormatter(TemplateFormatter):
69
+ """
70
+ Mustache template formatter.
71
+
72
+ Examples:
73
+
74
+ >>> formatter = MustacheTemplateFormatter()
75
+ >>> formatter.format("{{ hello }}", hello="world")
76
+ 'world'
77
+ """
78
+
79
+ PATTERN = re.compile(r"(?<!\\){{\s*(\w+)\s*}}")
80
+
81
+ def parse(self, template: str) -> set[str]:
82
+ return set(match for match in re.findall(self.PATTERN, template))
83
+
84
+ def _format(self, template: str, variable_names: Iterable[str], **variables: Any) -> str:
85
+ for variable_name in variable_names:
86
+ template = re.sub(
87
+ pattern=rf"(?<!\\){{{{\s*{variable_name}\s*}}}}",
88
+ repl=variables[variable_name],
89
+ string=template,
90
+ )
91
+ return template
92
+
93
+
94
+ class TemplateFormatterError(Exception):
95
+ """
96
+ An error raised when template formatting fails.
97
+ """
98
+
99
+ pass
phoenix/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "3.16.1"
1
+ __version__ = "7.7.0"
@@ -1,495 +0,0 @@
1
- Metadata-Version: 2.3
2
- Name: arize-phoenix
3
- Version: 3.16.1
4
- Summary: AI Observability and Evaluation
5
- Project-URL: Documentation, https://docs.arize.com/phoenix/
6
- Project-URL: Issues, https://github.com/Arize-ai/phoenix/issues
7
- Project-URL: Source, https://github.com/Arize-ai/phoenix
8
- Author-email: Arize AI <phoenix-devs@arize.com>
9
- License-Expression: Elastic-2.0
10
- License-File: IP_NOTICE
11
- License-File: LICENSE
12
- Keywords: Explainability,Monitoring,Observability
13
- Classifier: Programming Language :: Python
14
- Classifier: Programming Language :: Python :: 3.8
15
- Classifier: Programming Language :: Python :: 3.9
16
- Classifier: Programming Language :: Python :: 3.10
17
- Classifier: Programming Language :: Python :: 3.11
18
- Classifier: Programming Language :: Python :: 3.12
19
- Requires-Python: <3.13,>=3.8
20
- Requires-Dist: ddsketch
21
- Requires-Dist: hdbscan>=0.8.33
22
- Requires-Dist: jinja2
23
- Requires-Dist: numpy
24
- Requires-Dist: openinference-instrumentation-langchain>=0.1.12
25
- Requires-Dist: openinference-instrumentation-llama-index>=1.2.0
26
- Requires-Dist: openinference-instrumentation-openai>=0.1.4
27
- Requires-Dist: openinference-semantic-conventions>=0.1.5
28
- Requires-Dist: opentelemetry-exporter-otlp
29
- Requires-Dist: opentelemetry-proto
30
- Requires-Dist: opentelemetry-sdk
31
- Requires-Dist: pandas
32
- Requires-Dist: protobuf<5.0,>=3.20
33
- Requires-Dist: psutil
34
- Requires-Dist: pyarrow
35
- Requires-Dist: requests
36
- Requires-Dist: scikit-learn
37
- Requires-Dist: scipy
38
- Requires-Dist: sortedcontainers
39
- Requires-Dist: starlette
40
- Requires-Dist: strawberry-graphql==0.208.2
41
- Requires-Dist: tqdm
42
- Requires-Dist: typing-extensions>=4.5; python_version < '3.12'
43
- Requires-Dist: typing-extensions>=4.6; python_version >= '3.12'
44
- Requires-Dist: umap-learn
45
- Requires-Dist: uvicorn
46
- Requires-Dist: wrapt
47
- Provides-Extra: dev
48
- Requires-Dist: anthropic; extra == 'dev'
49
- Requires-Dist: arize[autoembeddings,llm-evaluation]; extra == 'dev'
50
- Requires-Dist: gcsfs; extra == 'dev'
51
- Requires-Dist: google-cloud-aiplatform>=1.3; extra == 'dev'
52
- Requires-Dist: hatch; extra == 'dev'
53
- Requires-Dist: jupyter; extra == 'dev'
54
- Requires-Dist: langchain>=0.0.334; extra == 'dev'
55
- Requires-Dist: litellm>=1.0.3; extra == 'dev'
56
- Requires-Dist: llama-index>=0.10.3; extra == 'dev'
57
- Requires-Dist: nbqa; extra == 'dev'
58
