arize-phoenix 0.0.29rc8__py3-none-any.whl → 0.0.31__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of arize-phoenix might be problematic. Click here for more details.
- {arize_phoenix-0.0.29rc8.dist-info → arize_phoenix-0.0.31.dist-info}/METADATA +4 -1
- {arize_phoenix-0.0.29rc8.dist-info → arize_phoenix-0.0.31.dist-info}/RECORD +11 -8
- {arize_phoenix-0.0.29rc8.dist-info → arize_phoenix-0.0.31.dist-info}/WHEEL +1 -1
- phoenix/__init__.py +3 -1
- phoenix/datasets/dataset.py +204 -1
- phoenix/experimental/__init__.py +0 -0
- phoenix/experimental/evals/__init__.py +0 -0
- phoenix/experimental/evals/retrievals.py +91 -0
- phoenix/server/static/index.js +468 -431
- {arize_phoenix-0.0.29rc8.dist-info → arize_phoenix-0.0.31.dist-info}/licenses/IP_NOTICE +0 -0
- {arize_phoenix-0.0.29rc8.dist-info → arize_phoenix-0.0.31.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: arize-phoenix
|
|
3
|
-
Version: 0.0.
|
|
3
|
+
Version: 0.0.31
|
|
4
4
|
Summary: ML Observability in your notebook
|
|
5
5
|
Project-URL: Documentation, https://docs.arize.com/phoenix/
|
|
6
6
|
Project-URL: Issues, https://github.com/Arize-ai/phoenix/issues
|
|
@@ -41,6 +41,9 @@ Requires-Dist: pytest; extra == 'dev'
|
|
|
41
41
|
Requires-Dist: pytest-cov; extra == 'dev'
|
|
42
42
|
Requires-Dist: pytest-lazy-fixture; extra == 'dev'
|
|
43
43
|
Requires-Dist: strawberry-graphql[debug-server]==0.178.0; extra == 'dev'
|
|
44
|
+
Provides-Extra: experimental
|
|
45
|
+
Requires-Dist: openai; extra == 'experimental'
|
|
46
|
+
Requires-Dist: tenacity; extra == 'experimental'
|
|
44
47
|
Description-Content-Type: text/markdown
|
|
45
48
|
|
|
46
49
|
<p align="center">
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
phoenix/__init__.py,sha256=
|
|
1
|
+
phoenix/__init__.py,sha256=xUy3vWV6BkKa3ckBCBq0PWsocvw-5YMviTv5yQhF7f8,1189
|
|
2
2
|
phoenix/config.py,sha256=tjNn9oqDxQmeO85sCchLlTsDiRJ6AoK0CTt_Uc_hrKM,1442
|
|
3
3
|
phoenix/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
4
4
|
phoenix/services.py,sha256=BlQF7lTQwhXUHBZBjZOoTnDM2Qni_hziUXsfp1Hux4Q,3978
|
|
@@ -10,11 +10,14 @@ phoenix/core/model.py,sha256=vQ6RxpUPlncezJvur5u6xBN0Lkrk2gW0cTyb-qqaSqA,4713
|
|
|
10
10
|
phoenix/core/model_schema.py,sha256=H8EHEsrGdsieD0grSYejunv3vqlzwM-OIxXx6DDGibA,50994
|
|
11
11
|
phoenix/core/model_schema_adapter.py,sha256=GzJetQALsDUWJuFzLOEBSEC8M0JI0_F7i6CODYK2elI,8292
|
|
12
12
|
phoenix/datasets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
|
-
phoenix/datasets/dataset.py,sha256=
|
|
13
|
+
phoenix/datasets/dataset.py,sha256=sH4yLFhJjEJrWCd8LjmCoa3FdfcIXAeDpnXUcUzS7dc,30996
|
|
14
14
|
