ararpy 0.1.29__py3-none-any.whl → 0.1.31__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ararpy/__init__.py +1 -1
- ararpy/calc/raw_funcs.py +4 -1
- ararpy/files/raw_file.py +22 -1
- ararpy/smp/corr.py +10 -10
- ararpy/smp/initial.py +1 -1
- ararpy/smp/plots.py +3 -3
- ararpy/smp/sample.py +3 -2
- ararpy/thermo/atomic_level_random_walk.py +50 -45
- {ararpy-0.1.29.dist-info → ararpy-0.1.31.dist-info}/METADATA +1 -1
- {ararpy-0.1.29.dist-info → ararpy-0.1.31.dist-info}/RECORD +13 -13
- {ararpy-0.1.29.dist-info → ararpy-0.1.31.dist-info}/WHEEL +0 -0
- {ararpy-0.1.29.dist-info → ararpy-0.1.31.dist-info}/licenses/LICENSE +0 -0
- {ararpy-0.1.29.dist-info → ararpy-0.1.31.dist-info}/top_level.txt +0 -0
ararpy/__init__.py
CHANGED
ararpy/calc/raw_funcs.py
CHANGED
|
@@ -29,6 +29,9 @@ def get_raw_data_regression_results(points_data, unselected: list = None):
|
|
|
29
29
|
-------
|
|
30
30
|
|
|
31
31
|
"""
|
|
32
|
+
def power(a0, a1):
|
|
33
|
+
# return regression.power(a0, a1)
|
|
34
|
+
raise ValueError("Deprecated regression")
|
|
32
35
|
# if unselected is None:
|
|
33
36
|
# unselected = []
|
|
34
37
|
# linesData = []
|
|
@@ -36,7 +39,7 @@ def get_raw_data_regression_results(points_data, unselected: list = None):
|
|
|
36
39
|
# un_x = transpose(unselected)[0] if is_twoD(unselected) else []
|
|
37
40
|
reg_handler = [
|
|
38
41
|
regression.linest, regression.quadratic, regression.exponential,
|
|
39
|
-
|
|
42
|
+
power, regression.average]
|
|
40
43
|
# size = 50
|
|
41
44
|
# lines_x = [(max(x + un_x) - 0) / size * i for i in range(size + 1)]
|
|
42
45
|
for i in range(len(reg_handler)):
|
ararpy/files/raw_file.py
CHANGED
|
@@ -22,6 +22,7 @@ from parse import parse as string_parser
|
|
|
22
22
|
import dateutil.parser as datetime_parser
|
|
23
23
|
from ..calc.arr import get_item
|
|
24
24
|
from ..calc.basic import utc_dt
|
|
25
|
+
from ..smp.sample import RawData
|
|
25
26
|
|
|
26
27
|
""" Open raw data file """
|
|
27
28
|
|
|
@@ -211,8 +212,28 @@ def open_raw_xls(file_path, input_filter: List[Union[str, int]]):
|
|
|
211
212
|
|
|
212
213
|
|
|
213
214
|
def open_raw_seq(file_path, input_filter=None):
|
|
215
|
+
|
|
216
|
+
class RenameUnpickler(pickle.Unpickler):
|
|
217
|
+
def find_class(self, module: str, name: str):
|
|
218
|
+
MODULE = RawData().__module__
|
|
219
|
+
renamed_module = module
|
|
220
|
+
if '.sample' in module and module != MODULE:
|
|
221
|
+
renamed_module = MODULE
|
|
222
|
+
try:
|
|
223
|
+
return super(RenameUnpickler, self).find_class(renamed_module, name)
|
|
224
|
+
except AttributeError:
|
|
225
|
+
return super(RenameUnpickler, self).find_class(renamed_module, 'ArArBasic')
|
|
226
|
+
|
|
227
|
+
def renamed_load(file_obj):
|
|
228
|
+
return RenameUnpickler(file_obj).load()
|
|
229
|
+
|
|
214
230
|
with open(file_path, 'rb') as f:
|
|
215
|
-
sequences =
|
|
231
|
+
sequences = renamed_load(f)
|
|
232
|
+
|
|
233
|
+
# with open(file_path, 'rb') as f:
|
|
234
|
+
# sequences = pickle.load(f)
|
|
235
|
+
# print(sequences[0].__module__)
|
|
236
|
+
|
|
216
237
|
name_list = []
|
|
217
238
|
for seq in sequences:
|
|
218
239