- Requires-Dist: pandas-stubs<=2.0.2.230605; extra == 'dev'
59
- Requires-Dist: pre-commit; extra == 'dev'
60
- Requires-Dist: pytest-asyncio; extra == 'dev'
61
- Requires-Dist: pytest-cov; extra == 'dev'
62
- Requires-Dist: pytest-lazy-fixture; extra == 'dev'
63
- Requires-Dist: pytest==7.4.4; extra == 'dev'
64
- Requires-Dist: ruff==0.3.0; extra == 'dev'
65
- Requires-Dist: strawberry-graphql[debug-server]==0.208.2; extra == 'dev'
66
- Provides-Extra: evals
67
- Requires-Dist: arize-phoenix-evals>=0.3.0; extra == 'evals'
68
- Provides-Extra: experimental
69
- Requires-Dist: tenacity; extra == 'experimental'
70
- Provides-Extra: llama-index
71
- Requires-Dist: llama-index-callbacks-arize-phoenix>=0.1.2; extra == 'llama-index'
72
- Requires-Dist: llama-index==0.10.3; extra == 'llama-index'
73
- Requires-Dist: openinference-instrumentation-llama-index>=1.2.0; extra == 'llama-index'
74
- Description-Content-Type: text/markdown
75
-
76
- <p align="center">
77
- <a target="_blank" href="https://phoenix.arize.com" style="background:none">
78
- <img alt="phoenix logo" src="https://storage.googleapis.com/arize-assets/phoenix/assets/phoenix-logo-light.svg" width="auto" height="200"></img>
79
- </a>
80
- <br/>
81
- <br/>
82
- <a href="https://docs.arize.com/phoenix/">
83
- <img src="https://img.shields.io/static/v1?message=Docs&logo=&labelColor=grey&color=blue&logoColor=white&label=%20"/>
84
- </a>
85
- <a target="_blank" href="https://join.slack.com/t/arize-ai/shared_invite/zt-1px8dcmlf-fmThhDFD_V_48oU7ALan4Q">
86
- <img src="https://img.shields.io/static/v1?message=Community&logo=slack&labelColor=grey&color=blue&logoColor=white&label=%20"/>
87
- </a>
88
- <a target="_blank" href="https://twitter.com/ArizePhoenix">
89
- <img src="https://img.shields.io/badge/-ArizePhoenix-blue.svg?color=blue&labelColor=gray&logo=twitter">
90
- </a>
91
- <a target="_blank" href="https://pypi.org/project/arize-phoenix/">
92
- <img src="https://img.shields.io/pypi/v/arize-phoenix?color=blue">
93
- </a>
94
- <a target="_blank" href="https://anaconda.org/conda-forge/arize-phoenix">
95
- <img src="https://img.shields.io/conda/vn/conda-forge/arize-phoenix.svg?color=blue">
96
- </a>
97
- <a target="_blank" href="https://pypi.org/project/arize-phoenix/">
98
- <img src="https://img.shields.io/pypi/pyversions/arize-phoenix">
99
- </a>
100
- <a target="_blank" href="https://hub.docker.com/repository/docker/arizephoenix/phoenix/general">
101
- <img src="https://img.shields.io/docker/v/arizephoenix/phoenix?sort=semver&logo=docker&label=image&color=blue">
102
- </a>
103
- </p>
104
-
105
- ![a rotating UMAP point cloud of a computer vision model](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/image_classification_10mb.gif?raw=true)
106
-
107
- Phoenix provides MLOps and LLMOps insights at lightning speed with zero-config observability. Phoenix provides a notebook-first experience for monitoring your models and LLM Applications by providing:
108
-
109
- - **LLM Traces** - Trace through the execution of your LLM Application to understand the internals of your LLM Application and to troubleshoot problems related to things like retrieval and tool execution.
110
- - **LLM Evals** - Leverage the power of large language models to evaluate your generative model or application's relevance, toxicity, and more.
111
- - **Embedding Analysis** - Explore embedding point-clouds and identify clusters of high drift and performance degradation.