phoenix/datasets/errors.py,sha256=-Iyk8rsvP_KX-P4gOqjm26slkDq1-9CohK07_LkrYCI,8117
|
|
15
15
|
phoenix/datasets/fixtures.py,sha256=0_PacL3dw49zulKpFpPdhvxJxeGmHTguqIyf2VXkBkk,19158
|
|
16
16
|
phoenix/datasets/schema.py,sha256=HlM0f-pLFul2sYyHZM-Av8OFxLFkn57dkK_BWbMzyJY,6668
|
|
17
17
|
phoenix/datasets/validation.py,sha256=dZ9lCFUV0EY7HCkQkQBrs-GLAEIZdpOqUxwD5l4dp88,8294
|
|
18
|
+
phoenix/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
19
|
+
phoenix/experimental/evals/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
20
|
+
phoenix/experimental/evals/retrievals.py,sha256=3PBv2yFIcxdn_y-L6We554TsozqCDjTVBE8017RB2mY,3793
|
|
18
21
|
phoenix/metrics/README.md,sha256=5gekqTU-5gGdMwvcfNp2Wlu8p1ul9kGY_jq0XXQusoI,1964
|
|
19
22
|
phoenix/metrics/__init__.py,sha256=sLp7td1GIt_0Z8dPUyP4L0-_4x9c871yAaGX30oMsvg,2433
|
|
20
23
|
phoenix/metrics/binning.py,sha256=CXPPcAkRmmR__IG36a6UGs5RBtgXXPuWQbafPtuG1ww,12787
|
|
@@ -84,12 +87,12 @@ phoenix/server/static/apple-touch-icon.png,sha256=fOfpjqGpWYbJ0eAurKsyoZP1EAs6ZV
|
|
|
84
87
|
phoenix/server/static/favicon.ico,sha256=bY0vvCKRftemZfPShwZtE93DiiQdaYaozkPGwNFr6H8,34494
|
|
85
88
|
phoenix/server/static/index.css,sha256=KKGpx4iwF91VGRm0YN-4cn8oC-oIqC6HecoPf0x3ZM8,1885
|
|
86
89
|
phoenix/server/static/index.html,sha256=xPZZH-y4dWlbDutPEV1k0rhmWJtIV-Db9aYP-dEc7wM,703
|
|
87
|
-
phoenix/server/static/index.js,sha256=
|
|
90
|
+
phoenix/server/static/index.js,sha256=SJnIFu7ufB_k38YBCI7D1btTSq4mmE7WkUf1iOBxiGw,2573278
|
|
88
91
|
phoenix/server/static/modernizr.js,sha256=mvK-XtkNqjOral-QvzoqsyOMECXIMu5BQwSVN_wcU9c,2564
|
|
89
92
|
phoenix/session/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
90
93
|
phoenix/session/session.py,sha256=WwGH7qStR4kAhmrRsw35BwXvCQDnEWpGm0crjyrWTvs,9519
|
|
91
|
-
arize_phoenix-0.0.
|
|
92
|
-
arize_phoenix-0.0.
|
|
93
|
-
arize_phoenix-0.0.
|
|
94
|
-
arize_phoenix-0.0.
|
|
95
|
-
arize_phoenix-0.0.
|
|
94
|
+
arize_phoenix-0.0.31.dist-info/METADATA,sha256=PLrtaGcA6hRk8KhAjAxHXtvLNNfIrH5HhjnPlhpeiSU,10974
|
|
95
|
+
arize_phoenix-0.0.31.dist-info/WHEEL,sha256=hKi7AIIx6qfnsRbr087vpeJnrVUuDokDHZacPPMW7-Y,87
|
|
96
|
+
arize_phoenix-0.0.31.dist-info/licenses/IP_NOTICE,sha256=JBqyyCYYxGDfzQ0TtsQgjts41IJoa-hiwDrBjCb9gHM,469
|
|
97
|
+
arize_phoenix-0.0.31.dist-info/licenses/LICENSE,sha256=HFkW9REuMOkvKRACuwLPT0hRydHb3zNg-fdFt94td18,3794
|
|
98
|
+
arize_phoenix-0.0.31.dist-info/RECORD,,
|
phoenix/__init__.py
CHANGED
|
@@ -2,8 +2,9 @@ from .datasets.dataset import Dataset
|
|
|
2
2
|
from .datasets.fixtures import ExampleDatasets, load_example
|
|
3
3
|
from .datasets.schema import EmbeddingColumnNames, RetrievalEmbeddingColumnNames, Schema