|
while seq.name in name_list:
|
ararpy/smp/corr.py
CHANGED
|
@@ -365,12 +365,12 @@ def calc_nor_inv_isochrons(sample: Sample):
|
|
|
365
365
|
n = len(sample.SequenceName)
|
|
366
366
|
try:
|
|
367
367
|
isochron_1 = calc.isochron.get_data(
|
|
368
|
-
*calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
368
|
+
*calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138]),
|
|
369
369
|
*calc.arr.sub(sample.CorrectedValues[8:10], sample.DegasValues[30:32]),
|
|
370
370
|
*sample.DegasValues[0:2]
|
|
371
371
|
)
|
|
372
372
|
isochron_2 = calc.isochron.get_data(
|
|
373
|
-
*calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
373
|
+
*calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138]),
|
|
374
374
|
*sample.DegasValues[0:2],
|
|
375
375
|
*calc.arr.sub(sample.CorrectedValues[8:10], sample.DegasValues[30:32]))
|
|
376
376
|
except (BaseException, Exception):
|
|
@@ -383,17 +383,17 @@ def calc_cl_isochrons(sample: Sample):
|
|
|
383
383
|
n = len(sample.SequenceName)
|
|
384
384
|
try:
|
|
385
385
|
isochron_3 = calc.isochron.get_data(
|
|
386
|
-
*calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
386
|
+
*calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138]),
|
|
387
387
|
*sample.DegasValues[24:26],
|
|
388
|
-
*calc.arr.mul(sample.DegasValues[10:12], sample.
|
|
388
|
+
*calc.arr.mul(sample.DegasValues[10:12], sample.TotalParam[136:138]))
|
|
389
389
|
isochron_4 = calc.isochron.get_data(
|
|
390
|
-
*calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
391
|
-
*calc.arr.mul(sample.DegasValues[10:12], sample.
|
|
390
|
+
*calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138]),
|
|
391
|
+
*calc.arr.mul(sample.DegasValues[10:12], sample.TotalParam[136:138]),
|
|
392
392
|
*sample.DegasValues[24:26])
|
|
393
393
|
isochron_5 = calc.isochron.get_data(
|
|
394
|
-
*calc.arr.mul(sample.DegasValues[10:12], sample.
|
|
394
|
+
*calc.arr.mul(sample.DegasValues[10:12], sample.TotalParam[136:138]),
|
|
395
395
|
*sample.DegasValues[24:26],
|
|
396
|
-
*calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
396
|
+
*calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138]))
|
|
397
397
|
except (BaseException, Exception):
|
|
398
398
|
return np.zeros([5, n]), np.zeros([5, n]), np.zeros([5, n])
|
|
399
399
|
else:
|
|
@@ -451,7 +451,7 @@ def calc_ratio(sample: Sample, monte_carlo: bool = False):
|
|
|
451
451
|
sample.ApparentAgeValues[0:2] = ar40aar36a
|
|
452
452
|
sample.ApparentAgeValues[7] = ar36a_percent
|
|
453
453
|
else:
|
|
454
|
-
ar39k, sar39k = calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
454
|
+
ar39k, sar39k = calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138])
|
|
455
455
|
sum_ar39k = sum(ar39k)
|
|
456
456
|
ar39k_percent = [item / sum_ar39k * 100 if sum_ar39k != 0 else 0 for item in ar39k]
|
|
457
457
|
ar40rar39k = calc.arr.mul_factor(
|
|
@@ -545,7 +545,7 @@ def monte_carlo_f(sample: Sample):
|
|
|
545
545
|
R36v38clp = np.transpose(sample.TotalParam[56:58])
|
|
546
546
|
|
|
547
547
|
stand_time_year = np.transpose(sample.TotalParam[32])
|
|
548
|
-
JNFactor = np.transpose(sample.