112
- - **RAG Analysis** - Visualize your generative application's search and retrieval process to identify problems and improve your RAG pipeline.
113
- - **Structured Data Analysis** - Statistically analyze your structured data by performing A/B analysis, temporal drift analysis, and more.
114
-
115
- **Table of Contents**
116
-
117
- - [Installation](#installation)
118
- - [LLM Traces](#llm-traces)
119
- - [Tracing with LlamaIndex](#tracing-with-llamaindex)
120
- - [Tracing with LangChain](#tracing-with-langchain)
121
- - [LLM Evals](#llm-evals)
122
- - [Embedding Analysis](#embedding-analysis)
123
- - [UMAP-based Exploratory Data Analysis](#umap-based-exploratory-data-analysis)
124
- - [Cluster-driven Drift and Performance Analysis](#cluster-driven-drift-and-performance-analysis)
125
- - [Exportable Clusters](#exportable-clusters)
126
- - [Retrieval-Augmented Generation Analysis](#retrieval-augmented-generation-analysis)
127
- - [Structured Data Analysis](#structured-data-analysis)
128
- - [Deploying Phoenix](#deploying-phoenix)
129
- - [Breaking Changes](#breaking-changes)
130
- - [Community](#community)
131
- - [Thanks](#thanks)
132
- - [Copyright, Patent, and License](#copyright-patent-and-license)
133
-
134
- ## Installation
135
-
136
- Install Phoenix via `pip` or or `conda` as well as any of its subpackages.
137
-
138
- ```shell
139
- pip install arize-phoenix[evals]
140
- ```
141
-
142
- > [!NOTE]
143
- > The above will install Phoenix and its `evals` subpackage. To just install phoenix's evaluation package, you can run `pip install arize-phoenix-evals` instead.
144
-
145
- ## LLM Traces
146
-
147
- ![LLM Application Tracing](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/langchain_rag_stuff_documents_chain_10mb.gif?raw=true)
148
-
149
- With the advent of powerful LLMs, it is now possible to build LLM Applications that can perform complex tasks like summarization, translation, question and answering, and more. However, these applications are often difficult to debug and troubleshoot as they have an extensive surface area: search and retrieval via vector stores, embedding generation, usage of external tools and so on. Phoenix provides a tracing framework that allows you to trace through the execution of your LLM Application hierarchically. This allows you to understand the internals of your LLM Application and to troubleshoot the complex components of your applicaition. Phoenix is built on top of the OpenInference tracing standard and uses it to trace, export, and collect critical information about your LLM Application in the form of `spans`. For more details on the OpenInference tracing standard, see the [OpenInference Specification](https://github.com/Arize-ai/openinference)
150
-
151
- ### Tracing with LlamaIndex
152
-
153
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/llama_index_tracing_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/llama_index_tracing_tutorial.ipynb)
154
-
155
- ![LLM Traces UI](https://storage.googleapis.com/arize-assets/phoenix/assets/images/trace_details_view.png)
156
-
157
- To extract traces from your LlamaIndex application, you will have to add Phoenix's `OpenInferenceTraceCallback` to your LlamaIndex application. A callback (in this case an OpenInference `Tracer`) is a class that automatically accumulates `spans` that trac your application as it executes. The OpenInference `Tracer` is a tracer that is specifically designed to work with Phoenix and by default exports the traces to a locally running phoenix server.
158
-
159
- ```shell
160
- # Install phoenix as well as llama_index and your LLM of choice
161
- pip install "arize-phoenix[evals]" "openai>=1" "llama-index>=0.10.3" "openinference-instrumentation-llama-index>=1.0.0" "llama-index-callbacks-arize-phoenix>=0.1.2" llama-index-llms-openai
162
- ```
163
-
164
- Launch Phoenix in a notebook and view the traces of your LlamaIndex application in the Phoenix UI.