|
|
4
4
|
from .session.session import Session, active_session, close_app, launch_app
|
|
5
|
+
from .trace.fixtures import load_example_traces
|
|
5
6
|
|
|
6
|
-
__version__ = "0.0.
|
|
7
|
+
__version__ = "0.0.31"
|
|
7
8
|
|
|
8
9
|
# module level doc-string
|
|
9
10
|
__doc__ = """
|
|
@@ -32,4 +33,5 @@ __all__ = [
|
|
|
32
33
|
"close_app",
|
|
33
34
|
"launch_app",
|
|
34
35
|
"Session",
|
|
36
|
+
"load_example_traces",
|
|
35
37
|
]
|
phoenix/datasets/dataset.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
|
1
1
|
import logging
|
|
2
|
+
import re
|
|
2
3
|
import uuid
|
|
3
4
|
from copy import deepcopy
|
|
4
|
-
from dataclasses import fields, replace
|
|
5
|
+
from dataclasses import dataclass, fields, replace
|
|
6
|
+
from enum import Enum
|
|
7
|
+
from itertools import groupby
|
|
5
8
|
from typing import Any, Dict, List, Optional, Set, Tuple, Union
|
|
6
9
|
|
|
7
10
|
import numpy as np
|
|
@@ -25,6 +28,7 @@ from .schema import (
|
|
|
25
28
|
SINGLE_COLUMN_SCHEMA_FIELD_NAMES,
|
|
26
29
|
EmbeddingColumnNames,
|
|
27
30
|
EmbeddingFeatures,
|
|
31
|
+
RetrievalEmbeddingColumnNames,
|
|
28
32
|
Schema,
|
|
29
33
|
SchemaFieldName,
|
|
30
34
|
SchemaFieldValue,
|
|
@@ -121,6 +125,160 @@ class Dataset:
|
|
|
121
125
|
schema = Schema.from_json(schema_json)
|
|
122
126
|
return cls(df, schema, name)
|
|
123
127
|
|
|
128
|
+
@classmethod
|
|
129
|
+
def from_open_inference(cls, dataframe: DataFrame) -> "Dataset":
|
|
130
|
+
schema = Schema()
|
|
131
|
+
column_renaming: Dict[str, str] = {}
|
|
132
|
+
for group_name, group in groupby(
|
|
133
|
+
sorted(
|
|
134
|
+
map(_parse_open_inference_column_name, dataframe.columns),
|
|
135
|
+
key=lambda column: column.name,
|
|
136
|
+
),
|
|
137
|
+
key=lambda column: column.name,
|
|
138
|
+
):
|
|
139
|
+
open_inference_columns = list(group)
|
|
140
|
+
if group_name == "":
|
|
141
|
+
column_names_by_category = {
|
|
142
|
+
column.category: column.full_name for column in open_inference_columns
|
|
143
|
+
}
|
|
144
|
+
schema = replace(
|
|
145
|
+
schema,
|
|
146
|
+
prediction_id_column_name=column_names_by_category.get(
|
|
147
|
+
OpenInferenceCategory.id
|
|
148
|
+
),
|
|
149
|
+
timestamp_column_name=column_names_by_category.get(
|
|
150
|
+
OpenInferenceCategory.timestamp
|
|
151
|
+
),
|
|
152
|
+
)
|
|
153
|
+
continue
|
|
154
|
+
column_names_by_specifier = {
|
|
155
|
+
column.specifier: column.full_name for column in open_inference_columns
|
|
156
|
+
}
|
|
157
|
+
if group_name == "response":
|
|
158
|
+
response_vector_column_name = column_names_by_specifier.get(
|
|
159
|
+
OpenInferenceSpecifier.embedding
|
|
160
|
+
)
|
|
161
|
+
if response_vector_column_name is not None:
|
|
162
|
+
column_renaming[response_vector_column_name] = "response"
|
|
163
|
+
schema = replace(
|
|
164
|
+
schema,
|
|
165
|
+
response_column_names=EmbeddingColumnNames(
|
|
166
|
+
vector_column_name=column_renaming[response_vector_column_name],
|
|
167
|
+
raw_data_column_name=column_names_by_specifier.get(
|
|
168
|
+
OpenInferenceSpecifier.default
|
|
169
|
+
),
|
|
170
|
+
),
|
|
171
|
+
)
|
|
172
|
+
else:
|
|
173
|
+
response_text_column_name = column_names_by_specifier.get(
|
|
174
|
+
OpenInferenceSpecifier.default
|
|
175
|
+
)
|
|
176
|
+
if response_text_column_name is None:
|
|
177
|
+
raise ValueError(
|
|
178
|
+