|
|
548
|
+
JNFactor = np.transpose(sample.TotalParam[136:138])
|
|
549
549
|
|
|
550
550
|
irradiation_cycles = [list(filter(None, re.split(r'[DS]', each_step))) for each_step in sample.TotalParam[27]]
|
|
551
551
|
t1 = [re.findall(r"\d+", i) for i in sample.TotalParam[31]] # t1: experimental times
|
ararpy/smp/initial.py
CHANGED
|
@@ -334,7 +334,7 @@ def check_version(smp: Sample):
|
|
|
334
334
|
v, sv = smp.TotalParam[59:61]
|
|
335
335
|
except:
|
|
336
336
|
doNormalize = False
|
|
337
|
-
smp.
|
|
337
|
+
smp.TotalParam[136:138] = [
|
|
338
338
|
[1 if v[0] == each or not doNormalize else v[0] / each for each in v],
|
|
339
339
|
[0 if v[0] == v[i] or not doNormalize else err.div((v[0], sv[0]), (v[i], sv[i])) for i in range(len(v))]
|
|
340
340
|
]
|
ararpy/smp/plots.py
CHANGED
|
@@ -416,7 +416,7 @@ def recalc_age_plateaus(sample: Sample, **kwargs):
|
|
|
416
416
|
-------
|
|
417
417
|
None
|
|
418
418
|
"""
|
|
419
|
-
ar39k, sar39k = calc.arr.mul(sample.DegasValues[20:22], sample.
|
|
419
|
+
ar39k, sar39k = calc.arr.mul(sample.DegasValues[20:22], sample.TotalParam[136:138])
|
|
420
420
|
ar40r, sar40r = sample.DegasValues[24:26]
|
|
421
421
|
ar40rar39k = calc.arr.div([ar40r, sar40r], [ar39k, sar39k])
|
|
422
422
|
params_initial_ratio = calc.arr.partial(sample.TotalParam, cols=list(range(115, 120)))
|
|
@@ -575,7 +575,7 @@ def recalc_mdf_plateaus(sample: Sample, **kwargs):
|
|
|
575
575
|
-------
|
|
576
576
|
None
|
|
577
577
|
"""
|
|
578
|
-
ar36a, sar36a = calc.arr.mul(sample.DegasValues[0:2], sample.
|
|
578
|
+
ar36a, sar36a = calc.arr.mul(sample.DegasValues[0:2], sample.TotalParam[136:138])
|
|
579
579
|
ar40aar36a = sample.ApparentAgeValues[0:2]
|
|
580
580
|
mdf = sample.ApparentAgeValues[2:4]
|
|
581
581
|
|
|
@@ -613,7 +613,7 @@ def calc_ar40ar39(r, sr, smp):
|
|
|
613
613
|
"""
|
|
614
614
|
try:
|
|
615
615
|
ar36a = np.array(smp.DegasValues[0:2])
|
|
616
|
-
ar39k = calc.arr.mul(smp.DegasValues[20:22], smp.