165
-
166
- ```python
167
- import os
168
- import phoenix as px
169
- from llama_index.core import (
170
- Settings,
171
- VectorStoreIndex,
172
- SimpleDirectoryReader,
173
- set_global_handler,
174
- )
175
- from llama_index.embeddings.openai import OpenAIEmbedding
176
- from llama_index.llms.openai import OpenAI
177
-
178
- os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
179
-
180
- # To view traces in Phoenix, you will first have to start a Phoenix server. You can do this by running the following:
181
- session = px.launch_app()
182
-
183
-
184
- # Once you have started a Phoenix server, you can start your LlamaIndex application and configure it to send traces to Phoenix. To do this, you will have to add configure Phoenix as the global handler
185
-
186
- set_global_handler("arize_phoenix")
187
-
188
-
189
- # LlamaIndex application initialization may vary
190
- # depending on your application
191
- Settings.llm = OpenAI(model="gpt-4-turbo-preview")
192
- Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
193
-
194
-
195
- # Load your data and create an index. Note you usually want to store your index in a persistent store like a database or the file system
196
- documents = SimpleDirectoryReader("YOUR_DATA_DIRECTORY").load_data()
197
- index = VectorStoreIndex.from_documents(documents)
198
-
199
- query_engine = index.as_query_engine()
200
-
201
- # Query your LlamaIndex application
202
- query_engine.query("What is the meaning of life?")
203
- query_engine.query("Why did the cow jump over the moon?")
204
-
205
- # View the traces in the Phoenix UI
206
- px.active_session().url
207
- ```
208
-
209
- ### Tracing with LangChain
210
-
211
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain_tracing_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain_tracing_tutorial.ipynb)
212
-
213
- To extract traces from your LangChain application, you will have to add Phoenix's OpenInference Tracer to your LangChain application. A tracer is a class that automatically accumulates traces as your application executes. The OpenInference Tracer is a tracer that is specifically designed to work with Phoenix and by default exports the traces to a locally running phoenix server.
214
-
215
- ```shell
216
- # Install phoenix as well as langchain and your LLM of choice
217
- pip install arize-phoenix langchain openai
218
-
219
- ```
220
-
221
- Launch Phoenix in a notebook and view the traces of your LangChain application in the Phoenix UI.
222
-
223
- ```python
224
- import phoenix as px
225
- import pandas as pd
226
- import numpy as np
227
-
228
- # Launch phoenix
229
- session = px.launch_app()
230
-
231
- # Once you have started a Phoenix server, you can start your LangChain application with the OpenInferenceTracer as a callback. To do this, you will have to instrument your LangChain application with the tracer:
232
-
233
- from phoenix.trace.langchain import LangChainInstrumentor
234
-
235
- # By default, the traces will be exported to the locally running Phoenix server.
236
- LangChainInstrumentor().instrument()
237
-
238
- # Initialize your LangChain application
239
- from langchain.chains import RetrievalQA
240
- from langchain.chat_models import ChatOpenAI
241
- from langchain.embeddings import OpenAIEmbeddings
242
- from langchain.retrievers import KNNRetriever
243
-
244
- embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
245
- documents_df = pd.read_parquet(
246
- "http://storage.googleapis.com/arize-assets/phoenix/datasets/unstructured/llm/context-retrieval/langchain-pinecone/database.parquet"
247
- )
248
- knn_retriever = KNNRetriever(
249
- index=np.stack(documents_df["text_vector"]),
250
- texts=documents_df["text"].tolist(),
251
- embeddings=OpenAIEmbeddings(),
252
- )
253
- chain_type = "stuff" # stuff, refine, map_reduce, and map_rerank
254
- chat_model_name = "gpt-3.5-turbo"
255
- llm = ChatOpenAI(model_name=chat_model_name)
256
- chain = RetrievalQA.from_chain_type(
257
- llm=llm,
258
- chain_type=chain_type,
259
- retriever=knn_retriever,
260
- )
261
-
262
- # Instrument the execution of the runs with the tracer. By default the tracer uses an HTTPExporter
263
- query = "What is euclidean distance?"
264
- response = chain.run(query, callbacks=[tracer])
265
-
266
- # By adding the tracer to the callbacks of LangChain, we've created a one-way data connection between your LLM application and Phoenix.
267
-
268
- # To view the traces in Phoenix, simply open the UI in your browser.
269
- session.url
270
- ```
271
-
272
- ## LLM Evals
273
-
274
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate_relevance_classifications.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate_relevance_classifications.ipynb)
275
-
276
- Phoenix provides tooling to evaluate LLM applications, including tools to determine the relevance or irrelevance of documents retrieved by retrieval-augmented generation (RAG) application, whether or not the response is toxic, and much more.