"invalid OpenInference format: missing text column for response"
|
|
179
|
+
)
|
|
180
|
+
column_renaming[response_text_column_name] = "response"
|
|
181
|
+
schema = replace(
|
|
182
|
+
schema,
|
|
183
|
+
response_column_names=column_renaming[response_text_column_name],
|
|
184
|
+
)
|
|
185
|
+
elif group_name == "prompt":
|
|
186
|
+
prompt_vector_column_name = column_names_by_specifier.get(
|
|
187
|
+
OpenInferenceSpecifier.embedding
|
|
188
|
+
)
|
|
189
|
+
if prompt_vector_column_name is None:
|
|
190
|
+
raise ValueError(
|
|
191
|
+
"invalid OpenInference format: missing embedding vector column for prompt"
|
|
192
|
+
)
|
|
193
|
+
column_renaming[prompt_vector_column_name] = "prompt"
|
|
194
|
+
schema = replace(
|
|
195
|
+
schema,
|
|
196
|
+
prompt_column_names=RetrievalEmbeddingColumnNames(
|
|
197
|
+
vector_column_name=column_renaming[prompt_vector_column_name],
|
|
198
|
+
raw_data_column_name=column_names_by_specifier.get(
|
|
199
|
+
OpenInferenceSpecifier.default
|
|
200
|
+
),
|
|
201
|
+
context_retrieval_ids_column_name=column_names_by_specifier.get(
|
|
202
|
+
OpenInferenceSpecifier.retrieved_document_ids
|
|
203
|
+
),
|
|
204
|
+
context_retrieval_scores_column_name=column_names_by_specifier.get(
|
|
205
|
+
OpenInferenceSpecifier.retrieved_document_scores
|
|
206
|
+
),
|
|
207
|
+
),
|
|
208
|
+
)
|
|
209
|
+
elif OpenInferenceSpecifier.embedding in column_names_by_specifier:
|
|
210
|
+
vector_column_name = column_names_by_specifier[OpenInferenceSpecifier.embedding]
|
|
211
|
+
column_renaming[vector_column_name] = group_name
|
|
212
|
+
embedding_feature_column_names = schema.embedding_feature_column_names or {}
|
|
213
|
+
embedding_feature_column_names.update(
|
|
214
|
+
{
|
|
215
|
+
group_name: EmbeddingColumnNames(
|
|
216
|
+
vector_column_name=column_renaming[vector_column_name],
|
|
217
|
+
raw_data_column_name=column_names_by_specifier.get(
|
|
218
|
+
OpenInferenceSpecifier.raw_data
|
|
219
|
+
),
|
|
220
|
+
link_to_data_column_name=column_names_by_specifier.get(
|
|
221
|
+
OpenInferenceSpecifier.link_to_data
|
|
222
|
+
),
|
|
223
|
+
)
|
|
224
|
+
}
|
|
225
|
+
)
|
|
226
|
+
schema = replace(
|
|
227
|
+
schema,
|
|
228
|
+
embedding_feature_column_names=embedding_feature_column_names,
|
|
229
|
+
)
|
|
230
|
+
elif len(open_inference_columns) == 1:
|
|
231
|
+
open_inference_column = open_inference_columns[0]
|
|
232
|
+
raw_column_name = open_inference_column.full_name
|
|
233
|
+
column_renaming[raw_column_name] = open_inference_column.name
|
|
234
|
+
if open_inference_column.category is OpenInferenceCategory.feature:
|
|
235
|
+
schema = replace(
|
|
236
|
+
schema,
|
|
237
|
+
feature_column_names=(
|
|
238
|
+
(schema.feature_column_names or []) + [column_renaming[raw_column_name]]
|
|
239
|
+
),
|
|
240
|
+
)
|
|
241
|
+
elif open_inference_column.category is OpenInferenceCategory.tag:
|
|
242
|
+
schema = replace(
|
|
243
|
+
schema,
|
|
244
|
+
tag_column_names=(
|
|
245
|
+
(schema.tag_column_names or []) + [column_renaming[raw_column_name]]
|
|
246
|
+
),
|
|
247
|
+
)
|
|
248
|
+
elif open_inference_column.category is OpenInferenceCategory.prediction:
|
|
249
|
+
if open_inference_column.specifier is OpenInferenceSpecifier.score:
|
|
250
|
+
schema = replace(
|
|
251
|
+
schema,
|
|
252
|
+
prediction_score_column_name=column_renaming[raw_column_name],
|
|
253
|
+
)
|
|
254
|
+