|
|
616
|
+
ar39k = calc.arr.mul(smp.DegasValues[20:22], smp.TotalParam[136:138])
|
|
617
617
|
ar40 = smp.CorrectedValues[8:10]
|
|
618
618
|
ar40k = smp.DegasValues[30:32]
|
|
619
619
|
size = ar36a.shape[-1]
|
ararpy/smp/sample.py
CHANGED
|
@@ -169,6 +169,7 @@ TOTAL_PARAMS_HEADERS = [
|
|
|
169
169
|
'38Ar Gain', '%1\u03C3', # 132-133
|
|
170
170
|
'39Ar Gain', '%1\u03C3', # 134-135
|
|
171
171
|
'40Ar Gain', '%1\u03C3', # 136-137
|
|
172
|
+
'Normalize Factor', '1\u03C3', # 138-139
|
|
172
173
|
]
|
|
173
174
|
|
|
174
175
|
SAMPLE_INTERCEPT_SHORT_HEADERS = [
|
|
@@ -283,6 +284,7 @@ TOTAL_PARAMS_SHORT_HEADERS = [
|
|
|
283
284
|
'38Gain', '%1s', # 132-133
|
|
284
285
|
'39Gain', '%1s', # 134-135
|
|
285
286
|
'40Gain', '%1s', # 136-137
|
|
287
|
+
'NormalizeFactor', '1\u03C3', # 138-139
|
|
286
288
|
]
|
|
287
289
|
|
|
288
290
|
DEFAULT_PLOT_STYLES = lambda sample_type, age_unit: {
|
|
@@ -776,7 +778,7 @@ DEFAULT_PLOT_STYLES = lambda sample_type, age_unit: {
|
|
|
776
778
|
},
|
|
777
779
|
}
|
|
778
780
|
|
|
779
|
-
VERSION = '
|
|
781
|
+
VERSION = '20250806'
|
|
780
782
|
|
|
781
783
|
NAMED_DICT = {
|
|
782
784
|
"unknown": {"header": SAMPLE_INTERCEPT_HEADERS.copy()},
|
|
@@ -845,7 +847,6 @@ class Sample:
|
|
|
845
847
|
self.SelectedSequence2 = []
|
|
846
848
|
self.UnselectedSequence = []
|
|
847
849
|
self.IsochronMark = []
|
|
848
|
-
self.NormalizeFactor = [[], []]
|
|
849
850
|
|
|
850
851
|
# Tables and Plots
|
|
851
852
|
self.UnknownTable = Table()
|
|
@@ -373,7 +373,7 @@ class DiffSimulation:
|
|
|
373
373
|
boundary_factor = 0.1 ** (k * math.log10(1 + (max(conditions[:, -1]) // 1000)))
|
|
374
374
|
step_length = self.step_length / np.sqrt(pos.shape[1] if len(pos.shape) > 1 else 1)
|
|
375
375
|
scale = int(total_steps)
|
|
376
|
-
|
|
376
|
+
print(f"调整后: {nsteps_factor = }, gamma = {conditions[0][-1]}, {total_steps = }, {compensation = }, {boundary_factor = }")
|
|
377
377
|
|
|
378
378
|
_pos = walker(
|
|
379
379
|
copy.deepcopy(pos), step_length=step_length, total_nsteps=total_steps,
|
|
@@ -437,7 +437,7 @@ class DiffSimulation:
|
|
|
437
437
|
self.remained_per_step.append(len(pos))
|
|
438
438
|
self.released_per_step.append(self.natoms - len(pos))
|
|
439
439
|
|
|
440
|
-
print(f"{index = } {duration} - {heating_duration = } - {temperature = } - {total_steps = } - conc = {len(pos) / self.natoms * 100:.2f}% - {time.time() - _start:.5f}s")