277
-
278
- Phoenix's approach to LLM evals is notable for the following reasons:
279
-
280
- - Includes pre-tested templates and convenience functions for a set of common Eval “tasks”
281
- - Data science rigor applied to the testing of model and template combinations
282
- - Designed to run as fast as possible on batches of data
283
- - Includes benchmark datasets and tests for each eval function
284
-
285
- Here is an example of running the RAG relevance eval on a dataset of Wikipedia questions and answers:
286
-
287
- ```shell
288
- # Install phoenix as well as the evals subpackage
289
- pip install 'arize-phoenix[evals]' ipython matplotlib openai pycm scikit-learn
290
- ```
291
-
292
- ```python
293
- from phoenix.evals import (
294
- RAG_RELEVANCY_PROMPT_TEMPLATE,
295
- RAG_RELEVANCY_PROMPT_RAILS_MAP,
296
- OpenAIModel,
297
- download_benchmark_dataset,
298
- llm_classify,
299
- )
300
- from sklearn.metrics import precision_recall_fscore_support, confusion_matrix, ConfusionMatrixDisplay
301
-
302
- # Download the benchmark golden dataset
303
- df = download_benchmark_dataset(
304
- task="binary-relevance-classification", dataset_name="wiki_qa-train"
305
- )
306
- # Sample and re-name the columns to match the template
307
- df = df.sample(100)
308
- df = df.rename(
309
- columns={
310
- "query_text": "input",
311
- "document_text": "reference",
312
- },
313
- )
314
- model = OpenAIModel(
315
- model="gpt-4",
316
- temperature=0.0,
317
- )
318
- rails =list(RAG_RELEVANCY_PROMPT_RAILS_MAP.values())
319
- df[["eval_relevance"]] = llm_classify(df, model, RAG_RELEVANCY_PROMPT_TEMPLATE, rails)
320
- #Golden dataset has True/False map to -> "irrelevant" / "relevant"
321
- #we can then scikit compare to output of template - same format
322
- y_true = df["relevant"].map({True: "relevant", False: "irrelevant"})
323
- y_pred = df["eval_relevance"]
324
-
325
- # Compute Per-Class Precision, Recall, F1 Score, Support
326
- precision, recall, f1, support = precision_recall_fscore_support(y_true, y_pred)
327
- ```
328
-
329
- To learn more about LLM Evals, see the [Evals documentation](https://docs.arize.com/phoenix/concepts/llm-evals/).
330
-
331
- ## Embedding Analysis
332
-
333
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/image_classification_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/image_classification_tutorial.ipynb)
334
-
335
- Explore UMAP point-clouds at times of high drift and performance degredation and identify clusters of problematic data.
336
-
337
- ![Euclidean distance drift analysis](https://storage.googleapis.com/arize-assets/phoenix/assets/images/ner_color_by_correctness.png)
338
-
339
- Embedding analysis is critical for understanding the behavior of you NLP, CV, and LLM Apps that use embeddings. Phoenix provides an A/B testing framework to help you understand how your embeddings are changing over time and how they are changing between different versions of your model (`prod` vs `train`, `champion` vs `challenger`).
340
-
341
- ```python
342
- # Import libraries.
343
- from dataclasses import replace
344
- import pandas as pd
345
- import phoenix as px
346
-
347
- # Download curated datasets and load them into pandas DataFrames.
348
- train_df = pd.read_parquet(
349
- "https://storage.googleapis.com/arize-assets/phoenix/datasets/unstructured/cv/human-actions/human_actions_training.parquet"
350
- )
351
- prod_df = pd.read_parquet(
352
- "https://storage.googleapis.com/arize-assets/phoenix/datasets/unstructured/cv/human-actions/human_actions_production.parquet"
353
- )
354
-
355
- # Define schemas that tell Phoenix which columns of your DataFrames correspond to features, predictions, actuals (i.e., ground truth), embeddings, etc.
356
- train_schema = px.Schema(
357
- prediction_id_column_name="prediction_id",
358
- timestamp_column_name="prediction_ts",
359
- prediction_label_column_name="predicted_action",
360
- actual_label_column_name="actual_action",
361
- embedding_feature_column_names={
362
- "image_embedding": px.EmbeddingColumnNames(
363
- vector_column_name="image_vector",
364
- link_to_data_column_name="url",
365
- ),
366
- },
367
- )
368
- prod_schema = replace(train_schema, actual_label_column_name=None)
369
-
370
- # Define your production and training datasets.