if open_inference_column.specifier is OpenInferenceSpecifier.label:
|
|
255
|
+
schema = replace(
|
|
256
|
+
schema,
|
|
257
|
+
prediction_label_column_name=column_renaming[raw_column_name],
|
|
258
|
+
)
|
|
259
|
+
elif open_inference_column.category is OpenInferenceCategory.actual:
|
|
260
|
+
if open_inference_column.specifier is OpenInferenceSpecifier.score:
|
|
261
|
+
schema = replace(
|
|
262
|
+
schema,
|
|
263
|
+
actual_score_column_name=column_renaming[raw_column_name],
|
|
264
|
+
)
|
|
265
|
+
if open_inference_column.specifier is OpenInferenceSpecifier.label:
|
|
266
|
+
schema = replace(
|
|
267
|
+
schema,
|
|
268
|
+
actual_label_column_name=column_renaming[raw_column_name],
|
|
269
|
+
)
|
|
270
|
+
else:
|
|
271
|
+
raise ValueError(f"invalid OpenInference format: duplicated name `{group_name}`")
|
|
272
|
+
|
|
273
|
+
return cls(
|
|
274
|
+
dataframe.rename(
|
|
275
|
+
column_renaming,
|
|
276
|
+
axis=1,
|
|
277
|
+
copy=False,
|
|
278
|
+
),
|
|
279
|
+
schema,
|
|
280
|
+
)
|
|
281
|
+
|
|
124
282
|
def to_disc(self) -> None:
|
|
125
283
|
"""writes the data and schema to disc"""
|
|
126
284
|
directory = DATASET_DIR / self.name
|
|
@@ -528,3 +686,48 @@ def _get_schema_from_unknown_schema_param(schemaLike: SchemaLike) -> Schema:
|
|
|
528
686
|
|
|
529
687
|
def _add_prediction_id(num_rows: int) -> List[str]:
|
|
530
688
|
return [str(uuid.uuid4()) for _ in range(num_rows)]
|
|
689
|
+
|
|
690
|
+
|
|
691
|
+
class OpenInferenceCategory(Enum):
|
|
692
|
+
id = "id"
|
|
693
|
+
timestamp = "timestamp"
|
|
694
|
+
feature = "feature"
|
|
695
|
+
tag = "tag"
|
|
696
|
+
prediction = "prediction"
|
|
697
|
+
actual = "actual"
|
|
698
|
+
|
|
699
|
+
|
|
700
|
+
class OpenInferenceSpecifier(Enum):
|
|
701
|
+
default = ""
|
|
702
|
+
score = "score"
|
|
703
|
+
label = "label"
|
|
704
|
+
embedding = "embedding"
|
|
705
|
+
raw_data = "raw_data"
|
|
706
|
+
link_to_data = "link_to_data"
|
|
707
|
+
retrieved_document_ids = "retrieved_document_ids"
|
|
708
|
+
retrieved_document_scores = "retrieved_document_scores"
|
|
709
|
+
|
|
710
|
+
|
|
711
|
+
@dataclass(frozen=True)
|
|
712
|
+
class _OpenInferenceColumnName:
|
|
713
|
+
full_name: str
|
|
714
|
+
category: OpenInferenceCategory
|
|
715
|
+
data_type: str
|
|
716
|
+
specifier: OpenInferenceSpecifier = OpenInferenceSpecifier.default
|
|
717
|
+
name: str = ""
|
|
718
|
+
|
|
719
|
+
|
|
720
|
+
def _parse_open_inference_column_name(column_name: str) -> _OpenInferenceColumnName:
|
|
721
|
+
pattern = (
|
|
722
|
+
r"^:(?P<category>\w+)\.(?P<data_type>\[\w+\]|\w+)(\.(?P<specifier>\w+))?:(?P<name>.*)?$"
|
|
723
|
+
)
|
|
724
|
+
if match := re.match(pattern, column_name):
|
|
725
|
+
extract = match.groupdict(default="")
|
|
726
|
+
return _OpenInferenceColumnName(
|
|
727
|
+
full_name=column_name,
|
|
728
|
+
category=OpenInferenceCategory(extract.get("category", "").lower()),
|
|
729
|
+
data_type=extract.get("data_type", "").lower(),
|
|
730
|
+
specifier=OpenInferenceSpecifier(extract.get("specifier", "").lower()),
|
|
731
|
+
name=extract.get("name", ""),
|
|
732
|
+
)
|
|
733
|
+
raise ValueError(f"Invalid format for column name: {column_name}")
|
|
File without changes
|
|
File without changes
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Helper functions for evaluating the retrieval step of retrieval-augmented generation.