|
|
440
|
+
print(f"{index = } {duration = }s - {heating_duration = }s - {temperature = }K - {total_steps = } - conc = {len(pos) / self.natoms * 100:.2f}% - {time.time() - _start:.5f}s")
|
|
441
441
|
|
|
442
442
|
self.positions = copy.deepcopy(pos)
|
|
443
443
|
|
|
@@ -452,6 +452,49 @@ class DiffSimulation:
|
|
|
452
452
|
return self.run_sequence(*seq, domains=domains, nsteps_factor=scale, simulating=simulation,
|
|
453
453
|
epsilon=epsilon, start_time=start_time)
|
|
454
454
|
|
|
455
|
+
def demo_init(n, es, fs, di, gs, ds, fr, ss=1):
|
|
456
|
+
demo = DiffSimulation()
|
|
457
|
+
# fs 应从大到小,父空间在前,子空间在后
|
|
458
|
+
|
|
459
|
+
# demo.grain_size = 300
|
|
460
|
+
# demo.size_scale = 0.05
|
|
461
|
+
# demo.atom_density = 1e14 # 原子密度 个/立方厘米
|
|
462
|
+
|
|
463
|
+
demo.dimension = di # dimension, 1 or 3
|
|
464
|
+
demo.size_scale = 1 # size_scale
|
|
465
|
+
demo.grain_size = gs # grain_szie
|
|
466
|
+
demo.frequency = fr # frequency
|
|
467
|
+
|
|
468
|
+
# domains应该从外到内
|
|
469
|
+
domains = []
|
|
470
|
+
for i in range(n-1, 0-1, -1):
|
|
471
|
+
size = int(demo.grain_size * fs[i]) * demo.size_scale
|
|
472
|
+
center = np.zeros(demo.dimension)
|
|
473
|
+
if isinstance(ds, (int, float)) or len(ds) == 1:
|
|
474
|
+
demo.atom_density = ds # atom_density # 原子密度 个/立方厘米
|
|
475
|
+
if i == 2:
|
|
476
|
+
ad = ds * 5 / 4
|
|
477
|
+
else:
|
|
478
|
+
ad = ds
|
|
479
|
+
else:
|
|
480
|
+
ad = ds[i]
|
|
481
|
+
dom = Domain(
|
|
482
|
+
dimension=demo.dimension, atom_density=ad, min_bound=center - size / 2, max_bound=center + size / 2,
|
|
483
|
+
energy=es[i], fraction=fs[i], inclusions=[domains[-1]] if len(domains) >= 1 else []
|
|
484
|
+
)
|
|
485
|
+
domains.append(dom)
|
|
486
|
+
# domains应该从外到内, 上面为了inclusion以及方便不同扩散域设置不同的密度,要按照从小到大的顺序生成,但是后面行走的时候要根据不同条件设置系数,要从外到内
|
|
487
|
+
demo.domains = sorted(domains, key=lambda dom: dom.fraction, reverse=True)
|
|
488
|
+
|
|
489
|
+
demo.setup()
|
|
490
|
+
|
|
491
|
+
a = [f"{dom.fraction = }, {dom.energy = }, {dom.natoms = }, {dom.atom_density = }" for dom in demo.domains]
|
|
492
|
+
|
|
493
|
+
print(
|
|
494
|
+
f"Total Atoms: {demo.natoms}\n" + "\n".join(a)
|
|
495
|
+
)
|
|
496
|
+
|
|
497
|
+
return demo
|
|
455
498
|
|
|
456
499
|
def run(times, temps, statuses, energies, fractions, ndoms: int = 1, grain_szie=275, atom_density=1e10, frequency=1e13,