371
- prod_ds = px.Dataset(prod_df, prod_schema)
372
- train_ds = px.Dataset(train_df, train_schema)
373
-
374
- # Launch Phoenix.
375
- session = px.launch_app(prod_ds, train_ds)
376
-
377
- # View the Phoenix UI in the browser
378
- session.url
379
- ```
380
-
381
- ### UMAP-based Exploratory Data Analysis
382
-
383
- Color your UMAP point-clouds by your model's dimensions, drift, and performance to identify problematic cohorts.
384
-
385
- ![UMAP-based EDA](https://storage.googleapis.com/arize-assets/phoenix/assets/images/cv_eda_selection.png)
386
-
387
- ### Cluster-driven Drift and Performance Analysis
388
-
389
- Break-apart your data into clusters of high drift or bad performance using HDBSCAN
390
-
391
- ![HDBSCAN clusters sorted by drift](https://storage.googleapis.com/arize-assets/phoenix/assets/images/HDBSCAN_drift_analysis.png)
392
-
393
- ### Exportable Clusters
394
-
395
- Export your clusters to `parquet` files or dataframes for further analysis and fine-tuning.
396
-
397
- ## Retrieval-Augmented Generation Analysis
398
-
399
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llama_index_search_and_retrieval_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llama_index_search_and_retrieval_tutorial.ipynb)
400
-
401
- ![RAG Analysis](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/corpus_search_and_retrieval.gif?raw=true)
402
-
403
- Search and retrieval is a critical component of many LLM Applications as it allows you to extend the LLM's capabilities to encompass knowledge about private data. This process is known as RAG (retrieval-augmented generation) and often times a vector store is leveraged to store chunks of documents encoded as embeddings so that they can be retrieved at inference time.
404
-
405
- To help you better understand your RAG application, Phoenix allows you to upload a corpus of your knowledge base along with your LLM application's inferences to help you troubleshoot hard to find bugs with retrieval.
406
-
407
- ## Structured Data Analysis
408
-
409
- [![Open in Colab](https://img.shields.io/static/v1?message=Open%20in%20Colab&logo=googlecolab&labelColor=grey&color=blue&logoColor=orange&label=%20)](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/credit_card_fraud_tutorial.ipynb) [![Open in GitHub](https://img.shields.io/static/v1?message=Open%20in%20GitHub&logo=github&labelColor=grey&color=blue&logoColor=white&label=%20)](https://github.com/Arize-ai/phoenix/blob/main/tutorials/credit_card_fraud_tutorial.ipynb)
410
-
411
- Phoenix provides a suite of tools for analyzing structured data. These tools allow you to perform A/B analysis, temporal drift analysis, and more.
412
-
413
- ![Structured Data Analysis](https://github.com/Arize-ai/phoenix-assets/blob/main/gifs/cc_fraud_drift_10mb.gif?raw=true)
414
-
415
- ```python
416
- import pandas as pd
417
- import phoenix as px
418
-
419
- # Perform A/B analysis on your training and production datasets
420
- train_df = pd.read_parquet(
421
- "http://storage.googleapis.com/arize-assets/phoenix/datasets/structured/credit-card-fraud/credit_card_fraud_train.parquet",
422
- )
423
- prod_df = pd.read_parquet(
424
- "http://storage.googleapis.com/arize-assets/phoenix/datasets/structured/credit-card-fraud/credit_card_fraud_production.parquet",
425
- )
426
-
427
- # Describe the data for analysis
428
- schema = px.Schema(
429
- prediction_id_column_name="prediction_id",
430
- prediction_label_column_name="predicted_label",
431
- prediction_score_column_name="predicted_score",
432
- actual_label_column_name="actual_label",
433
- timestamp_column_name="prediction_timestamp",
434
- feature_column_names=feature_column_names,
435
- tag_column_names=["age"],
436
- )
437
-
438
- # Define your production and training datasets.