|
|
3
|
+
"""
|
|
4
|
+
|
|
5
|
+
from typing import List, Optional
|
|
6
|
+
|
|
7
|
+
import openai
|
|
8
|
+
from tenacity import (
|
|
9
|
+
retry,
|
|
10
|
+
stop_after_attempt,
|
|
11
|
+
wait_random_exponential,
|
|
12
|
+
)
|
|
13
|
+
|
|
14
|
+
_EVALUATION_SYSTEM_MESSAGE = (
|
|
15
|
+
"You will be given a query and a reference text. "
|
|
16
|
+
"You must determine whether the reference text contains an answer to the input query. "
|
|
17
|
+
'Your response must be single word, either "relevant" or "irrelevant", '
|
|
18
|
+
"and should not contain any text or characters aside from that word. "
|
|
19
|
+
'"irrelevant" means that the reference text does not contain an answer to the query. '
|
|
20
|
+
'"relevant" means the reference text contains an answer to the query.'
|
|
21
|
+
)
|
|
22
|
+
_QUERY_CONTEXT_PROMPT_TEMPLATE = """# Query: {query}
|
|
23
|
+
|
|
24
|
+
# Reference: {reference}
|
|
25
|
+
|
|
26
|
+
# Answer ("relevant" or "irrelevant"): """
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def compute_precisions_at_k(
|
|
30
|
+
relevance_classifications: List[Optional[bool]],
|
|
31
|
+
) -> List[Optional[float]]:
|
|
32
|
+
"""Given a list of relevance classifications, computes precision@k for k = 1, 2, ..., n, where
|
|
33
|
+
n is the length of the input list.
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
relevance_classifications (List[Optional[bool]]): A list of relevance classifications for a
|
|
37
|
+
set of retrieved documents, sorted by order of retrieval (i.e., the first element is the
|
|
38
|
+
classification for the first retrieved document, the second element is the
|
|
39
|
+
classification for the second retrieved document, etc.). The list may contain None
|
|
40
|
+
values, which indicate that the relevance classification for the corresponding document
|
|
41
|
+
is unknown.
|
|
42
|
+
|
|
43
|
+
Returns:
|
|
44
|
+
List[Optional[float]]: A list of precision@k values for k = 1, 2, ..., n, where n is the
|
|
45
|
+
length of the input list. The first element is the precision@1 value, the second element
|
|
46
|
+
is the precision@2 value, etc. If the input list contains any None values, those values
|
|
47
|
+
are omitted when computing the precision@k values.
|
|
48
|
+
"""
|
|
49
|
+
precisions_at_k = []
|
|
50
|
+
num_relevant_classifications = 0
|
|
51
|
+
num_non_none_classifications = 0
|
|
52
|
+
for relevance_classification in relevance_classifications:
|
|
53
|
+
if isinstance(relevance_classification, bool):
|
|
54
|
+
num_non_none_classifications += 1
|
|
55
|
+
num_relevant_classifications += int(relevance_classification)
|
|
56
|
+
precisions_at_k.append(
|
|
57
|
+
num_relevant_classifications / num_non_none_classifications
|
|
58
|
+
if num_non_none_classifications > 0
|
|
59
|
+
else None
|
|
60
|
+
)
|
|
61
|
+
return precisions_at_k
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
|
|
65
|
+
def classify_relevance(query: str, document: str, model_name: str) -> Optional[bool]:
|
|
66
|
+
"""Given a query and a document, determines whether the document contains an answer to the
|
|
67
|
+
query.
|
|
68
|
+
|
|
69
|
+
Args:
|
|
70
|
+
query (str): The query text. document (str): The document text. model_name (str): The name
|
|
71
|
+
of the OpenAI API model to use for the classification.
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
Optional[bool]: A boolean indicating whether the document contains an answer to the query
|
|
75
|
+
(True meaning relevant, False meaning irrelevant), or None if the LLM produces an
|
|
76
|
+
unparseable output.
|
|
77
|
+
"""
|
|
78
|
+
prompt = _QUERY_CONTEXT_PROMPT_TEMPLATE.format(
|
|
79
|
+
query=query,
|
|
80
|
+
reference=document,
|
|
81
|
+
)
|
|
82
|
+
response = openai.ChatCompletion.create(
|
|
83
|
+
messages=[
|
|
84
|
+
{"role": "system", "content": _EVALUATION_SYSTEM_MESSAGE},
|
|
85
|
+
{"role": "user", "content": prompt},
|
|
86
|
+
],
|
|
87
|
+
model=model_name,
|
|
88
|
+
)
|
|
89
|
+
raw_response_text = str(response["choices"][0]["message"]["content"]).strip()
|
|
90
|
+
relevance_classification = {"relevant": True, "irrelevant": False}.get(raw_response_text)
|
|
91
|
+
return relevance_classification
|