|
|
457
500
|
dimension: int = 3, targets: list = None, epsilon: float = 0.001, simulation: bool = False,
|
|
@@ -472,57 +515,19 @@ def run(times, temps, statuses, energies, fractions, ndoms: int = 1, grain_szie=
|
|
|
472
515
|
:return:
|
|
473
516
|
"""
|
|
474
517
|
|
|
475
|
-
|
|
476
|
-
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
# demo.grain_size = 300
|
|
481
|
-
# demo.size_scale = 0.05
|
|
482
|
-
# demo.atom_density = 1e14 # 原子密度 个/立方厘米
|
|
483
|
-
demo.dimension = dimension
|
|
484
|
-
|
|
485
|
-
demo.size_scale = 1
|
|
486
|
-
demo.grain_size = grain_szie
|
|
487
|
-
demo.atom_density = atom_density # 原子密度 个/立方厘米
|
|
488
|
-
demo.frequency = frequency
|
|
489
|
-
|
|
490
|
-
# domains应该从外到内
|
|
491
|
-
domains = []
|
|
492
|
-
for i in range(n-1, 0-1, -1):
|
|
493
|
-
size = int(demo.grain_size * fs[i]) * demo.size_scale
|
|
494
|
-
center = np.zeros(demo.dimension)
|
|
495
|
-
if i == 2:
|
|
496
|
-
ad = demo.atom_density * 5 / 4
|
|
497
|
-
else:
|
|
498
|
-
ad = demo.atom_density
|
|
499
|
-
dom = Domain(
|
|
500
|
-
dimension=demo.dimension, atom_density=ad, min_bound=center - size / 2, max_bound=center + size / 2,
|
|
501
|
-
energy=es[i], fraction=fs[i], inclusions=[domains[-1]] if len(domains) >= 1 else []
|
|
502
|
-
)
|
|
503
|
-
domains.append(dom)
|
|
504
|
-
# domains应该从外到内, 上面为了inclusion以及方便不同扩散域设置不同的密度,要按照从小到大的顺序生成,但是后面行走的时候要根据不同条件设置系数,要从外到内
|
|
505
|
-
demo.domains = sorted(domains, key=lambda dom: dom.fraction, reverse=True)
|
|
506
|
-
|
|
507
|
-
demo.setup()
|
|
508
|
-
|
|
518
|
+
try:
|
|
519
|
+
# demo.run_persecond(times=times, temperatures=temps, domains=demo.domains, targets=target,
|
|
520
|
+
# epsilon=epsilon, simulation=simulation)
|
|
521
|
+
demo = demo_init(ndoms, energies, fractions, dimension, grain_szie, atom_density, frequency, ss=1)
|
|
509
522
|
demo.name = f"{file_name}"
|
|
510
523
|
|
|
511
|
-
print(f"Total Atoms: {demo.natoms}, atoms in each dom: {[dom.natoms for dom in demo.domains]} filename: {demo.name}")
|
|
512
|
-
|
|
513
524
|
if positions is not None:
|
|
514
525
|
demo.positions = positions
|
|
515
526
|
demo.natoms = len(positions)
|
|
516
527
|
|
|
517
528
|
demo.run_sequence(times=times, temperatures=temps, statuses=statuses, targets=targets, domains=demo.domains,
|
|
518
529
|
epsilon=epsilon, simulating=simulation, **kwargs)
|
|
519
|
-
|
|
520
|
-