439
- prod_ds = px.Dataset(dataframe=prod_df, schema=schema, name="production")
440
- train_ds = px.Dataset(dataframe=train_df, schema=schema, name="training")
441
-
442
- # Launch Phoenix for analysis
443
- session = px.launch_app(primary=prod_ds, reference=train_ds)
444
- ```
445
-
446
- ## Deploying Phoenix
447
-
448
- <a target="_blank" href="https://hub.docker.com/repository/docker/arizephoenix/phoenix/general">
449
- <img src="https://img.shields.io/docker/v/arizephoenix/phoenix?sort=semver&logo=docker&label=image&color=blue">
450
- </a>
451
-
452
- <img src="https://storage.googleapis.com/arize-assets/phoenix/assets/images/deployment.png" title="How phoenix can collect traces from an LLM application"/>
453
-
454
- Phoenix's notebook-first approach to observability makes it a great tool to utilize during experimentation and pre-production. However at some point you are going to want to ship your application to production and continue to monitor your application as it runs. Phoenix is made up of two components that can be deployed independently:
455
-
456
- - **Trace Instrumentation**: These are a set of plugins that can be added to your application's startup process. These plugins (known as instrumentations) automatically collect spans for your application and export them for collection and visualization. For phoenix, all the instrumentors are managed via a single repository called [OpenInference](https://github.com/Arize-ai/openinference)
457
- - **Trace Collector**: The Phoenix server acts as a trace collector and application that helps you troubleshoot your application in real time. You can pull the latest images of Phoenix from the [Docker Hub](https://hub.docker.com/repository/docker/arizephoenix/phoenix/general)
458
-
459
- In order to run Phoenix tracing in production, you will have to follow these following steps:
460
-
461
- - **Setup a Server**: your LLM application to run on a server ([examples](https://github.com/Arize-ai/openinference/tree/main/python/examples))
462
- - **Instrument**: Add [OpenInference](https://github.com/Arize-ai/openinference) Instrumentation to your server
463
- - **Observe**: Run the Phoenix server as a side-car or a standalone instance and point your tracing instrumentation to the phoenix server
464
-
465
- For more information on deploying Phoenix, see the [Phoenix Deployment Guide](https://docs.arize.com/phoenix/deployment/deploying-phoenix).
466
-
467
- ## Breaking Changes
468
-
469
- see the [migration guide](./MIGRATION.md) for a list of breaking changes.
470
-
471
- ## Community
472
-
473
- Join our community to connect with thousands of machine learning practitioners and ML observability enthusiasts.
474
-
475
- - 🌍 Join our [Slack community](https://join.slack.com/t/arize-ai/shared_invite/zt-1px8dcmlf-fmThhDFD_V_48oU7ALan4Q).
476
- - 💡 Ask questions and provide feedback in the _#phoenix-support_ channel.
477
- - 🌟 Leave a star on our [GitHub](https://github.com/Arize-ai/phoenix).
478
- - 🐞 Report bugs with [GitHub Issues](https://github.com/Arize-ai/phoenix/issues).
479
- - 🐣 Follow us on [twitter](https://twitter.com/ArizePhoenix).
480
- - 💌️ Sign up for our [mailing list](https://phoenix.arize.com/#updates).
481
- - 🗺️ Check out our [roadmap](https://github.com/orgs/Arize-ai/projects/45) to see where we're heading next.
482
- - 🎓 Learn the fundamentals of ML observability with our [introductory](https://arize.com/ml-observability-fundamentals/) and [advanced](https://arize.com/blog-course/) courses.
483
-
484
- ## Thanks
485
-
486
- - [UMAP](https://github.com/lmcinnes/umap) For unlocking the ability to visualize and reason about embeddings
487
- - [HDBSCAN](https://github.com/scikit-learn-contrib/hdbscan) For providing a clustering algorithm to aid in the discovery of drift and performance degradation
488
-
489
- ## Copyright, Patent, and License
490
-
491
- Copyright 2023 Arize AI, Inc. All Rights Reserved.
492
-
493
- Portions of this code are patent protected by one or more U.S. Patents. See [IP_NOTICE](https://github.com/Arize-ai/phoenix/blob/main/IP_NOTICE).
494
-
495
- This software is licensed under the terms of the Elastic License 2.0 (ELv2). See [LICENSE](https://github.com/Arize-ai/phoenix/blob/main/LICENSE).