# epsilon=epsilon, simulation=simulation)
|
|
521
|
-
|
|
522
|
-
return demo
|
|
523
|
-
|
|
524
|
-
try:
|
|
525
|
-
return _(ndoms, energies, fractions), True
|
|
530
|
+
return demo, True
|
|
526
531
|
except OverEpsilonError as e:
|
|
527
532
|
if ignore_error:
|
|
528
533
|
return demo, False
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
ararpy/__init__.py,sha256=
|
|
1
|
+
ararpy/__init__.py,sha256=4NVQopyzptK_z2c7IrMwGSekzQ2reMbk0O2dSq9Maxw,6857
|
|
2
2
|
ararpy/test.py,sha256=4F46-JJ1Ge12HGae0qO44Qc6kiEMHBgn2MsY_5LlHDo,3973
|
|
3
3
|
ararpy/calc/__init__.py,sha256=kUjRuLE8TLuKOv3i976RnGJoEMj23QBZDu37LWs81U4,322
|
|
4
4
|
ararpy/calc/age.py,sha256=WOZs70zXiBWDIEhXJLIaNiYTOFJNk0NDbH5e5zCbCks,5435
|
|
@@ -10,7 +10,7 @@ ararpy/calc/histogram.py,sha256=0GVbDdsjd91KQ1sa2B7NtZ4KGo0XpRIJapgIrzAwQUo,5777
|
|
|
10
10
|
ararpy/calc/isochron.py,sha256=ej9G2e68k6yszonWHsLcEubh3TA7eh1upTJP_X0ttAA,5726
|
|
11
11
|
ararpy/calc/jvalue.py,sha256=OL5zPYU8Pac-wOxUWPCgu3onh2n01xDnhpi2mlUsjJM,1146
|
|
12
12
|
ararpy/calc/plot.py,sha256=sUqjKBdAEjFarUoSCLqf8cbUM0rEAdZhmtyXB2K7LkA,2139
|
|
13
|
-
ararpy/calc/raw_funcs.py,sha256=
|
|
13
|
+
ararpy/calc/raw_funcs.py,sha256=UPwXlYBwE1ugYRD9rsOs8JqJtm14FGcpWmUpUYJ4Roc,2744
|
|
14
14
|
ararpy/calc/regression.py,sha256=mHUKobKx-Q9c7E49vPoQA2tA-MwO9BWvCp3VfnuUhUA,39776
|
|
15
15
|
ararpy/calc/spectra.py,sha256=_Q23eP9necHlaCoHf3_UfW1N3JmVZj5rcWFro8GS-CA,1995
|
|
16
16
|
ararpy/examples/022_VU124-M11a.ahd,sha256=3m0Gd-ZObou3KsnRNFMf77QwzT1Uz3nu3vA33Sqeyng,5414
|
|
@@ -37,30 +37,30 @@ ararpy/files/arr_file.py,sha256=KqksGlEA6nmMQofTgi7v45flscQZVtefxaNCKrV3Am4,837
|
|
|
37
37
|
ararpy/files/basic.py,sha256=nc7Hgo_qLSkdmtKzZmd5SQ8Jy0dhW46ly4gh-oisUDs,2095
|
|
38
38
|
ararpy/files/calc_file.py,sha256=wbt-cQhPnFJ32QyofXvjCPPehmWSj4CHnidkrP7dFgk,28694
|
|
39
39
|
ararpy/files/new_file.py,sha256=efblARIBROVLWS2w3-98BxLX5VZ8grRpiTkJFtf_rAk,214
|
|
40
|
-
ararpy/files/raw_file.py,sha256=
|
|
40
|
+
ararpy/files/raw_file.py,sha256=AUvx5Uh3aTQvGy7mXQ7771CeqFZ8u-KgdJvVOD-pU8k,21557
|
|
41
41
|
ararpy/files/xls.py,sha256=DVcZ_yRnc19p-m4leGGjt-YPDpSa2udYKmGyrM0qub0,640
|
|
42
42
|
ararpy/smp/EXPORT_TO_PDF_DATA_PROPERTIES.py,sha256=baDM437tu6hsPv0uYfod0TREXlPd6kvMBFT1S9ZZlkk,3024
|
|
43
43
|
ararpy/smp/__init__.py,sha256=k6_fa27UJsQK7K7oC5GYlwMo6l0Xd8af3QtOrZz2XJk,478
|
|
44
44
|
ararpy/smp/basic.py,sha256=PMvlSoToY8CJEORRrhEo4rYM2-VfSmjg0IuDpGFOGUM,24899
|
|
45
45
|
ararpy/smp/calculation.py,sha256=LCFJWjLVLEKEQ5b7RFUIxsMahEzgLdodW4kCYXV5Z34,2919
|
|
46
46
|
ararpy/smp/consts.py,sha256=XIdjdz8cYxspG2jMnoItdlUsxr3hKbNFJjMZJh1bpzw,393
|
|
47
|
-
ararpy/smp/corr.py,sha256=
|
|
47
|
+
ararpy/smp/corr.py,sha256=U5K1Vld55IHea_fZ7EEY_8dkvjp0f6OhpdSxf7b9WGY,26551
|
|
48
48
|
ararpy/smp/diffusion_funcs.py,sha256=4-PMMIZWzjk2HOYYWNgSp4GmApygp1MmOxJ2g3xrqWc,175049
|
|
49
49
|
ararpy/smp/export.py,sha256=eBUGx9eUHQ7EoibT-PC1HK7Zw_V1LUfuKJv56_XccUQ,117284
|
|
50
50
|
ararpy/smp/info.py,sha256=iKUELm-BuUduDlJKC1d8tKKNHbwwbNmhUg2pi6bcBvA,489
|
|
51
|
-
ararpy/smp/initial.py,sha256=
|
|
51
|
+
ararpy/smp/initial.py,sha256=YjHpdzlMxRQXyBOMe9Kd3-nNsjPjCWCub5mUcnprhAw,17895
|
|
52
52
|
ararpy/smp/json.py,sha256=BTZCjVN0aj9epc700nwkYEYMKN2lHBYo-pLmtnz5oHY,2300
|
|
53
|
-
ararpy/smp/plots.py,sha256=
|
|
53
|
+
ararpy/smp/plots.py,sha256=9w20cne704jmJl4btWk0LWcrHRqV5-DQmgG3Cq_GeEk,33591
|
|
54
54
|
ararpy/smp/raw.py,sha256=51n-rrbW2FqeZHQyevuG7iObPLGvIBzTe414QDVM1FE,6523
|
|
55
|
-
ararpy/smp/sample.py,sha256=
|
|
55
|
+
ararpy/smp/sample.py,sha256=JVHCYOxZm_So1UXWcWIsMWz0pbPayR0gSrolxOGuUu4,58280
|
|
56
56
|
ararpy/smp/style.py,sha256=wCygwtpCflhzwmI7u08X-feYGPytOyfR98YcgJx813c,7678
|
|
57
57
|
ararpy/smp/table.py,sha256=9bNAOqAIOc0nSC3LNeqjJKUYSJSM28Ji3o9VimwMU8A,6645
|
|
58
58
|
ararpy/thermo/__init__.py,sha256=6VBuqTRFl403PVqOuMkVrut0nKaQsAosBmfW91X1dMg,263
|
|
59
59
|
ararpy/thermo/arrhenius.py,sha256=Ass1ichHfqIAtpv8eLlgrUc1UOb3Urh1qzr1E3gLB4U,233
|
|
60
|
-
ararpy/thermo/atomic_level_random_walk.py,sha256=
|
|
60
|
+
ararpy/thermo/atomic_level_random_walk.py,sha256=kmP1Fu3wZhIJqxvOJIWbO8rFsSBMKE-6lrBA8oJtuP8,25772
|
|
61
61
|
ararpy/thermo/basic.py,sha256=nBGHI9uK7VdJwThwBIOcKAzdnYqPyQseFoY6s4zKizk,11504
|
|
62
|
-
ararpy-0.1.
|
|
63
|
-
ararpy-0.1.
|
|
64
|
-
ararpy-0.1.
|
|
65
|
-
ararpy-0.1.
|
|
66
|
-
ararpy-0.1.
|
|
62
|
+
ararpy-0.1.31.dist-info/licenses/LICENSE,sha256=cvG5t_C1qY_zUyJI7sNOa7gCArdngNPaOrfujl2LYuc,1085
|
|
63
|
+
ararpy-0.1.31.dist-info/METADATA,sha256=zhXfAk7Vx34WjBVUE_jSw4rM27BuSom462BCxssWvvU,24516
|
|
64
|
+
ararpy-0.1.31.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
65
|
+
ararpy-0.1.31.dist-info/top_level.txt,sha256=9iTpsPCYuRYq09yQTk9d2lqB8JtTEOmbN-IcGB-K3vY,7
|
|
66
|
+
ararpy-0.1.31.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|